From: wolf Date: Wed, 30 Apr 2003 22:27:55 +0000 (+0000) Subject: Add Annas Nedelec report. X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=9de6ec425d94852eb451644c2160d2e2fe0fe7f8;p=dealii-svn.git Add Annas Nedelec report. git-svn-id: https://svn.dealii.org/trunk@7519 0785d39b-7218-0410-832d-ea1e28bc413d --- diff --git a/deal.II/doc/documentation.html b/deal.II/doc/documentation.html index 2fa0d85a26..f0f5c52c3f 100644 --- a/deal.II/doc/documentation.html +++ b/deal.II/doc/documentation.html @@ -193,6 +193,20 @@ target="body">printable version of the report.

+
  • + A very detailed report on + Nedelec elements (by Anna + Schneebeli, University of Basel, Switzerland). It + explains the construction and application of Nedelec + edge elements for H-curl spaces, as used, for example, + in the numerical solution of the Maxwell equations. It + also gives numerical results obtained with deal.II. + Since the report has quite a number of formulas, there + is also a printable version of the report. +

    + diff --git a/deal.II/doc/reports/nedelec/images.aux b/deal.II/doc/reports/nedelec/images.aux new file mode 100644 index 0000000000..c4cb9640ce --- /dev/null +++ b/deal.II/doc/reports/nedelec/images.aux @@ -0,0 +1,2 @@ +\relax +\bibstyle{abbrv} diff --git a/deal.II/doc/reports/nedelec/images.bbl b/deal.II/doc/reports/nedelec/images.bbl new file mode 100644 index 0000000000..581abba97b --- /dev/null +++ b/deal.II/doc/reports/nedelec/images.bbl @@ -0,0 +1,78 @@ +\begin{thebibliography}{10} + +\bibitem{Alonso-Valli} +A.~Alonso and A.~Valli. +\newblock An optimal domain decomposition preconditioner for low-frequency + time-harmonic {M}axwell equations. +\newblock {\em Math.~Comp.}, 68(226):607--631, 1999. + +\bibitem{Deal} +W.~Bangerth, R.~Hartmann, and G.~Kanschat. +\newblock {\em {\tt deal.{I}{I}} Differential Equations Analysis Library, + Technical Reference}. +\newblock IWR, Universit{\"a}t Heidelberg. +\newblock \texttt{http://www.dealii.org}. + +\bibitem{Brezzi-Fortin} +F.~Brezzi and M.~Fortin. +\newblock {\em Mixed and Hybrid Finite Element Methods}, volume~15 of {\em + Springer Series in Computational Mathematics}. +\newblock Springer-Verlag, New York, 1991. + +\bibitem{Girault-Raviart} +V.~Girault and P.-A. Raviart. +\newblock {\em Finite Element Approximation of the Navier-Stokes Equations}, + volume 749 of {\em Lecture Notes in Mathematics}. +\newblock Springer-Verlag, Berlin, Heidelberg, 1979, 1981. + +\bibitem{Hipt} +R.~Hiptmair. +\newblock Finite elements in computational electromagnetism. +\newblock In {\em Acta Numerica}, pages 1--103. {C}ambridge {U}niversity press, + 2002. + +\bibitem{Monk'92} +P.~Monk. +\newblock Analysis of a finite element method for {M}axwell's equations. +\newblock {\em SIAM J.~Numer.~Anal}, 29:714--729, 1992. + +\bibitem{Monk} +P.~Monk. +\newblock A simple proof for an edge element discretization of {M}axwell's + equations. +\newblock Submitted for publication. Download version available on Monk's + webpage: www.math.udel.edu./~monk, 2001. + +\bibitem{Ned1} +J.~C. N\'ed\'elec. +\newblock Mixed finite elements in $\mathbb{R}^3$. +\newblock {\em Numer.~Math.}, 35:315--341, 1980. + +\bibitem{Ned3} +J.~C. N\'ed\'elec. +\newblock Elements finis mixtes incompressibles pour l'\'equation de {S}tokes + dans $\mathbb{R}^3$. +\newblock {\em Numer.~Math.}, 39:97--112, 1982. + +\bibitem{Ned2} +J.~C. N\'ed\'elec. +\newblock A new family of mixed finite elements in $\mathbb{R}^3$. +\newblock {\em Numer.~Math.}, 50:57--81, 1986. + +\bibitem{Demko} +W.~Rachowicz and L.~Demkowicz. +\newblock A two-dimensional hp-adaptive finite element package for + electromagnetics (2{D}hp90\_{E}{M}). +\newblock Ticam Report 98--16, TICAM, 1998. +\newblock Download version available on Demkowicz' webpage: + www.ticam.utexas.edu/~{L}eszek. + +\bibitem{Demko3d} +W.~Rachowicz and L.~Demkowicz. +\newblock A three-dimensional hp-adaptive finite element package for + electromagnetics (3{D}hp90\_{E}{M}). +\newblock Ticam Report 00-04.2000, TICAM, 2000. +\newblock Download version available on Demkowicz' webpage: + www.ticam.utexas.edu/~{L}eszek. + +\end{thebibliography} diff --git a/deal.II/doc/reports/nedelec/images.log b/deal.II/doc/reports/nedelec/images.log new file mode 100644 index 0000000000..d036f77a48 --- /dev/null +++ b/deal.II/doc/reports/nedelec/images.log @@ -0,0 +1,2433 @@ +This is TeX, Version 3.14159 (Web2C 7.3.1) (format=latex 2002.9.6) 30 APR 2003 17:04 +**./images.tex +(./images.tex +LaTeX2e <2000/06/01> +Babel and hyphenation patterns for american, french, german, ngerman, i +talian, nohyphenation, loaded. + +(/usr/share/texmf/tex/latex/base/article.cls +Document Class: article 2000/05/19 v1.4b Standard LaTeX document class +(/usr/share/texmf/tex/latex/base/size11.clo +File: size11.clo 2000/05/19 v1.4b Standard LaTeX file (size option) +) +\c@part=\count79 +\c@section=\count80 +\c@subsection=\count81 +\c@subsubsection=\count82 +\c@paragraph=\count83 +\c@subparagraph=\count84 +\c@figure=\count85 +\c@table=\count86 +\abovecaptionskip=\skip41 +\belowcaptionskip=\skip42 +\bibindent=\dimen102 +) (/usr/share/texmf/tex/latex/base/ifthen.sty +Package: ifthen 1999/09/10 v1.1b Standard LaTeX ifthen package (DPC) +) (/usr/share/texmf/tex/latex/base/exscale.sty +Package: exscale 1997/06/16 v2.1g Standard LaTeX package exscale +LaTeX Font Info: Redeclaring symbol font `largesymbols' on input line 47. +LaTeX Font Info: Overwriting symbol font `largesymbols' in version `normal' +(Font) OMX/cmex/m/n --> OMX/cmex/m/n on input line 47. +LaTeX Font Info: Overwriting symbol font `largesymbols' in version `bold' +(Font) OMX/cmex/m/n --> OMX/cmex/m/n on input line 47. +\big@size=\dimen103 +) (/usr/share/texmf/tex/latex/graphics/graphicx.sty +Package: graphicx 1999/02/16 v1.0f Enhanced LaTeX Graphics (DPC,SPQR) +(/usr/share/texmf/tex/latex/graphics/keyval.sty +Package: keyval 1999/03/16 v1.13 key=value parser (DPC) +\KV@toks@=\toks14 +) (/usr/share/texmf/tex/latex/graphics/graphics.sty +Package: graphics 1999/02/16 v1.0l Standard LaTeX Graphics (DPC,SPQR) +(/usr/share/texmf/tex/latex/graphics/trig.sty +Package: trig 1999/03/16 v1.09 sin cos tan (DPC) +) (/usr/share/texmf/tex/latex/config/graphics.cfg) +Package graphics Info: Driver file: dvips.def on input line 80. +(/usr/share/texmf/tex/latex/graphics/dvips.def +File: dvips.def 1999/02/16 v3.0i Driver-dependant file (DPC,SPQR) +)) +\Gin@req@height=\dimen104 +\Gin@req@width=\dimen105 +) (/usr/share/texmf/tex/latex/base/shortvrb.sty +Package: shortvrb 2000/07/04 v2.0m Standard LaTeX documentation package (FMi) +) (/usr/share/texmf/tex/latex/amsmath/amsmath.sty +Package: amsmath 2000/07/18 v2.13 AMS math features +\@mathmargin=\skip43 +For additional information on amsmath, use the `?' option. +(/usr/share/texmf/tex/latex/amsmath/amstext.sty +Package: amstext 2000/06/29 v2.01 +(/usr/share/texmf/tex/latex/amsmath/amsgen.sty +File: amsgen.sty 1999/11/30 v2.0 +\@emptytoks=\toks15 +\ex@=\dimen106 +)) (/usr/share/texmf/tex/latex/amsmath/amsbsy.sty +Package: amsbsy 1999/11/29 v1.2d +\pmbraise@=\dimen107 +) (/usr/share/texmf/tex/latex/amsmath/amsopn.sty +Package: amsopn 1999/12/14 v2.01 operator names +) +\inf@bad=\count87 +LaTeX Info: Redefining \frac on input line 211. +\uproot@=\count88 +\leftroot@=\count89 +LaTeX Info: Redefining \overline on input line 307. +\classnum@=\count90 +\DOTSCASE@=\count91 +LaTeX Info: Redefining \ldots on input line 379. +LaTeX Info: Redefining \dots on input line 382. +LaTeX Info: Redefining \cdots on input line 467. +\Mathstrutbox@=\box26 +\strutbox@=\box27 +\big@size=\dimen108 +LaTeX Font Info: Redeclaring font encoding OML on input line 567. +LaTeX Font Info: Redeclaring font encoding OMS on input line 568. +\macc@depth=\count92 +\c@MaxMatrixCols=\count93 +\dotsspace@=\muskip10 +\c@parentequation=\count94 +\dspbrk@lvl=\count95 +\tag@help=\toks16 +\row@=\count96 +\column@=\count97 +\maxfields@=\count98 +\andhelp@=\toks17 +\eqnshift@=\dimen109 +\alignsep@=\dimen110 +\tagshift@=\dimen111 +\tagwidth@=\dimen112 +\totwidth@=\dimen113 +\lineht@=\dimen114 +\@envbody=\toks18 +\multlinegap=\skip44 +\multlinetaggap=\skip45 +\mathdisplay@stack=\toks19 +LaTeX Info: Redefining \[ on input line 2666. +LaTeX Info: Redefining \] on input line 2667. +) (/usr/share/texmf/tex/latex/amsfonts/amssymb.sty +Package: amssymb 1996/11/03 v2.2b +(/usr/share/texmf/tex/latex/amsfonts/amsfonts.sty +Package: amsfonts 1997/09/17 v2.2e +\symAMSa=\mathgroup4 +\symAMSb=\mathgroup5 +LaTeX Font Info: Overwriting math alphabet `\mathfrak' in version `bold' +(Font) U/euf/m/n --> U/euf/b/n on input line 133. +)) +\c@remark=\count99 +\c@conjecture=\count100 +\c@definition=\count101 +\c@theorem=\count102 +\c@prop=\count103 +\c@example=\count104 +\c@corollary=\count105 +\c@lemma=\count106 +\c@convention=\count107 +(/usr/share/texmf/tex/latex/graphics/color.sty +Package: color 1999/02/16 v1.0i Standard LaTeX Color (DPC) +(/usr/share/texmf/tex/latex/config/color.cfg) +Package color Info: Driver file: dvips.def on input line 125. +(/usr/share/texmf/tex/latex/graphics/dvipsnam.def +File: dvipsnam.def 1999/02/16 v3.0i Driver-dependant file (DPC,SPQR) +)) (/usr/share/texmf/tex/latex/base/inputenc.sty +Package: inputenc 2000/07/01 v0.996 Input encoding file +(/usr/share/texmf/tex/latex/base/latin1.def +File: latin1.def 2000/07/01 v0.996 Input encoding file +)) +\sizebox=\box28 +\lthtmlwrite=\write3 +(images.aux (/homes/csm2/bangerth/tmp/g/xx/Report/appendixA.aux) (/homes/csm2/b +angerth/tmp/g/xx/Report/appendixB.aux)) +\openout1 = `images.aux'. + +LaTeX Font Info: Checking defaults for OML/cmm/m/it on input line 179. +LaTeX Font Info: ... okay on input line 179. +LaTeX Font Info: Checking defaults for T1/cmr/m/n on input line 179. +LaTeX Font Info: ... okay on input line 179. +LaTeX Font Info: Checking defaults for OT1/cmr/m/n on input line 179. +LaTeX Font Info: ... okay on input line 179. +LaTeX Font Info: Checking defaults for OMS/cmsy/m/n on input line 179. +LaTeX Font Info: ... okay on input line 179. +LaTeX Font Info: Checking defaults for OMX/cmex/m/n on input line 179. +LaTeX Font Info: ... okay on input line 179. +LaTeX Font Info: Checking defaults for U/cmr/m/n on input line 179. +LaTeX Font Info: ... okay on input line 179. + +latex2htmlLength hsize=349.0pt + +latex2htmlLength vsize=688.80026pt + +latex2htmlLength hoffset=0.0pt + +latex2htmlLength voffset=0.0pt + +latex2htmlLength topmargin=0.0pt + +latex2htmlLength topskip=0.00003pt + +latex2htmlLength headheight=0.0pt + +latex2htmlLength headsep=0.0pt + +latex2htmlLength parskip=0.0pt plus 1.0pt + +latex2htmlLength oddsidemargin=3.32088pt + +latex2htmlLength evensidemargin=3.32088pt + +LaTeX Font Info: Try loading font information for U+msa on input line 203. +(/usr/share/texmf/tex/latex/amsfonts/umsa.fd +File: umsa.fd 1995/01/05 v2.2e AMS font definitions +) +LaTeX Font Info: Try loading font information for U+msb on input line 203. +(/usr/share/texmf/tex/latex/amsfonts/umsb.fd +File: umsb.fd 1995/01/05 v2.2e AMS font definitions +) +l2hSize :tex2html_wrap_inline5220:8.7125pt::8.7125pt::50.1115pt. +[1 + + + +] +l2hSize :tex2html_wrap_inline5236:9.62923pt::9.62923pt::29.17471pt. +[2 + + +] +l2hSize :tex2html_wrap_inline5250:8.7125pt::8.7125pt::58.62819pt. +[3 + + +] +l2hSize :tex2html_wrap_inline5451:10.02922pt::10.02922pt::34.62111pt. +[4 + + +] +l2hSize :tex2html_wrap_inline5453:8.10416pt::8.10416pt::36.66342pt. +[5 + + +] +l2hSize :tex2html_wrap_indisplay5455:8.7125pt::8.7125pt::151.13159pt. +[6 + + +] +l2hSize :tex2html_wrap_inline5457:10.02922pt::10.02922pt::53.97122pt. +[7 + + +] +l2hSize :tex2html_wrap_indisplay5459:7.57185pt::7.57185pt::45.63002pt. +[8 + + +] +l2hSize :tex2html_wrap_inline5461:7.60416pt::0.0pt::14.87758pt. +[9 + + +] +l2hSize :tex2html_wrap_inline5463:7.48248pt::0.0pt::8.45587pt. +[10 + + +] +l2hSize :tex2html_wrap_inline5465:8.7125pt::8.7125pt::20.06113pt. +[11 + + +] +l2hSize :tex2html_wrap_inline5469:7.57185pt::7.57185pt::4.50171pt. +[12 + + +] +l2hSize :tex2html_wrap_inline5471:7.60416pt::0.0pt::26.32178pt. +[13 + + +] +l2hSize :tex2html_wrap_inline5473:16.83748pt::16.83748pt::131.8223pt. +[14 + + +] +l2hSize :tex2html_wrap_inline5475:10.17242pt::10.17242pt::46.26984pt. +[15 + + +] +l2hSize :tex2html_wrap_indisplay5477:16.83748pt::16.83748pt::245.26126pt. +[16 + + +] +l2hSize :tex2html_wrap_inline5479:7.60416pt::0.0pt::38.93338pt. +[17 + + +] +l2hSize :tex2html_wrap_inline5481:8.10416pt::8.10416pt::38.93338pt. +[18 + + +] +l2hSize :tex2html_wrap_inline5484:7.60416pt::0.0pt::18.82797pt. +[19 + + +] +l2hSize :tex2html_wrap_inline5486:7.57185pt::7.57185pt::6.24812pt. +[20 + + +] +l2hSize :tex2html_wrap_inline5488:8.10416pt::8.10416pt::18.82797pt. +[21 + + +] +l2hSize :tex2html_wrap_inline5490:7.57185pt::7.57185pt::7.71065pt. +[22 + + +] +l2hSize :tex2html_wrap_indisplay5492:16.83748pt::16.83748pt::87.02493pt. +[23 + + +] +l2hSize :tex2html_wrap_indisplay5494:8.71248pt::8.71248pt::81.65027pt. +[24 + + +] +l2hSize :tex2html_wrap_indisplay5496:8.10416pt::8.10416pt::73.16904pt. +[25 + + +] +l2hSize :tex2html_wrap_inline5500:10.3129pt::10.3129pt::41.90175pt. +[26 + + +] +l2hSize :tex2html_wrap_inline5504:7.60416pt::0.0pt::26.32178pt. +[27 + + +] +l2hSize :tex2html_wrap_inline5506:10.17242pt::10.17242pt::55.64072pt. +[28 + + +] +l2hSize :tex2html_wrap_indisplay5508:23.63748pt::23.63748pt::173.1903pt. +[29 + + +] +l2hSize :tex2html_wrap_inline5513:10.20264pt::0.0pt::26.32178pt. +[30 + + +] +l2hSize :tex2html_wrap_inline5517:10.20264pt::0.0pt::26.32178pt. +[31 + + +] +l2hSize :tex2html_wrap_indisplay5521:12.49736pt::12.49736pt::225.26942pt. +[32 + + +] +l2hSize :tex2html_wrap_indisplay5525:8.7125pt::8.7125pt::231.61888pt. +[33 + + +] +l2hSize :tex2html_wrap_inline5539:10.17242pt::10.17242pt::36.68048pt. +[34 + + +] +l2hSize :tex2html_wrap_inline5546:7.57185pt::7.57185pt::6.81593pt. +[35 + + +] +l2hSize :tex2html_wrap_inline5548:9.62923pt::9.62923pt::60.9449pt. +[36 + + +] +l2hSize :tex2html_wrap_inline5552:9.62923pt::9.62923pt::31.71448pt. +[37 + + +] +l2hSize :tex2html_wrap_indisplay5554:15.40428pt::15.40428pt::235.26239pt. +[38 + + +] +l2hSize :tex2html_wrap_inline5558:9.62923pt::9.62923pt::60.9449pt. +[39 + + +] +l2hSize :tex2html_wrap_inline5562:9.62923pt::9.62923pt::42.54788pt. +[40 + + +] +l2hSize :tex2html_wrap_indisplay5564:15.40428pt::15.40428pt::248.09315pt. +[41 + + +] +l2hSize :tex2html_wrap_inline5566:11.95328pt::11.95328pt::110.3094pt. +[42 + + +] +l2hSize :tex2html_wrap_indisplay5568:8.7125pt::8.7125pt::158.02954pt. +[43 + + +] +l2hSize :tex2html_wrap_inline5570:8.7125pt::8.7125pt::44.36517pt. +[44 + + +] +l2hSize :tex2html_wrap_indisplay5572:15.40428pt::15.40428pt::405.50572pt. + +Overfull \hbox (59.71474pt too wide) in paragraph at lines 491--492 +[]|[] + [] + +[45 + + +] +l2hSize :tex2html_wrap_inline5574:8.7125pt::8.7125pt::37.33652pt. +[46 + + +] +l2hSize :tex2html_wrap_inline5581:7.57185pt::7.57185pt::7.1201pt. +[47 + + +] +l2hSize :tex2html_wrap_indisplay5591:8.7125pt::8.7125pt::81.99094pt. +[48 + + +] +l2hSize :tex2html_wrap_indisplay5595:8.7125pt::8.7125pt::88.86768pt. +[49 + + +] +l2hSize :tex2html_wrap_inline5599:11.95328pt::11.95328pt::57.52094pt. +[50 + + +] +l2hSize :tex2html_wrap_inline5603:11.94986pt::11.94986pt::42.67148pt. +[51 + + +] +l2hSize :tex2html_wrap_inline5605:11.95328pt::11.95328pt::50.90973pt. +[52 + + +] +l2hSize :tex2html_wrap_indisplay5610:8.7125pt::8.7125pt::251.42244pt. +[53 + + +] +l2hSize :tex2html_wrap_inline5615:10.02922pt::10.02922pt::36.68048pt. +[54 + + +] +l2hSize :tex2html_wrap_inline5617:8.7125pt::8.7125pt::53.9719pt. +[55 + + +] +l2hSize :tex2html_wrap_inline5622:7.98248pt::7.98248pt::16.95863pt. +[56 + + +] +l2hSize :tex2html_wrap_inline5624:7.98248pt::7.98248pt::16.95863pt. +[57 + + +] +l2hSize :tex2html_wrap_inline5626:9.52922pt::0.0pt::13.32953pt. +[58 + + +] +l2hSize :tex2html_wrap_inline5628:8.7125pt::8.7125pt::98.15318pt. +[59 + + +] +l2hSize :tex2html_wrap_inline5630:8.10416pt::8.10416pt::80.888pt. +[60 + + +] +l2hSize :tex2html_wrap_inline5632:7.07185pt::0.0pt::6.24812pt. +[61 + + +] +l2hSize :tex2html_wrap_inline5636:7.57185pt::7.57185pt::12.96646pt. +[62 + + +] +l2hSize :tex2html_wrap_inline5642:8.7125pt::8.7125pt::58.61426pt. +[63 + + +] +l2hSize :tex2html_wrap_inline5644:7.57185pt::7.57185pt::12.96646pt. +[64 + + +] +l2hSize :tex2html_wrap_inline5650:8.7125pt::8.7125pt::58.61426pt. +[65 + + +] +l2hSize :tex2html_wrap_inline5652:7.07185pt::0.0pt::5.64613pt. +[66 + + +] +l2hSize :tex2html_wrap_inline5654:7.57185pt::7.57185pt::110.54433pt. +[67 + + +] +l2hSize :tex2html_wrap_inline5658:14.5463pt::14.5463pt::32.26514pt. +[68 + + +] +l2hSize :tex2html_wrap_inline5662:11.95328pt::11.95328pt::39.95273pt. +[69 + + +] +l2hSize :tex2html_wrap_inline5674:11.95328pt::11.95328pt::37.33249pt. +[70 + + +] +l2hSize :tex2html_wrap_inline5676:7.57185pt::7.57185pt::13.35933pt. +[71 + + +] +l2hSize :tex2html_wrap_inline5678:7.57185pt::7.57185pt::13.35933pt. +[72 + + +] +l2hSize :tex2html_wrap_inline5680:9.62923pt::9.62923pt::26.36497pt. +[73 + + +] +l2hSize :tex2html_wrap_inline5684:9.12923pt::0.0pt::15.28944pt. +[74 + + +] +l2hSize :tex2html_wrap_inline5694:8.7125pt::8.7125pt::73.62354pt. +[75 + + +] +l2hSize :tex2html_wrap_inline5696:8.7125pt::8.7125pt::73.05573pt. +[76 + + +] +l2hSize :tex2html_wrap_indisplay5698:15.40428pt::15.40428pt::234.36406pt. +[77 + + +] +l2hSize :displaymath5701:54.66718pt::0.0pt::349.0pt. +[78 + + +] +l2hSize :tex2html_wrap_inline5703:8.7125pt::8.7125pt::25.80226pt. +[79 + + +] +l2hSize :tex2html_wrap_inline5705:8.7125pt::8.7125pt::120.77953pt. +[80 + + +] +l2hSize :tex2html_wrap_inline5717:10.37207pt::0.0pt::10.63065pt. +[81 + + +] +l2hSize :tex2html_wrap_inline5719:8.7125pt::8.7125pt::30.59734pt. +[82 + + +] +l2hSize :tex2html_wrap_inline5721:10.87207pt::10.87207pt::59.10526pt. +[83 + + +] +l2hSize :tex2html_wrap_inline5723:10.37207pt::0.0pt::8.94633pt. +[84 + + +] +l2hSize :tex2html_wrap_inline5727:7.98248pt::7.98248pt::17.09517pt. +[85 + + +] +l2hSize :tex2html_wrap_inline5729:7.48248pt::0.0pt::10.63065pt. +[86 + + +] +l2hSize :tex2html_wrap_inline5731:9.94032pt::9.94032pt::71.05298pt. +[87 + + +] +l2hSize :tex2html_wrap_inline5735:7.98248pt::7.98248pt::36.08932pt. +[88 + + +] +l2hSize :tex2html_wrap_inline5739:7.48248pt::0.0pt::9.29079pt. +[89 + + +] +l2hSize :tex2html_wrap_inline5741:8.7125pt::8.7125pt::22.50458pt. +[90 + + +] +l2hSize :tex2html_wrap_inline5749:10.37207pt::0.0pt::37.96535pt. +[91 + + +] +l2hSize :tex2html_wrap_inline5751:10.87207pt::10.87207pt::28.80319pt. +[92 + + +] +l2hSize :tex2html_wrap_inline5753:7.60416pt::0.0pt::6.59285pt. +[93 + + +] +l2hSize :tex2html_wrap_inline5755:10.37207pt::0.0pt::8.45587pt. +[94 + + +] +l2hSize :tex2html_wrap_inline5759:10.6418pt::10.6418pt::12.37816pt. +[95 + + +] +l2hSize :tex2html_wrap_inline5765:7.60416pt::0.0pt::6.24686pt. +[96 + + +] +l2hSize :tex2html_wrap_indisplay5770:20.83809pt::20.83809pt::195.85751pt. +[97 + + +] +l2hSize :tex2html_wrap_inline5772:10.87207pt::10.87207pt::30.27211pt. +[98 + + +] +l2hSize :tex2html_wrap_inline5778:8.7125pt::8.7125pt::40.01314pt. +[99 + + +] +l2hSize :tex2html_wrap_indisplay5785:15.48146pt::15.48146pt::119.652pt. +[100 + + +] +l2hSize :displaymath5787:42.28815pt::0.0pt::349.0pt. +[101 + + +] +l2hSize :tex2html_wrap_inline5789:9.52922pt::0.0pt::14.96663pt. +[102 + + +] +l2hSize :tex2html_wrap_indisplay5791:16.83748pt::16.83748pt::180.75006pt. +[103 + + +] +l2hSize :tex2html_wrap_indisplay5795:16.83748pt::16.83748pt::99.72612pt. +[104 + + +] +l2hSize :tex2html_wrap_inline5797:10.6418pt::10.6418pt::23.23943pt. +[105 + + +] +l2hSize :tex2html_wrap_inline5799:8.10416pt::8.10416pt::25.45113pt. +[106 + + +] +l2hSize :tex2html_wrap_inline5803:9.52922pt::0.0pt::13.13852pt. +[107 + + +] +l2hSize :tex2html_wrap_inline5809:7.60416pt::0.0pt::26.66777pt. +[108 + + +] +l2hSize :tex2html_wrap_inline5811:7.60416pt::0.0pt::26.66777pt. +[109 + + +] +l2hSize :tex2html_wrap_indisplay5814:16.83748pt::16.83748pt::171.1124pt. +[110 + + +] +l2hSize :tex2html_wrap_indisplay5816:16.83748pt::16.83748pt::223.63432pt. +[111 + + +] +l2hSize :tex2html_wrap_inline5823:9.12923pt::0.0pt::12.74963pt. +[112 + + +] +l2hSize :tex2html_wrap_inline5825:7.57185pt::7.57185pt::6.05675pt. +[113 + + +] +l2hSize :tex2html_wrap_inline5827:10.87207pt::10.87207pt::43.85583pt. +[114 + + +] +l2hSize :tex2html_wrap_indisplay5829:20.4381pt::20.4381pt::143.41861pt. +[115 + + +] +l2hSize :tex2html_wrap_indisplay5835:24.21109pt::24.21109pt::202.25897pt. +[116 + + +] +l2hSize :displaymath5839:31.2pt::0.0pt::349.0pt. +[117 + + +] +l2hSize :tex2html_wrap_inline5843:7.57185pt::7.57185pt::33.70305pt. +[118 + + +] +l2hSize :tex2html_wrap_inline5845:7.72179pt::7.72179pt::45.07816pt. +[119 + + +] +l2hSize :tex2html_wrap_inline5847:7.72179pt::7.72179pt::24.05594pt. +[120 + + +] +l2hSize :tex2html_wrap_indisplay5849:23.63748pt::23.63748pt::248.90797pt. +[121 + + +] +l2hSize :tex2html_wrap_inline5853:10.87207pt::10.87207pt::44.36832pt. +[122 + + +] +l2hSize :tex2html_wrap_inline5868:7.07185pt::0.0pt::7.1201pt. +[123 + + +] + +Package amsmath Warning: Foreign command \atopwithdelims; +(amsmath) \frac or \genfrac should be used instead +(amsmath) on input line 982. + +l2hSize :tex2html_wrap_inline5870:10.91441pt::10.91441pt::37.85396pt. +[124 + + +] +l2hSize :tex2html_wrap_inline5875:10.12471pt::10.12471pt::4.50171pt. +[125 + + +] +l2hSize :tex2html_wrap_indisplay5883:15.40428pt::15.40428pt::177.59218pt. +[126 + + +] +l2hSize :tex2html_wrap_inline5885:7.60416pt::0.0pt::5.64613pt. +[127 + + +] +l2hSize :tex2html_wrap_inline5889:7.60416pt::0.0pt::12.06786pt. +[128 + + +] +l2hSize :tex2html_wrap_indisplay5891:15.40428pt::15.40428pt::188.28831pt. +[129 + + +] +l2hSize :tex2html_wrap_inline5893:8.7125pt::8.7125pt::40.01314pt. +[130 + + +] +l2hSize :tex2html_wrap_inline5900:8.10416pt::8.10416pt::7.1201pt. +[131 + + +] +l2hSize :tex2html_wrap_inline5915:7.60416pt::0.0pt::12.06786pt. +[132 + + +] +l2hSize :tex2html_wrap_indisplay5917:15.40428pt::15.40428pt::206.93742pt. +[133 + + +] +l2hSize :tex2html_wrap_inline5919:10.99374pt::10.99374pt::7.08714pt. +[134 + + +] +l2hSize :tex2html_wrap_inline5923:8.7125pt::8.7125pt::45.48814pt. +[135 + + +] +l2hSize :tex2html_wrap_indisplay5925:15.40428pt::15.40428pt::188.28831pt. +[136 + + +] +l2hSize :tex2html_wrap_inline5927:11.89447pt::11.89447pt::51.80931pt. +[137 + + +] +l2hSize :tex2html_wrap_inline5933:8.10416pt::8.10416pt::26.66777pt. +[138 + + +] +l2hSize :tex2html_wrap_inline5944:10.02922pt::10.02922pt::34.61827pt. +[139 + + +] +l2hSize :tex2html_wrap_inline5946:8.7125pt::8.7125pt::22.37788pt. +[140 + + +] +l2hSize :tex2html_wrap_inline5949:10.87207pt::10.87207pt::231.82753pt. +[141 + + +] +l2hSize :tex2html_wrap_inline5951:10.90244pt::10.90244pt::78.52943pt. +[142 + + +] +l2hSize :tex2html_wrap_indisplay5953:16.83748pt::16.83748pt::246.73082pt. +[143 + + +] +l2hSize :tex2html_wrap_inline5955:9.12923pt::0.0pt::14.57774pt. +[144 + + +] +l2hSize :tex2html_wrap_inline5961:10.12471pt::10.12471pt::123.40009pt. +[145 + + +] +l2hSize :tex2html_wrap_inline5963:7.57185pt::7.57185pt::27.78557pt. +[146 + + +] +l2hSize :tex2html_wrap_inline5965:8.7125pt::8.7125pt::28.99852pt. +[147 + + +] +l2hSize :tex2html_wrap_indisplay5967:15.40428pt::15.40428pt::153.6832pt. +[148 + + +] +l2hSize :tex2html_wrap_inline5969:10.87207pt::10.87207pt::54.50655pt. +[149 + + +] +l2hSize :tex2html_wrap_inline5973:10.87207pt::10.87207pt::60.61246pt. +[150 + + +] +l2hSize :tex2html_wrap_inline5975:10.87207pt::10.87207pt::13.93333pt. +[151 + + +] +l2hSize :tex2html_wrap_indisplay5979:16.83748pt::16.83748pt::276.57481pt. +[152 + + +] +l2hSize :tex2html_wrap_indisplay5984:8.7125pt::8.7125pt::138.63513pt. +[153 + + +] +l2hSize :tex2html_wrap_inline5988:7.98248pt::7.98248pt::12.7395pt. +[154 + + +] +l2hSize :tex2html_wrap_inline5992:10.87207pt::10.87207pt::12.7395pt. +[155 + + +] +l2hSize :tex2html_wrap_indisplay5996:13.09258pt::13.09258pt::114.25053pt. +[156 + + +] +l2hSize :tex2html_wrap_inline6000:10.87207pt::10.87207pt::52.28627pt. +[157 + + +] +l2hSize :tex2html_wrap_inline6002:8.7125pt::8.7125pt::52.28627pt. +[158 + + +] +l2hSize :tex2html_wrap_inline6011:8.7125pt::8.7125pt::28.70825pt. +[159 + + +] +l2hSize :tex2html_wrap_indisplay6015:13.09258pt::13.09258pt::203.2047pt. +[160 + + +] +l2hSize :tex2html_wrap_inline6017:10.87207pt::10.87207pt::25.19228pt. +[161 + + +] +l2hSize :tex2html_wrap_inline6019:10.36691pt::10.36691pt::42.15576pt. +[162 + + +] +l2hSize :tex2html_wrap_inline6022:8.7125pt::8.7125pt::46.88733pt. +[163 + + +] +l2hSize :tex2html_wrap_inline6026:8.7125pt::8.7125pt::91.21616pt. +[164 + + +] +l2hSize :tex2html_wrap_inline6030:7.98248pt::7.98248pt::17.08662pt. +[165 + + +] +l2hSize :tex2html_wrap_indisplay6032:10.57169pt::10.57169pt::171.68022pt. +[166 + + +] +l2hSize :tex2html_wrap_inline6035:9.62923pt::9.62923pt::35.71419pt. +[167 + + +] +l2hSize :tex2html_wrap_indisplay6041:10.57169pt::10.57169pt::122.97511pt. +[168 + + +] +l2hSize :tex2html_wrap_inline6043:7.48248pt::0.0pt::8.94633pt. +[169 + + +] +l2hSize :tex2html_wrap_inline6048:8.7125pt::8.7125pt::65.69003pt. +[170 + + +] +l2hSize :tex2html_wrap_inline6050:10.26059pt::10.26059pt::101.15117pt. +[171 + + +] +l2hSize :tex2html_wrap_inline6052:10.26059pt::10.26059pt::56.10416pt. +[172 + + +] +l2hSize :tex2html_wrap_inline6054:7.98248pt::7.98248pt::15.82242pt. +[173 + + +] +l2hSize :tex2html_wrap_inline6058:7.98248pt::7.98248pt::15.61798pt. +[174 + + +] +l2hSize :tex2html_wrap_indisplay6060:10.87207pt::10.87207pt::96.11673pt. +[175 + + +] +l2hSize :tex2html_wrap_indisplay6062:11.60208pt::11.60208pt::107.05075pt. +[176 + + +] +l2hSize :tex2html_wrap_inline6074:7.48248pt::0.0pt::25.84175pt. +[177 + + +] +l2hSize :tex2html_wrap_inline6076:10.57169pt::10.57169pt::22.64304pt. +[178 + + +] +l2hSize :tex2html_wrap_inline6080:10.87207pt::10.87207pt::64.91635pt. +[179 + + +] +l2hSize :tex2html_wrap_indisplay6085:15.40428pt::15.40428pt::147.6258pt. +[180 + + +] +l2hSize :tex2html_wrap_indisplay6087:15.40428pt::15.40428pt::223.68082pt. +[181 + + +] +l2hSize :tex2html_wrap_inline6092:8.10416pt::8.10416pt::6.24812pt. +[182 + + +] +l2hSize :tex2html_wrap_inline6096:7.60416pt::0.0pt::29.3952pt. +[183 + + +] +l2hSize :tex2html_wrap_indisplay6098:15.57265pt::15.57265pt::111.19415pt. +[184 + + +] +l2hSize :tex2html_wrap_inline6100:9.94032pt::9.94032pt::94.14854pt. +[185 + + +] +l2hSize :tex2html_wrap_indisplay6102:11.60208pt::11.60208pt::116.97957pt. +[186 + + +] +l2hSize :tex2html_wrap_inline6109:8.7125pt::8.7125pt::21.02304pt. +[187 + + +] +l2hSize :tex2html_wrap_inline6113:8.7125pt::8.7125pt::21.02304pt. +[188 + + +] +l2hSize :tex2html_wrap_indisplay6115:8.7125pt::8.7125pt::189.11813pt. +[189 + + +] +l2hSize :tex2html_wrap_inline6117:7.98248pt::7.98248pt::13.4462pt. +[190 + + +] +l2hSize :tex2html_wrap_inline6119:10.26059pt::10.26059pt::73.17387pt. +[191 + + +] +l2hSize :tex2html_wrap_inline6121:11.60208pt::11.60208pt::79.9103pt. +[192 + + +] +l2hSize :tex2html_wrap_indisplay6123:17.74886pt::17.74886pt::217.08208pt. +[193 + + +] +l2hSize :tex2html_wrap_indisplay6125:23.63748pt::23.63748pt::123.17207pt. +[194 + + +] +l2hSize :tex2html_wrap_inline6127:8.7125pt::8.7125pt::92.068pt. +[195 + + +] +l2hSize :tex2html_wrap_inline6129:10.26059pt::10.26059pt::66.20657pt. +[196 + + +] +l2hSize :tex2html_wrap_indisplay6131:11.60208pt::11.60208pt::136.4669pt. +[197 + + +] +l2hSize :tex2html_wrap_indisplay6135:11.60208pt::11.60208pt::462.33238pt. + +Overfull \hbox (116.5414pt too wide) in paragraph at lines 1439--1440 +[]|[] + [] + +[198 + + +] +l2hSize :tex2html_wrap_indisplay6137:26.2327pt::26.2327pt::155.30258pt. +[199 + + +] +l2hSize :tex2html_wrap_indisplay6148:14.9644pt::14.9644pt::166.56937pt. +[200 + + +] +l2hSize :tex2html_wrap_inline6150:8.7125pt::8.7125pt::39.62029pt. +[201 + + +] +l2hSize :tex2html_wrap_indisplay6152:14.9644pt::14.9644pt::206.26682pt. +[202 + + +] +l2hSize :tex2html_wrap_inline6154:8.10416pt::8.10416pt::32.36844pt. +[203 + + +] +l2hSize :tex2html_wrap_indisplay6158:11.60208pt::11.60208pt::313.90208pt. +[204 + + +] +l2hSize :tex2html_wrap_inline6160:9.76236pt::9.76236pt::21.05pt. +[205 + + +] +l2hSize :tex2html_wrap_inline6162:7.57185pt::7.57185pt::24.88081pt. +[206 + + +] +l2hSize :tex2html_wrap_inline6164:10.26059pt::10.26059pt::20.76384pt. +[207 + + +] +l2hSize :tex2html_wrap_inline6166:9.62923pt::9.62923pt::45.66295pt. +[208 + + +] +l2hSize :tex2html_wrap_indisplay6168:14.9644pt::14.9644pt::154.34915pt. +[209 + + +] +l2hSize :tex2html_wrap_inline6170:7.98248pt::7.98248pt::16.58333pt. +[210 + + +] +l2hSize :tex2html_wrap_inline6174:7.48248pt::0.0pt::8.76004pt. +[211 + + +] +l2hSize :tex2html_wrap_inline6178:10.26059pt::10.26059pt::43.57626pt. +[212 + + +] +l2hSize :tex2html_wrap_indisplay6180:14.9644pt::14.9644pt::521.7993pt. + +Overfull \hbox (176.00832pt too wide) in paragraph at lines 1540--1541 +[]|[] + [] + +[213 + + +] +l2hSize :tex2html_wrap_inline6183:7.48248pt::0.0pt::9.15694pt. +[214 + + +] +l2hSize :tex2html_wrap_inline6185:10.87207pt::10.87207pt::50.5305pt. +[215 + + +] +l2hSize :tex2html_wrap_indisplay6187:10.87207pt::10.87207pt::195.5511pt. +[216 + + +] +l2hSize :tex2html_wrap_inline6191:7.98248pt::7.98248pt::22.50179pt. +[217 + + +] +l2hSize :tex2html_wrap_inline6193:10.37207pt::0.0pt::9.15694pt. +[218 + + +] +l2hSize :tex2html_wrap_inline6195:7.60416pt::0.0pt::4.03026pt. +[219 + + +] +l2hSize :tex2html_wrap_inline6197:8.10416pt::8.10416pt::11.55582pt. +[220 + + +] +l2hSize :tex2html_wrap_inline6199:7.07185pt::0.0pt::10.16177pt. +[221 + + +] +l2hSize :tex2html_wrap_inline6201:8.10416pt::8.10416pt::11.55582pt. +[222 + + +] +l2hSize :tex2html_wrap_inline6203:7.98248pt::7.98248pt::30.0204pt. +[223 + + +] +l2hSize :tex2html_wrap_inline6217:8.10416pt::8.10416pt::11.55582pt. +[224 + + +] +l2hSize :tex2html_wrap_indisplay6221:16.83748pt::16.83748pt::249.38298pt. +[225 + + +] +l2hSize :tex2html_wrap_indisplay6223:23.63748pt::23.63748pt::339.50275pt. +[226 + + +] +l2hSize :tex2html_wrap_inline6228:10.87207pt::10.87207pt::36.41525pt. +[227 + + +] +l2hSize :tex2html_wrap_inline6237:9.52922pt::0.0pt::14.20317pt. +[228 + + +] +l2hSize :tex2html_wrap_indisplay6241:15.40428pt::15.40428pt::186.10875pt. +[229 + + +] +l2hSize :tex2html_wrap_inline6247:7.60416pt::0.0pt::12.06786pt. +[230 + + +] +l2hSize :tex2html_wrap_indisplay6249:16.83748pt::16.83748pt::353.69643pt. + +Overfull \hbox (7.90544pt too wide) in paragraph at lines 1652--1653 +[]|[] + [] + +[231 + + +] +l2hSize :tex2html_wrap_inline6251:8.7125pt::8.7125pt::45.48814pt. +[232 + + +] +l2hSize :tex2html_wrap_inline6273:7.60416pt::0.0pt::17.54286pt. +[233 + + +] +l2hSize :tex2html_wrap_indisplay6275:16.83748pt::16.83748pt::407.11166pt. + +Overfull \hbox (61.32068pt too wide) in paragraph at lines 1670--1671 +[]|[] + [] + +[234 + + +] +l2hSize :tex2html_wrap_inline6281:8.7125pt::8.7125pt::58.8714pt. +[235 + + +] +l2hSize :tex2html_wrap_indisplay6283:23.63748pt::23.63748pt::496.06432pt. + +Overfull \hbox (150.27333pt too wide) in paragraph at lines 1682--1683 +[]|[] + [] + +[236 + + +] +l2hSize :tex2html_wrap_inline6285:9.62923pt::9.62923pt::50.2382pt. +[237 + + +] +l2hSize :tex2html_wrap_inline6288:9.62923pt::9.62923pt::27.19759pt. +[238 + + +] +l2hSize :tex2html_wrap_indisplay6290:16.83748pt::16.83748pt::302.27248pt. +[239 + + +] +l2hSize :tex2html_wrap_indisplay6292:16.83748pt::16.83748pt::357.76234pt. + +Overfull \hbox (11.97136pt too wide) in paragraph at lines 1710--1711 +[]|[] + [] + +[240 + + +] +l2hSize :tex2html_wrap_inline6296:10.87207pt::10.87207pt::31.8385pt. +[241 + + +] +l2hSize :tex2html_wrap_inline6300:10.87207pt::10.87207pt::38.85718pt. +[242 + + +] +l2hSize :tex2html_wrap_inline6302:7.98248pt::7.98248pt::14.7124pt. +[243 + + +] +l2hSize :tex2html_wrap_indisplay6307:10.87207pt::10.87207pt::129.44688pt. +[244 + + +] +l2hSize :tex2html_wrap_inline6315:8.10416pt::8.10416pt::26.35353pt. +[245 + + +] +l2hSize :tex2html_wrap_inline6317:11.60208pt::11.60208pt::26.35353pt. +[246 + + +] +l2hSize :tex2html_wrap_indisplay6330:11.60208pt::11.60208pt::228.80638pt. +[247 + + +] +l2hSize :tex2html_wrap_inline6334:7.48248pt::0.0pt::9.10983pt. +[248 + + +] +l2hSize :tex2html_wrap_inline6338:10.87207pt::10.87207pt::148.75778pt. +[249 + + +] +l2hSize :tex2html_wrap_inline6340:10.66966pt::10.66966pt::105.85217pt. +[250 + + +] +l2hSize :tex2html_wrap_indisplay6342:15.57265pt::15.57265pt::195.66408pt. +[251 + + +] +l2hSize :displaymath6344:53.33109pt::0.0pt::349.0pt. +[252 + + +] +l2hSize :displaymath6346:56.38123pt::0.0pt::349.0pt. +[253 + + +] +l2hSize :tex2html_wrap_indisplay6348:15.5119pt::15.5119pt::340.944pt. +[254 + + +] +l2hSize :tex2html_wrap_inline6353:10.26059pt::10.26059pt::53.13257pt. +[255 + + +] +l2hSize :tex2html_wrap_inline6355:11.83633pt::11.83633pt::45.38943pt. +[256 + + +] +l2hSize :tex2html_wrap_inline6357:7.72179pt::7.72179pt::55.08087pt. +[257 + + +] +l2hSize :tex2html_wrap_inline6359:9.94032pt::9.94032pt::94.14854pt. +[258 + + +] +l2hSize :tex2html_wrap_indisplay6361:11.60208pt::11.60208pt::420.78574pt. + +Overfull \hbox (74.99475pt too wide) in paragraph at lines 1835--1836 +[]|[] + [] + +[259 + + +] +l2hSize :tex2html_wrap_inline6363:7.98248pt::7.98248pt::15.97661pt. +[260 + + +] +l2hSize :tex2html_wrap_inline6365:11.60208pt::11.60208pt::47.37387pt. +[261 + + +] +l2hSize :tex2html_wrap_inline6370:10.87207pt::10.87207pt::55.04782pt. +[262 + + +] +l2hSize :tex2html_wrap_indisplay6376:16.37761pt::16.37761pt::188.16483pt. +[263 + + +] +l2hSize :tex2html_wrap_inline6383:10.02922pt::10.02922pt::14.62901pt. +[264 + + +] +l2hSize :tex2html_wrap_inline6389:7.98248pt::7.98248pt::16.39732pt. +[265 + + +] +l2hSize :tex2html_wrap_inline6393:10.87207pt::10.87207pt::52.39267pt. +[266 + + +] +l2hSize :tex2html_wrap_inline6399:8.7125pt::8.7125pt::102.0933pt. +[267 + + +] +l2hSize :tex2html_wrap_inline6401:8.7125pt::8.7125pt::102.0933pt. +[268 + + +] +l2hSize :tex2html_wrap_inline6411:11.25003pt::11.25003pt::12.10596pt. +[269 + + +] +l2hSize :tex2html_wrap_inline6413:11.25003pt::11.25003pt::12.10596pt. +[270 + + +] +l2hSize :tex2html_wrap_indisplay6422:16.12024pt::16.12024pt::77.23875pt. +[271 + + +] +l2hSize :tex2html_wrap_inline6424:8.7125pt::8.7125pt::11.72948pt. +[272 + + +] +l2hSize :tex2html_wrap_inline6426:8.7125pt::8.7125pt::11.72948pt. +[273 + + +] +l2hSize :tex2html_wrap_indisplay6432:15.57265pt::15.57265pt::185.13663pt. +[274 + + +] +l2hSize :tex2html_wrap_inline6434:8.7125pt::8.7125pt::64.88548pt. +[275 + + +] +l2hSize :tex2html_wrap_inline6436:8.7125pt::8.7125pt::63.76006pt. +[276 + + +] +l2hSize :tex2html_wrap_indisplay6438:16.37761pt::16.37761pt::309.38104pt. +[277 + + +] +l2hSize :tex2html_wrap_inline6440:11.89447pt::11.89447pt::36.9171pt. +[278 + + +] +l2hSize :tex2html_wrap_inline6451:10.47366pt::10.47366pt::108.48906pt. +[279 + + +] +l2hSize :tex2html_wrap_indisplay6453:15.40428pt::15.40428pt::440.38493pt. + +Overfull \hbox (94.59395pt too wide) in paragraph at lines 1970--1971 +[]|[] + [] + +[280 + + +] +l2hSize :tex2html_wrap_inline6455:10.87207pt::10.87207pt::64.31102pt. +[281 + + +] +l2hSize :tex2html_wrap_inline6457:10.87207pt::10.87207pt::64.31102pt. +[282 + + +] +l2hSize :tex2html_wrap_inline6461:7.98248pt::7.98248pt::10.53938pt. +[283 + + +] +l2hSize :tex2html_wrap_inline6465:7.98248pt::7.98248pt::17.65059pt. +[284 + + +] +l2hSize :tex2html_wrap_inline6467:7.98248pt::7.98248pt::17.65059pt. +[285 + + +] +l2hSize :tex2html_wrap_inline6475:8.7125pt::8.7125pt::58.51917pt. +[286 + + +] +l2hSize :tex2html_wrap_inline6477:8.7125pt::8.7125pt::59.5238pt. +[287 + + +] +l2hSize :tex2html_wrap_inline6479:7.57185pt::7.57185pt::11.61292pt. +[288 + + +] +l2hSize :tex2html_wrap_inline6485:7.57185pt::7.57185pt::45.7949pt. +[289 + + +] +l2hSize :tex2html_wrap_inline6491:9.32088pt::9.32088pt::16.27254pt. +[290 + + +] +l2hSize :tex2html_wrap_inline6495:9.32088pt::9.32088pt::16.43921pt. +[291 + + +] +l2hSize :tex2html_wrap_inline6499:7.57185pt::7.57185pt::11.61292pt. +[292 + + +] +l2hSize :tex2html_wrap_indisplay6503:7.98248pt::7.98248pt::111.02574pt. +[293 + + +] +l2hSize :tex2html_wrap_inline6505:9.97366pt::0.0pt::26.09428pt. +[294 + + +] +l2hSize :tex2html_wrap_inline6507:9.97366pt::0.0pt::26.26096pt. +[295 + + +] +l2hSize :tex2html_wrap_inline6514:10.12471pt::10.12471pt::86.66194pt. +[296 + + +] +l2hSize :tex2html_wrap_inline6516:10.02922pt::10.02922pt::32.03098pt. +[297 + + +] +l2hSize :tex2html_wrap_indisplay6520:10.12471pt::10.12471pt::88.47772pt. +[298 + + +] +l2hSize :tex2html_wrap_indisplay6522:20.4381pt::20.4381pt::338.93625pt. +[299 + + +] +l2hSize :tex2html_wrap_inline6526:8.7125pt::8.7125pt::20.45525pt. +[300 + + +] +l2hSize :tex2html_wrap_indisplay6528:20.4381pt::20.4381pt::241.78934pt. +[301 + + +] +l2hSize :tex2html_wrap_inline6530:8.7125pt::8.7125pt::87.05078pt. +[302 + + +] +l2hSize :tex2html_wrap_indisplay6532:22.94768pt::22.94768pt::195.53827pt. +[303 + + +] +l2hSize :tex2html_wrap_inline6534:9.52922pt::0.0pt::10.81927pt. +[304 + + +] +l2hSize :tex2html_wrap_inline6536:10.12471pt::10.12471pt::30.39005pt. +[305 + + +] +l2hSize :tex2html_wrap_inline6543:10.37207pt::0.0pt::37.20189pt. +[306 + + +] +l2hSize :tex2html_wrap_inline6547:10.12471pt::10.12471pt::83.80246pt. +[307 + + +] +l2hSize :tex2html_wrap_indisplay6560:10.87207pt::10.87207pt::315.93956pt. +[308 + + +] +l2hSize :tex2html_wrap_inline6566:8.7125pt::8.7125pt::53.95679pt. +[309 + + +] +l2hSize :tex2html_wrap_inline6570:10.87207pt::10.87207pt::28.03017pt. +[310 + + +] +l2hSize :tex2html_wrap_inline6584:8.7125pt::8.7125pt::83.80246pt. +[311 + + +] +l2hSize :tex2html_wrap_indisplay6590:15.40428pt::15.40428pt::248.44124pt. +[312 + + +] +l2hSize :tex2html_wrap_inline6592:9.32088pt::9.32088pt::189.5829pt. +[313 + + +] +l2hSize :tex2html_wrap_indisplay6598:15.40428pt::15.40428pt::463.26921pt. + +Overfull \hbox (117.47823pt too wide) in paragraph at lines 2184--2185 +[]|[] + [] + +[314 + + +] +l2hSize :tex2html_wrap_inline6602:10.12471pt::10.12471pt::90.74307pt. +[315 + + +] +l2hSize :tex2html_wrap_inline6604:10.87207pt::10.87207pt::60.61246pt. +[316 + + +] +l2hSize :tex2html_wrap_indisplay6606:10.87207pt::10.87207pt::193.28955pt. +[317 + + +] +l2hSize :tex2html_wrap_inline6608:8.7125pt::8.7125pt::26.16814pt. +[318 + + +] +l2hSize :tex2html_wrap_inline6610:7.57185pt::7.57185pt::10.04472pt. +[319 + + +] +l2hSize :tex2html_wrap_inline6612:9.80754pt::9.80754pt::59.26193pt. +[320 + + +] +l2hSize :tex2html_wrap_inline6615:9.97366pt::0.0pt::20.54851pt. +[321 + + +] +l2hSize :tex2html_wrap_inline6619:11.89447pt::11.89447pt::64.21999pt. +[322 + + +] +l2hSize :tex2html_wrap_inline6623:10.87207pt::10.87207pt::51.32962pt. +[323 + + +] +l2hSize :tex2html_wrap_inline6626:8.7125pt::8.7125pt::76.49712pt. +[324 + + +] +l2hSize :tex2html_wrap_indisplay6628:10.57672pt::10.57672pt::219.86836pt. +[325 + + +] +l2hSize :tex2html_wrap_inline6630:10.02922pt::10.02922pt::48.22899pt. +[326 + + +] +l2hSize :tex2html_wrap_inline6632:10.02922pt::10.02922pt::47.46553pt. +[327 + + +] +l2hSize :tex2html_wrap_inline6636:10.02922pt::10.02922pt::72.41887pt. +[328 + + +] +l2hSize :tex2html_wrap_inline6638:7.07185pt::0.0pt::7.59279pt. +[329 + + +] +l2hSize :tex2html_wrap_inline6640:10.02922pt::10.02922pt::14.15825pt. +[330 + + +] +l2hSize :tex2html_wrap_inline6642:8.7125pt::8.7125pt::60.99216pt. +[331 + + +] +l2hSize :tex2html_wrap_inline6644:9.96692pt::9.96692pt::27.04185pt. +[332 + + +] +l2hSize :tex2html_wrap_inline6647:7.98248pt::7.98248pt::11.90959pt. +[333 + + +] +l2hSize :tex2html_wrap_inline6649:8.10416pt::8.10416pt::26.93138pt. +[334 + + +] +l2hSize :tex2html_wrap_inline6655:7.98248pt::7.98248pt::29.23186pt. +[335 + + +] +l2hSize :tex2html_wrap_inline6657:7.07185pt::0.0pt::5.79189pt. +[336 + + +] +l2hSize :tex2html_wrap_inline6659:7.60416pt::0.0pt::6.85646pt. +[337 + + +] +l2hSize :tex2html_wrap_indisplay6663:11.02116pt::11.02116pt::215.46109pt. +[338 + + +] +l2hSize :tex2html_wrap_inline6665:8.7125pt::8.7125pt::73.76714pt. +[339 + + +] +l2hSize :tex2html_wrap_inline6675:10.02922pt::10.02922pt::29.5337pt. +[340 + + +] +l2hSize :tex2html_wrap_inline6677:10.02922pt::10.02922pt::100.41505pt. +[341 + + +] +l2hSize :tex2html_wrap_indisplay6679:10.57672pt::10.57672pt::149.83704pt. +[342 + + +] +l2hSize :tex2html_wrap_inline6681:10.02922pt::10.02922pt::156.4024pt. +[343 + + +] +l2hSize :tex2html_wrap_inline6685:10.02922pt::10.02922pt::34.27814pt. +[344 + + +] +l2hSize :tex2html_wrap_inline6687:10.02922pt::10.02922pt::33.56644pt. +[345 + + +] +l2hSize :tex2html_wrap_inline6691:8.7125pt::8.7125pt::66.01326pt. +[346 + + +] +l2hSize :tex2html_wrap_inline6696:9.96692pt::9.96692pt::26.9303pt. +[347 + + +] +l2hSize :tex2html_wrap_indisplay6698:8.7125pt::8.7125pt::184.48088pt. +[348 + + +] +l2hSize :tex2html_wrap_inline6702:7.07185pt::0.0pt::25.75525pt. +[349 + + +] +l2hSize :tex2html_wrap_inline6704:10.02922pt::10.02922pt::23.33516pt. +[350 + + +] +l2hSize :tex2html_wrap_inline6711:10.02922pt::10.02922pt::58.34613pt. +[351 + + +] +l2hSize :tex2html_wrap_indisplay6715:16.83748pt::16.83748pt::163.17436pt. +[352 + + +] +l2hSize :tex2html_wrap_indisplay6717:16.83748pt::16.83748pt::248.57803pt. +[353 + + +] +l2hSize :tex2html_wrap_inline6721:9.12923pt::0.0pt::10.7726pt. +[354 + + +] +l2hSize :tex2html_wrap_inline6723:9.12923pt::0.0pt::15.02266pt. +[355 + + +] +l2hSize :tex2html_wrap_inline6731:8.7125pt::8.7125pt::24.39476pt. +[356 + + +] +l2hSize :tex2html_wrap_inline6733:9.12923pt::0.0pt::12.74968pt. +[357 + + +] +l2hSize :tex2html_wrap_inline6735:8.10416pt::8.10416pt::9.67255pt. +[358 + + +] +l2hSize :tex2html_wrap_inline6818:8.7125pt::8.7125pt::50.1115pt. +[359 + + +] +File: example1_errors.eps Graphic file (type eps) + +l2hSize :tex2html_wrap4265:199.16998pt::0.0pt::349.0pt. +[360 + + +] +l2hSize :tex2html_wrap_inline6830:8.7125pt::8.7125pt::58.62819pt. +[361 + + +] +File: example2_errors.eps Graphic file (type eps) + +l2hSize :tex2html_wrap4271:199.16998pt::0.0pt::349.0pt. +[362 + + +] +File: grid.eps Graphic file (type eps) + +l2hSize :tex2html_wrap4293:156.49048pt::0.0pt::349.0pt. +[363 + + +] +l2hSize :tex2html_wrap_indisplay6913:23.63748pt::23.63748pt::346.74382pt. + +Overfull \hbox (0.95284pt too wide) in paragraph at lines 2491--2492 +[]|[] + [] + +[364 + + +] +File: field1.eps Graphic file (type eps) + +l2hSize :tex2html_wrap4329:199.16893pt::0.0pt::349.0pt. +[365 + + +] +File: field2.eps Graphic file (type eps) + +l2hSize :tex2html_wrap4335:199.16893pt::0.0pt::349.0pt. +[366 + + +] +l2hSize :tex2html_wrap_inline7106:9.12923pt::0.0pt::13.20593pt. +[367 + + +] +l2hSize :tex2html_wrap_inline7119:9.12923pt::0.0pt::13.20593pt. +[368 + + +] +l2hSize :tex2html_wrap_inline7121:8.7125pt::8.7125pt::33.11365pt. +[369 + + +] +l2hSize :tex2html_wrap_inline7125:7.57185pt::7.57185pt::25.36113pt. +[370 + + +] +l2hSize :tex2html_wrap_inline7127:7.07185pt::0.0pt::8.68147pt. +[371 + + +] +l2hSize :displaymath7129:31.2pt::0.0pt::349.0pt. +[372 + + +] +l2hSize :tex2html_wrap_inline7131:10.02922pt::10.02922pt::51.27365pt. +[373 + + +] +! Missing { inserted. + + } +l.2552 ...ad \partial \Omega \,, ^^I^^I\end{split} + \end{displaymath}% +A left brace was mandatory here, so I've put one in. +You might want to delete and/or insert some corrections +so that I will find a matching right brace soon. +(If you're confused by all this, try typing `I}' now.) + +! Missing } inserted. + + } +l.2552 ...ad \partial \Omega \,, ^^I^^I\end{split} + \end{displaymath}% +I've put in what seems to be necessary to fix +the current column of the current alignment. +Try to go on, since this might almost work. + +! Missing { inserted. + + } +l.2552 ...ad \partial \Omega \,, ^^I^^I\end{split} + \end{displaymath}% +A left brace was mandatory here, so I've put one in. +You might want to delete and/or insert some corrections +so that I will find a matching right brace soon. +(If you're confused by all this, try typing `I}' now.) + +! Missing } inserted. + + } +l.2552 ...ad \partial \Omega \,, ^^I^^I\end{split} + \end{displaymath}% +I've put in what seems to be necessary to fix +the current column of the current alignment. +Try to go on, since this might almost work. + +l2hSize :displaymath7133:34.629pt::0.0pt::349.0pt. +[374 + + +] +l2hSize :tex2html_wrap_inline7135:10.02922pt::10.02922pt::48.12807pt. +[375 + + +] +l2hSize :tex2html_wrap_inline7137:16.83748pt::16.83748pt::134.97365pt. +[376 + + +] +l2hSize :tex2html_wrap_indisplay7141:10.48782pt::10.48782pt::187.09563pt. +[377 + + +] +l2hSize :tex2html_wrap_inline7143:7.98248pt::7.98248pt::9.2619pt. +[378 + + +] +l2hSize :tex2html_wrap_inline7147:9.52922pt::0.0pt::62.02588pt. +[379 + + +] +! Missing { inserted. + + } +l.2590 $ \underline \mathop + {\rm curl}\mathop{\rm curl}\underline E = \nabla(... +A left brace was mandatory here, so I've put one in. +You might want to delete and/or insert some corrections +so that I will find a matching right brace soon. +(If you're confused by all this, try typing `I}' now.) + +! Missing } inserted. + + } +l.2590 ...\cdot\underline E) - \Delta\underline E$ + % +I've inserted something that you may have forgotten. +(See the above.) +With luck, this will get me unwedged. But if you +really didn't forget anything, try typing `2' now; then +my insertion and my current dilemma will both disappear. + +l2hSize :tex2html_wrap_inline7151:8.7125pt::8.7125pt::140.5096pt. +[380 + + +] +! Missing { inserted. + + } +l.2596 $ \underline \mathop + {\rm curl}\mathop{\rm curl}\underline E = - \Delt... +A left brace was mandatory here, so I've put one in. +You might want to delete and/or insert some corrections +so that I will find a matching right brace soon. +(If you're confused by all this, try typing `I}' now.) + +! Missing } inserted. + + } +l.2596 ...url}\underline E = - \Delta\underline E$ + % +I've inserted something that you may have forgotten. +(See the above.) +With luck, this will get me unwedged. But if you +really didn't forget anything, try typing `2' now; then +my insertion and my current dilemma will both disappear. + +l2hSize :tex2html_wrap_inline7153:8.10416pt::8.10416pt::92.25368pt. +[381 + + +] +l2hSize :tex2html_wrap_inline7155:9.52922pt::0.0pt::24.9177pt. +[382 + + +] +l2hSize :tex2html_wrap_inline7157:10.02922pt::10.02922pt::23.94687pt. +[383 + + +] +l2hSize :displaymath7162:31.2pt::0.0pt::349.0pt. +[384 + + +] +l2hSize :tex2html_wrap_inline7164:8.7125pt::8.7125pt::65.29562pt. +[385 + + +] +l2hSize :tex2html_wrap_inline7166:9.62923pt::9.62923pt::58.22253pt. +[386 + + +] +l2hSize :tex2html_wrap_inline7168:9.12923pt::0.0pt::38.39468pt. +[387 + + +] +l2hSize :tex2html_wrap_inline7170:7.57185pt::7.57185pt::83.36696pt. +[388 + + +] +l2hSize :tex2html_wrap_indisplay7172:16.83748pt::16.83748pt::333.1901pt. +[389 + + +] +l2hSize :tex2html_wrap_inline7179:9.62923pt::9.62923pt::134.45424pt. +[390 + + +] +l2hSize :tex2html_wrap_inline7181:7.98248pt::7.98248pt::52.36223pt. +[391 + + +] +l2hSize :tex2html_wrap_inline7183:9.62923pt::9.62923pt::42.13599pt. +[392 + + +] +l2hSize :tex2html_wrap_inline7185:7.98248pt::7.98248pt::74.3421pt. +[393 + + +] +l2hSize :displaymath7188:50.04611pt::0.0pt::349.0pt. +[394 + + +] +l2hSize :tex2html_wrap_inline7190:7.48248pt::0.0pt::7.3061pt. +[395 + + +] +l2hSize :tex2html_wrap_inline7192:7.48248pt::0.0pt::9.90068pt. +[396 + + +] +l2hSize :tex2html_wrap_inline7194:8.7125pt::8.7125pt::46.66809pt. +[397 + + +] +l2hSize :tex2html_wrap_inline7196:8.7125pt::8.7125pt::21.97229pt. +[398 + + +] +l2hSize :tex2html_wrap_inline7202:10.02922pt::10.02922pt::49.2833pt. +[399 + + +] +l2hSize :tex2html_wrap_inline7204:8.7125pt::8.7125pt::20.42862pt. +[400 + + +] +l2hSize :tex2html_wrap_inline7206:8.7125pt::8.7125pt::21.92036pt. +[401 + + +] +l2hSize :tex2html_wrap_inline7211:8.7125pt::8.7125pt::30.90184pt. +[402 + + +] +l2hSize :tex2html_wrap_inline7213:8.7125pt::8.7125pt::33.49641pt. +[403 + + +] +l2hSize :displaymath7215:31.2pt::0.0pt::349.0pt. +[404 + + +] +l2hSize :tex2html_wrap_inline7217:8.7125pt::8.7125pt::53.67023pt. +[405 + + +] +l2hSize :tex2html_wrap_inline7219:8.10416pt::8.10416pt::27.83119pt. +[406 + + +] +l2hSize :tex2html_wrap_inline7222:8.7125pt::8.7125pt::66.04301pt. +[407 + + +] +l2hSize :tex2html_wrap_inline7224:8.7125pt::8.7125pt::67.3205pt. +[408 + + +] +l2hSize :tex2html_wrap_inline7226:8.7125pt::8.7125pt::25.3143pt. +[409 + + +] +l2hSize :tex2html_wrap_indisplay7228:10.17673pt::10.17673pt::174.91476pt. +[410 + + +] +l2hSize :tex2html_wrap_inline7230:8.7125pt::8.7125pt::13.83961pt. +[411 + + +] +l2hSize :tex2html_wrap_indisplay7232:10.17673pt::10.17673pt::123.07pt. +[412 + + +] +l2hSize :tex2html_wrap_inline7234:9.62923pt::9.62923pt::41.10179pt. +[413 + + +] +l2hSize :tex2html_wrap_indisplay7236:10.17673pt::10.17673pt::135.75215pt. +[414 + + +] +l2hSize :tex2html_wrap_indisplay7242:8.10416pt::8.10416pt::103.16441pt. +[415 + + +] +l2hSize :tex2html_wrap_inline7244:10.08096pt::0.0pt::9.2619pt. +[416 + + +] +l2hSize :tex2html_wrap_inline7246:10.58096pt::10.58096pt::52.22786pt. +[417 + + +] +l2hSize :displaymath7248:31.35677pt::0.0pt::349.0pt. +[418 + + +] (images.aux) ) +Here is how much of TeX's memory you used: + 1913 strings out of 20887 + 22032 string characters out of 196242 + 69275 words of memory out of 350001 + 4846 multiletter control sequences out of 10000+15000 + 11067 words of font info for 41 fonts, out of 400000 for 1000 + 14 hyphenation exceptions out of 10000 + 27i,18n,24p,614b,233s stack positions out of 3000i,100n,1500p,50000b,4000s + +Output written on images.dvi (418 pages, 129636 bytes). diff --git a/deal.II/doc/reports/nedelec/images.tex b/deal.II/doc/reports/nedelec/images.tex new file mode 100644 index 0000000000..1d80be355b --- /dev/null +++ b/deal.II/doc/reports/nedelec/images.tex @@ -0,0 +1,2830 @@ +\batchmode + + +\documentclass[a4paper,11pt]{article} +\RequirePackage{ifthen} + + +\NeedsTeXFormat{LaTeX2e} +\usepackage{exscale} +\usepackage[dvips]{graphicx} +\usepackage{shortvrb} +\usepackage{amsmath} +\usepackage{amssymb} +\usepackage{amsfonts} +\usepackage{graphicx} + +\addtolength{\topmargin}{-35pt}\addtolength{\headsep}{-2pt}\addtolength{\topskip}{-5pt}\addtolength{\oddsidemargin}{-1.5cm}\addtolength{\evensidemargin}{-1.5cm}\addtolength{\textheight}{45pt}%% less white space at bottom of page + +\addtolength{\textwidth}{4cm}%% larger columns + + +% +\providecommand{\vect}[1]{\underline{#1}}%% vectors% +\providecommand{\matr}[1]{\mathbf{#1}}%% matrices% +\providecommand{\ofx}{(\underline{x})}% +\providecommand{\oftx}{(t,\underline{x})}% +\providecommand{\R}{\mathbb{R}}%% number sets% +\providecommand{\Z}{\mathbb{Z}}% +\providecommand{\C}{\mathbb{C}}% +\providecommand{\N}{\mathbb{N}}% +\providecommand{\inR}[1]{\in \mathbb{R}^{#1}}% +\providecommand{\EE}[1]{\mathbb{E}\,#1}%% mathematical expectation% +\providecommand{\PP}[1]{\mathbb{P}\,#1}%% mathematical probability% +\providecommand{\Or}[2]{\mathcal{O}(#1^#2)}%% order% +\providecommand{\eye}[1]{\,\mathbb{I}_{#1}\,}%% identity matrix% +\providecommand{\Laplace}{\Delta}%% Laplace operator% +\providecommand{\Grad}{\underline{\nabla}}%% Gradient operator% +\providecommand{\ond}[1]{\in \partial#1}%% on (physical domain .. ) boundary% +\providecommand{\etime}{\tau^D_{\underline{x}}}% +\providecommand{\twovec}[2]{\left(\begin{array}{c}#1\\#2\end{array}\right)}% +\providecommand{\threevec}[3]{\left(\begin{array}{c}#1\\#2\\#3\end{array}\right)} + +\parindent 0pt + +% +\providecommand{\Title}[1]{\title{\Large{#1}} \author{\small{Anna Schneebeli, \today}}\date{}}% +\providecommand{\Abstract}[1]{\noindent \small \textbf{Abstract:} #1}% +\providecommand{\Section}[1]{\section{\large{#1}}}% +\providecommand{\SectionS}[1]{\section*{\large{#1}}}% +\providecommand{\Subsection}[1]{\subsection{\normalsize{#1}}}% +\providecommand{\SubsectionS}[1]{\subsection*{\normalsize{#1}}}% +\providecommand{\Subsubsection}[1]{\subsubsection{\normalsize{#1}}}% +\providecommand{\SubsubsectionS}[1]{\subsubsection*{\normalsize{#1}}} +\newtheorem{remark}{\mdseries{\textsc{Remark}}}\newtheorem{conjecture}{\mdseries{\textsc{Conjecture}}} +\bibliographystyle{abbrv} + +% +\providecommand{\proof}{\mdseries{\textsc{Proof. }}}% +\providecommand{\qed}{\begin{flushright} $\square$\ \end{flushright}} +\newtheorem{definition}{\mdseries{\textsc{Definition}}}\newtheorem{theorem}{\mdseries{\textsc{Theorem}}}\newtheorem{prop}{\mdseries{\textsc{Proposition}}}\newtheorem{example}{\mdseries{\textsc{Example}}}\newtheorem{corollary}{\mdseries{\textsc{Corollary}}}\newtheorem{lemma}{\mdseries{\textsc{Lemma}}}\newtheorem{convention}{\mdseries{\textsc{Convention}}} +\title{\Large {An $H(\mathop{\rm curl};\Omega )$-conforming FEM: \\ + N\'ed\'elec's elements of first type}} \author{\small{Anna Schneebeli, \today}}\date{} + + +\usepackage[dvips]{color} + + +\pagecolor[gray]{.7} + +\usepackage[latin1]{inputenc} + + + +\makeatletter + +\makeatletter +\count@=\the\catcode`\_ \catcode`\_=8 +\newenvironment{tex2html_wrap}{}{}% +\catcode`\<=12\catcode`\_=\count@ +\newcommand{\providedcommand}[1]{\expandafter\providecommand\csname #1\endcsname}% +\newcommand{\renewedcommand}[1]{\expandafter\providecommand\csname #1\endcsname{}% + \expandafter\renewcommand\csname #1\endcsname}% +\newcommand{\newedenvironment}[1]{\newenvironment{#1}{}{}\renewenvironment{#1}}% +\let\newedcommand\renewedcommand +\let\renewedenvironment\newedenvironment +\makeatother +\let\mathon=$ +\let\mathoff=$ +\ifx\AtBeginDocument\undefined \newcommand{\AtBeginDocument}[1]{}\fi +\newbox\sizebox +\setlength{\hoffset}{0pt}\setlength{\voffset}{0pt} +\addtolength{\textheight}{\footskip}\setlength{\footskip}{0pt} +\addtolength{\textheight}{\topmargin}\setlength{\topmargin}{0pt} +\addtolength{\textheight}{\headheight}\setlength{\headheight}{0pt} +\addtolength{\textheight}{\headsep}\setlength{\headsep}{0pt} +\setlength{\textwidth}{349pt} +\newwrite\lthtmlwrite +\makeatletter +\let\realnormalsize=\normalsize +\global\topskip=2sp +\def\preveqno{}\let\real@float=\@float \let\realend@float=\end@float +\def\@float{\let\@savefreelist\@freelist\real@float} +\def\liih@math{\ifmmode$\else\bad@math\fi} +\def\end@float{\realend@float\global\let\@freelist\@savefreelist} +\let\real@dbflt=\@dbflt \let\end@dblfloat=\end@float +\let\@largefloatcheck=\relax +\let\if@boxedmulticols=\iftrue +\def\@dbflt{\let\@savefreelist\@freelist\real@dbflt} +\def\adjustnormalsize{\def\normalsize{\mathsurround=0pt \realnormalsize + \parindent=0pt\abovedisplayskip=0pt\belowdisplayskip=0pt}% + \def\phantompar{\csname par\endcsname}\normalsize}% +\def\lthtmltypeout#1{{\let\protect\string \immediate\write\lthtmlwrite{#1}}}% +\newcommand\lthtmlhboxmathA{\adjustnormalsize\setbox\sizebox=\hbox\bgroup\kern.05em }% +\newcommand\lthtmlhboxmathB{\adjustnormalsize\setbox\sizebox=\hbox to\hsize\bgroup\hfill }% +\newcommand\lthtmlvboxmathA{\adjustnormalsize\setbox\sizebox=\vbox\bgroup % + \let\ifinner=\iffalse \let\)\liih@math }% +\newcommand\lthtmlboxmathZ{\@next\next\@currlist{}{\def\next{\voidb@x}}% + \expandafter\box\next\egroup}% +\newcommand\lthtmlmathtype[1]{\gdef\lthtmlmathenv{#1}}% +\newcommand\lthtmllogmath{\lthtmltypeout{l2hSize % +:\lthtmlmathenv:\the\ht\sizebox::\the\dp\sizebox::\the\wd\sizebox.\preveqno}}% +\newcommand\lthtmlfigureA[1]{\let\@savefreelist\@freelist + \lthtmlmathtype{#1}\lthtmlvboxmathA}% +\newcommand\lthtmlpictureA{\bgroup\catcode`\_=8 \lthtmlpictureB}% +\newcommand\lthtmlpictureB[1]{\lthtmlmathtype{#1}\egroup + \let\@savefreelist\@freelist \lthtmlhboxmathB}% +\newcommand\lthtmlpictureZ[1]{\hfill\lthtmlfigureZ}% +\newcommand\lthtmlfigureZ{\lthtmlboxmathZ\lthtmllogmath\copy\sizebox + \global\let\@freelist\@savefreelist}% +\newcommand\lthtmldisplayA{\bgroup\catcode`\_=8 \lthtmldisplayAi}% +\newcommand\lthtmldisplayAi[1]{\lthtmlmathtype{#1}\egroup\lthtmlvboxmathA}% +\newcommand\lthtmldisplayB[1]{\edef\preveqno{(\theequation)}% + \lthtmldisplayA{#1}\let\@eqnnum\relax}% +\newcommand\lthtmldisplayZ{\lthtmlboxmathZ\lthtmllogmath\lthtmlsetmath}% +\newcommand\lthtmlinlinemathA{\bgroup\catcode`\_=8 \lthtmlinlinemathB} +\newcommand\lthtmlinlinemathB[1]{\lthtmlmathtype{#1}\egroup\lthtmlhboxmathA + \vrule height1.5ex width0pt }% +\newcommand\lthtmlinlineA{\bgroup\catcode`\_=8 \lthtmlinlineB}% +\newcommand\lthtmlinlineB[1]{\lthtmlmathtype{#1}\egroup\lthtmlhboxmathA}% +\newcommand\lthtmlinlineZ{\egroup\expandafter\ifdim\dp\sizebox>0pt % + \expandafter\centerinlinemath\fi\lthtmllogmath\lthtmlsetinline} +\newcommand\lthtmlinlinemathZ{\egroup\expandafter\ifdim\dp\sizebox>0pt % + \expandafter\centerinlinemath\fi\lthtmllogmath\lthtmlsetmath} +\newcommand\lthtmlindisplaymathZ{\egroup % + \centerinlinemath\lthtmllogmath\lthtmlsetmath} +\def\lthtmlsetinline{\hbox{\vrule width.1em \vtop{\vbox{% + \kern.1em\copy\sizebox}\ifdim\dp\sizebox>0pt\kern.1em\else\kern.3pt\fi + \ifdim\hsize>\wd\sizebox \hrule depth1pt\fi}}} +\def\lthtmlsetmath{\hbox{\vrule width.1em\kern-.05em\vtop{\vbox{% + \kern.1em\kern0.8 pt\hbox{\hglue.17em\copy\sizebox\hglue0.8 pt}}\kern.3pt% + \ifdim\dp\sizebox>0pt\kern.1em\fi \kern0.8 pt% + \ifdim\hsize>\wd\sizebox \hrule depth1pt\fi}}} +\def\centerinlinemath{% + \dimen1=\ifdim\ht\sizebox<\dp\sizebox \dp\sizebox\else\ht\sizebox\fi + \advance\dimen1by.5pt \vrule width0pt height\dimen1 depth\dimen1 + \dp\sizebox=\dimen1\ht\sizebox=\dimen1\relax} + +\def\lthtmlcheckvsize{\ifdim\ht\sizebox<\vsize + \ifdim\wd\sizebox<\hsize\expandafter\hfill\fi \expandafter\vfill + \else\expandafter\vss\fi}% +\providecommand{\selectlanguage}[1]{}% +\makeatletter \tracingstats = 1 +\providecommand{\Eta}{\textrm{H}} +\providecommand{\Mu}{\textrm{M}} +\providecommand{\Alpha}{\textrm{A}} +\providecommand{\Iota}{\textrm{J}} +\providecommand{\Nu}{\textrm{N}} +\providecommand{\Omicron}{\textrm{O}} +\providecommand{\omicron}{\textrm{o}} +\providecommand{\Chi}{\textrm{X}} +\providecommand{\Beta}{\textrm{B}} +\providecommand{\Kappa}{\textrm{K}} +\providecommand{\Tau}{\textrm{T}} +\providecommand{\Epsilon}{\textrm{E}} +\providecommand{\Zeta}{\textrm{Z}} +\providecommand{\Rho}{\textrm{R}} + + +\begin{document} +\pagestyle{empty}\thispagestyle{empty}\lthtmltypeout{}% +\lthtmltypeout{latex2htmlLength hsize=\the\hsize}\lthtmltypeout{}% +\lthtmltypeout{latex2htmlLength vsize=\the\vsize}\lthtmltypeout{}% +\lthtmltypeout{latex2htmlLength hoffset=\the\hoffset}\lthtmltypeout{}% +\lthtmltypeout{latex2htmlLength voffset=\the\voffset}\lthtmltypeout{}% +\lthtmltypeout{latex2htmlLength topmargin=\the\topmargin}\lthtmltypeout{}% +\lthtmltypeout{latex2htmlLength topskip=\the\topskip}\lthtmltypeout{}% +\lthtmltypeout{latex2htmlLength headheight=\the\headheight}\lthtmltypeout{}% +\lthtmltypeout{latex2htmlLength headsep=\the\headsep}\lthtmltypeout{}% +\lthtmltypeout{latex2htmlLength parskip=\the\parskip}\lthtmltypeout{}% +\lthtmltypeout{latex2htmlLength oddsidemargin=\the\oddsidemargin}\lthtmltypeout{}% +\makeatletter +\if@twoside\lthtmltypeout{latex2htmlLength evensidemargin=\the\evensidemargin}% +\else\lthtmltypeout{latex2htmlLength evensidemargin=\the\oddsidemargin}\fi% +\lthtmltypeout{}% +\makeatother +\setcounter{page}{1} +\onecolumn + +% !!! IMAGES START HERE !!! + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5220}% +$ H(\mathop {\rm curl};\Omega )$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5236}% +$ L^2(\Omega )$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5250}% +$ H(\mathop {\rm curl};(\Omega ))$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +\stepcounter{section} +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5451}% +$ \Omega \in \mathbb{R}^d$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5453}% +$ d=2,3$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay5455}% +$\displaystyle \mathop{\rm curl}\mathop{\rm curl}\underline u + c(x) \underline u = \underline f \quad \mathrm{in} \quad \Omega \,,$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5457}% +$ \underline f \in L^2(\Omega )^d$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay5459}% +$\displaystyle \underline u \wedge \underline n = 0$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5461}% +$ \partial \Omega $% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5463}% +$ \Omega $% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5465}% +$ c(x)$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +\stepcounter{subsection} +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5469}% +$ \underline t$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5471}% +$ d=2$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5473}% +$ \underline v = \left(\begin{array}{c} v_1(x,y) \\ v_2(x,y)\end{array} \right) \in [\mathcal{D}(\overline{\Omega })]^2$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5475}% +$ \varphi \in \mathcal{D}(\overline{\Omega })$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay5477}% +$\displaystyle \mathop{\rm curl}\underline v := \partial _x v_2 - \partial _y v_1 \quad \mathrm{and} \quad \mathop{\underline{\rm curl}}\varphi := \left(\begin{array}{c} \partial _y\varphi \\ -\partial _x\varphi \end{array} +\right) \,. +$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5479}% +$ \mathop{\rm curl}\mathop{\rm curl}$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5481}% +$ \mathop{\underline{\rm curl}}\mathop{\rm curl}$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5484}% +$ \mathop{\rm curl}$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5486}% +$ \underline v$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5488}% +$ \mathop{\underline{\rm curl}}$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5490}% +$ \varphi $% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay5492}% +$\displaystyle \boldsymbol{R} = \left(\begin{array}{cc} +0 & 1 \\ +-1 & 0 +\end{array}\right) \,, +$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay5494}% +$\displaystyle \mathop{\rm curl}\underline v = \mathrm{div} \left(\boldsymbol{R} \underline v\right) +$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay5496}% +$\displaystyle \mathop{\underline{\rm curl}}\varphi = \boldsymbol{R} \nabla\varphi \,. +$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5500}% +$ \underline t = \boldsymbol{R}^T\underline n$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5504}% +$ d=3$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5506}% +$ \underline v \in [\mathcal{D}(\overline{\Omega })]^3$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay5508}% +$\displaystyle \mathop{\rm curl}\underline v := \nabla \wedge \underline v := \left(\begin{array}{c} +\partial _y v_3 - \partial _z v_2 \\ +\partial _z v_1 - \partial _x v_3 \\ +\partial _x v_2 - \partial _y v_1 +\end{array} \right) +$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5513}% +$ \tilde{d}=1$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5517}% +$ \tilde{d}=3$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay5521}% +$\displaystyle H(\mathop{\rm curl}; \Omega ) := \{ \underline v \in [L^2(\Omega )]^d: \mathop{\rm curl}\underline v \in [L^2(\Omega )]^{\tilde{d}} \} +$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay5525}% +$\displaystyle (\underline v, \underline u)_{H(\mathop{\rm curl};\Omega )} := (\underline v, \underline u)_{L^2(\Omega )} + (\mathop{\rm curl}\underline v, \mathop{\rm curl}\underline u)_{L^2(\Omega )} +$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +\stepcounter{subsection} +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5539}% +$ [\mathcal{D}(\overline{\Omega })]^d$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5546}% +$ \underline u$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5548}% +$ [H(\mathop{\rm curl};\Omega )]^2$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5552}% +$ H^1(\Omega )$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay5554}% +$\displaystyle \int_{\Omega } \mathop{\rm curl}\underline u \,\,\varphi \,dx = \int_{\Omega } \underline u \cdot \mathop{\underline{\rm curl}}\varphi \,dx + \int_{\partial \Omega } (\underline u\cdot \underline t) \, \varphi \,ds \:, +$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5558}% +$ [H(\mathop{\rm curl};\Omega )]^3$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5562}% +$ [H^1(\Omega )]^3$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay5564}% +$\displaystyle \int_{\Omega } \underline v \cdot \mathop{\rm curl}\underline u \,dx = \int_{\Omega } \underline u \cdot \mathop{\rm curl}\underline v \,dx + \int_{\partial \Omega } (\underline v\wedge \underline n) \cdot \underline u\,ds \:, +$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5566}% +$ [H^{-\frac{1}{2}}(\partial \Omega )]^{\tilde{d}} \times H^{\frac{1}{2}}(\partial \Omega )$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay5568}% +$\displaystyle \mathrm{div}\, (\underline u \wedge \underline v) = \underline v \cdot \mathop{\rm curl}\underline u - \underline u \cdot \mathop{\rm curl}\underline v +$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5570}% +$ (\underline a\wedge\underline b)\cdot \underline c$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay5572}% +$\displaystyle \int_{\Omega } \underline v\cdot \mathop{\rm curl}\underline u - \underline u\cdot \mathop{\rm curl}\underline v \, dx = \int_{\Omega } \mathrm{div}\, (\underline u \wedge \underline v) \, dx += \int_{\partial \Omega } (\underline u \wedge \underline v)\cdot \underline n \,ds = \int_{\partial \Omega } (\underline v \wedge \underline n)\cdot \underline u \,ds \,\,. +$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5574}% +$ H(\mathop{\rm curl})$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5581}% +$ \underline n$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay5591}% +$\displaystyle \gamma: \quad \underline v \mapsto \gamma(\underline v) \cdot \underline t +$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay5595}% +$\displaystyle \gamma: \quad \underline v \mapsto \gamma(\underline v) \wedge \underline n +$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5599}% +$ [H^{-\frac{1}{2}}(\partial \Omega )]^{\tilde{d}}$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5603}% +$ [H^1(\Omega )]^{\tilde{d}}$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5605}% +$ [H^{\frac{1}{2}}(\partial \Omega )]^{\tilde{d}}$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay5610}% +$\displaystyle H_0(\mathop{\rm curl};\Omega ) := \left\{ \underline v \in H(\mathop{\rm curl};\Omega ): \quad \underline v\wedge \underline n = 0 \:\:\mathrm{on}\:\: \partial \Omega \right\} +$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5615}% +$ [\mathcal{D}(\Omega )]^d$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5617}% +$ H_0(\mathop{\rm curl};\Omega )$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5622}% +$ K_-$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5624}% +$ K_+$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5626}% +$ \mathbb{R}^d$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5628}% +$ e = \partial K_-\cap\partial K_+ \neq \emptyset$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5630}% +$ \Omega = \partial K_-\cup\partial K_+$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5632}% +$ v$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5636}% +$ v_-$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5642}% +$ H(\mathop{\rm curl}; K_-)$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5644}% +$ v_+$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5650}% +$ H(\mathop{\rm curl}; K_+)$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5652}% +$ e$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5654}% +$ v_-\wedge n_- + v_+\wedge n_+ = 0$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5658}% +$ H^{\frac{1}{2}}_{00}(e)$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5662}% +$ H^{\frac{1}{2}}(\partial \Omega )$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5674}% +$ H^{-\frac{1}{2}}(e)$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5676}% +$ \underline v_-$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5678}% +$ \underline v_+$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5680}% +$ L^2(e)$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5684}% +$ H^1$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +\stepcounter{subsection} +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5694}% +$ \underline u \in H_0(\mathop{\rm curl};\Omega )$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5696}% +$ \underline v \in H_0(\mathop{\rm curl};\Omega )$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay5698}% +$\displaystyle \int_{\Omega } \mathop{\rm curl}\underline u\, \mathop{\rm curl}\underline v\,dx + \int_{\Omega } c(x)\, \underline u\, \cdot \underline v\,dx = \int_{\Omega } \underline f\, \cdot \underline v\,dx$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmldisplayA{displaymath5701}% +\begin{displaymath}\begin{split} a(\underline u,\underline v) &:= \int_{\Omega } \mathop{\rm curl}\underline u\, \mathop{\rm curl}\underline v\,dx + \int_{\Omega } c(x)\, \underline u\, \cdot \underline v\,dx \\ l(\underline v) & := \int_{\Omega } \underline f\, \cdot \underline v\,dx \end{split}\end{displaymath}% +\lthtmldisplayZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5703}% +$ a(\cdot,\cdot)$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5705}% +$ H_0(\mathop{\rm curl};\Omega )\times H_0(\mathop{\rm curl};\Omega )$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +\stepcounter{section} +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5717}% +$ \hat{K}$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5719}% +$ F_K(\hat{x})$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5721}% +$ K = F_K(\hat{K})$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5723}% +$ \hat{R}$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5727}% +$ R_K$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5729}% +$ K$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5731}% +$ \mathcal{A} = \{\alpha_i(\cdot)\}_{i=1}^N$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5735}% +$ N < \infty$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5739}% +$ \mathcal{A}$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5741}% +$ \alpha_i(\cdot)$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +\stepcounter{subsection} +\stepcounter{subsubsection} +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5749}% +$ \hat{R} = \mathcal{R}^k$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5751}% +$ \mathbb{P}_k(\hat{\Sigma})$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5753}% +$ k$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5755}% +$ \hat{\Sigma}$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5759}% +$ \tilde{\mathbb{P}}_k$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5765}% +$ d$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay5770}% +$\displaystyle \mathcal{S}^k := \{\, \underline p \in (\tilde{\mathbb{P}}_k)^d : \underline p \cdot \hat{\underline x} = \sum_{i=1}^{d} p_i\,\hat{x}_i \equiv 0 \,\}\,,$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5772}% +$ \hat{x} \in \hat{K}$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5778}% +$ k(k+2)$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay5785}% +$\displaystyle \mathcal{R}^k = \left(\mathbb{P}_{k-1}(\hat{K}) \right)^d \oplus \mathcal{S}^k\,.$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmldisplayA{displaymath5787}% +\begin{displaymath}\begin{split} \mathrm{dim} (\mathcal{R}^k) &= k(k+2) \qquad \textrm{for} \quad d=2\,, \\ \mathrm{dim} (\mathcal{R}^k) &= \frac{(k+3)(k+2)k}{2} \qquad \textrm{for} \quad d=3\,. \end{split}\end{displaymath}% +\lthtmldisplayZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5789}% +$ \mathcal{R}^k$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay5791}% +$\displaystyle \mathcal{R}^k = \left(\mathbb{P}_{k-1}(\hat{K}) \right)^2 \oplus \tilde{\mathbb{P}}_{k-1}\, \left(\begin{array}{cc} \hat{x}_2 \\ -\hat{x}_1 \end{array}\right)\,.$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay5795}% +$\displaystyle \tilde{\mathbb{P}}_{k-1}\, \left(\begin{array}{cc} \hat{x}_2 \\ -\hat{x}_1 \end{array}\right) \subseteq \mathcal{S}^k +%%\left\{\v p\quad \big|\quad \v p = \tilde{p} \left(\begin{array}{cc} x_2 \\-x_1 \end{array}\right)\,,\, \tilde{p} + $% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5797}% +$ \tilde{\mathbb{P}}_{k-1}$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5799}% +$ k-1$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5803}% +$ \mathcal{S}^k$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5809}% +$ k=1$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5811}% +$ k=2$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay5814}% +$\displaystyle \mathcal{R}^1 = \left\langle \left(\begin{array}{cc} 1 \\ 0 \end{array}\right)\,_, \left(\begin{array}{cc} 0 \\ 1 \end{array}\right)\,_, \left(\begin{array}{cc} \hat{x}_2 \\ -\hat{x}_1 \end{array}\right) \right\rangle$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay5816}% +$\displaystyle \mathcal{R}^2 = \left(\mathbb{P}_{1}(\hat{K}) \right)^2 \oplus +\left\langle +\left(\begin{array}{cc} \hat{x}_1\,\hat{x}_2 \\ -{\hat{x}_1}^2 \end{array}\right)\,_, +\left(\begin{array}{cc} {\hat{x}_2}^2 \\ -\hat{x}_1\,\hat{x}_2 \end{array}\right) +\right\rangle +$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5823}% +$ \mathcal{S}^1$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5825}% +$ \underline p$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5827}% +$ (\mathbb{P}_{1}(\hat{K}))^3$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay5829}% +$\displaystyle p_i = \sum_{j=1}^3 a_{ij} \hat{x}_j\,, \qquad i=1,2,3\,. +$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay5835}% +$\displaystyle \underline p \cdot \hat{\underline x} = +\sum_{i=1}^3 a_{ii}\hat{x}_i^2 + \sum_{\substack{i,j=1 \\ j>i}}^3 (a_{ij}+a_{ji})\hat{x}_i \hat{x}_j \equiv 0\,. +$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmldisplayA{displaymath5839}% +\begin{displaymath}\begin{split} &a_{11}=a_{22}=a_{33} = 0 \\ &a_{12}= - a_{21}\,,\quad a_{13}= - a_{31}\,,\quad a_{23}= - a_{32}\,. \end{split}\end{displaymath}% +\lthtmldisplayZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5843}% +$ a_{ij} = 1$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5845}% +$ i=1,2,3$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5847}% +$ j>i$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay5849}% +$\displaystyle \mathcal{R}^1 = \left(\mathbb{P}_{0}(\hat{K}) \right)^3 \oplus \left\langle \left(\begin{array}{ccc} 0 \\ \hat{x}_3 \\ \hat{x}_2 \end{array}\right)\,_,\, \left(\begin{array}{ccc} \hat{x}_3 \\ 0 \\ \hat{x}_1 \end{array}\right)\,_,\, \left(\begin{array}{ccc} \hat{x}_2 \\ \hat{x}_1 \\ 0 \end{array}\right) \right\rangle$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5853}% +$ (\mathbb{P}_{k}(\hat{K}) )^d$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +\stepcounter{subsubsection} +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5868}% +$ n$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5870}% +$ n+k+2 \choose n$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5875}% +$ \hat{\underline t}$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay5883}% +$\displaystyle \hat{\alpha}(\hat{\underline u}) := \int_{\hat{e}} (\hat{\underline t}\cdot \hat{\underline u})\, \hat{\varphi }\,d\hat{s} \quad \forall \hat{\varphi } \in \mathbb{P}_{k-1}(\hat{e})\,,$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5885}% +$ \hat{e}$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5889}% +$ 3k$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay5891}% +$\displaystyle \hat{\alpha}(\hat{\underline u}) := \int_{\hat{K}} \hat{\underline u}\cdot \hat{\underline \varphi }\,d\hat{x} \quad \forall \hat{\underline \varphi } \in (\mathbb{P}_{k-2}(\hat{K}))^2\,.$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5893}% +$ k(k-1)$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5900}% +$ \hat{\underline n}$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5915}% +$ 6k$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay5917}% +$\displaystyle \hat{\alpha}(\hat{\underline u}) := \int_{\hat{f}} (\hat{\underline u}\wedge \hat{\underline n})\cdot \hat{\underline \varphi }\,d\hat{a} \quad \forall \hat{\varphi } \in (\mathbb{P}_{k-2}(\hat{f}) )^2\,,$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5919}% +$ \hat{f}$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5923}% +$ 4k(k-1)$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay5925}% +$\displaystyle \hat{\alpha}(\hat{\underline u}) := \int_{\hat{K}} \hat{\underline u}\cdot \hat{\underline \varphi }\,d\hat{x} \quad \forall \hat{\underline \varphi } \in (\mathbb{P}_{k-3}(\hat{K}))^3\,.$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5927}% +$ \frac{k(k-1)(k-2)}{2}$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5933}% +$ k\leq3$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5944}% +$ \hat{\underline u}\in \mathcal{R}^k$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5946}% +$ \hat{\alpha}(\hat{\underline u})$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5949}% +$ \hat{K} = \left\{ (\hat{x},\hat{y})\in\mathbb{R}^2:\quad 0\leq \hat{x}\leq 1\,,\,\, 0\leq \hat{y}\leq 1-\hat{x} \right\}$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5951}% +$ \hat{e}_0 = \overline{(0,0),(1,0)}$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay5953}% +$\displaystyle \hat{\underline t}_0 = \left(\begin{array}{cc} 1 \\ 0 \end{array}\right)\,,\quad +\hat{\underline t}_1 = \frac{1}{\sqrt{2}}\left(\begin{array}{cc} -1 \\ 1 \end{array}\right)\,,\quad +\hat{\underline t}_2 = \left(\begin{array}{cc} 0 \\ -1 \end{array}\right)\,. +$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5955}% +$ \mathcal{R}^1$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5961}% +$ \int_{\hat{e}_i} (\hat{\underline t}\cdot \hat{\underline u})\, \hat{\varphi }\,d\hat{s}\,, \forall \hat{\varphi } \in \mathbb{P}_{0}(\hat{e}_i)$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5963}% +$ \varphi \equiv 1$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5965}% +$ \mathbb{P}_{0}(\hat{e}_i)$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay5967}% +$\displaystyle \hat{\alpha}_i(\hat{\underline u}) = \int_{\hat{e}_i} (\hat{\underline t}\cdot \hat{\underline u})\,d\hat{s} \quad i=0,1,2\,.$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5969}% +$ \hat{\underline N}_0,\hat{\underline N}_1,\hat{\underline N}_2$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5973}% +$ \hat{\alpha}_i(\hat{\underline N}_j) = \delta_{ij}$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5975}% +$ \hat{\underline N}_i$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay5979}% +$\displaystyle \hat{\underline N}_0 = \left(\begin{array}{cc} 1-\hat{y} \\ \hat{x} \end{array}\right)\,,\quad \hat{\underline N}_1 = \left(\begin{array}{cc} -\hat{y} \\ \hat{x} \end{array}\right)\,,\quad \hat{\underline N}_2 = \left(\begin{array}{cc} -\hat{y} \\ \hat{x}-1 \end{array}\right)\,.$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +\stepcounter{subsubsection} +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay5984}% +$\displaystyle K \ni x = F_K(\hat{x}) = B_K \hat{x} + b_K +$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5988}% +$ N_i$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline5992}% +$ \hat{N}_i$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay5996}% +$\displaystyle N_i(x) = \left( \hat{N}_i \circ F_K^{-1} \right)(x)$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6000}% +$ H(\mathop{\rm curl};\hat{K})$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6002}% +$ H(\mathop{\rm curl}; K)$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6011}% +$ \underline N_i(x)$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay6015}% +$\displaystyle \underline N_i(x) = \mathcal{P}_K (\hat{\underline N}_i) = \left(\hat{D}F_K^{-T} \hat{\underline N}_i\right) \circ F_K^{-1} (x)\,,$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6017}% +$ \hat{D}F_K$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6019}% +$ \frac{d}{d\hat{x}}F_K(\hat{x})$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6022}% +$ H(\mathop{\rm div}; \Omega )$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6026}% +$ F_K(\hat{x}) = B_K \hat{x} + b_k$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6030}% +$ B_K$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay6032}% +$\displaystyle \underline v(x) = \mathcal{P}_K (\hat{\underline v}) = B_K^{-T} \left(\hat{\underline v} \circ F_K^{-1} \right)(x)\,,$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +\stepcounter{subsubsection} +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6035}% +$ \Omega \subset\mathbb{R}^2$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay6041}% +$\displaystyle B_K^{-T} = \det B_K^{-1}\,R^T B_K\,R \,,$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6043}% +$ R$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6048}% +$ \underline v(x) = \mathcal{P}_K(\hat{\underline v})$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6050}% +$ \varphi (x) = \left( \hat{\varphi }\circ F_K^{-1} \right)(x)$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6052}% +$ \hat{x} = +F_K^{-1}(x)$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6054}% +$ F_K$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6058}% +$ D\underline v$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay6060}% +$\displaystyle D\underline v = B_K^{-T}\, \hat{D}\hat{\underline v}\, B_K^{-1}\, .$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay6062}% +$\displaystyle \mathop{\rm curl}\underline v = \det B_K^{-1} \widehat{\mathop{\rm curl}} \hat{\underline v}\, .$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6074}% +$ R\,Dv$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6076}% +$ B_K^{-T}$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6080}% +$ \det B_K^{-1}\,R\,\hat{D}\hat{v}$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay6085}% +$\displaystyle \int_{K} \mathop{\rm curl}\underline v\, \varphi \, dx = \int_{\hat{K}} \widehat{\mathop{\rm curl}}\hat{\underline v}\, \hat{\varphi } \,d\hat{x}\,,$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay6087}% +$\displaystyle \int_{K} \mathop{\rm curl}\underline v\, \mathop{\rm curl}\underline u \, dx = | B_K |^{-1}\,\int_{\hat{K}} \widehat{\mathop{\rm curl}}\hat{\underline v}\, \widehat{\mathop{\rm curl}}\hat{\underline u} \,d\hat{x}\,.$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +\stepcounter{subsubsection} +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6092}% +$ \hat{\underline v}$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6096}% +$ \mathop{\rm Curl}v$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay6098}% +$\displaystyle \left({\mathop{\rm Curl}v}\right)_{ij} = \frac{\partial v_j}{\partial x_i} - \frac{\partial v_i}{\partial x_j}$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6100}% +$ \mathop{\rm Curl}v = D\underline v^T - D\underline v$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay6102}% +$\displaystyle \mathop{\rm Curl}v = B_K^{-T} \widehat{\mathop{\rm Curl}}\,\hat{v} \,B_K^{-1}$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6109}% +$ \underline v(x)$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6113}% +$ \hat{\underline v}(\hat{x})$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay6115}% +$\displaystyle \left(\mathop{\rm curl}\underline v\right)_i(x) = \det \mathrm{M_i}(x) \,, \qquad i= 1,2,3\,$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6117}% +$ \mathrm{M_i}$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6119}% +$ D(F_K^{-1}) = B_K^{-1}$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6121}% +$ (\widehat{\mathop{\rm curl}}\,\hat{\underline v}\circ F_K^{-1})(x)$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay6123}% +$\displaystyle \left(\mathrm{M_i}\right)_{kl}(x) := \left\{ \begin{array}{ll} (\widehat{\mathop{\rm curl}}\,\hat{v} \circ F_K^{-1})_k (x) & \textrm{if} \quad l=i \\ (B_K^{-1})_{kl} & \textrm{if} \quad l\neq i \end{array} \right.$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay6125}% +$\displaystyle \mathop{\rm curl}\underline v = \left( \begin{array}{ccc} ({\mathop{\rm Curl}v})_{23} \\ ({\mathop{\rm Curl}v})_{31} \\ ({\mathop{\rm Curl}v})_{12} \end{array}\right)\,.$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6127}% +$ (\mathop{\rm curl}\underline v)_1 = {\mathop{\rm Curl}v}_{23}$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6129}% +$ b_{ij} := (B_K^{-1})_{ij}$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay6131}% +$\displaystyle ({\mathop{\rm Curl}v})_{23} = b_{k2}\, (\widehat{\mathop{\rm Curl}}\, \hat{v})_{kl}\,b_{l3} +$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay6135}% +$\displaystyle ({\mathop{\rm Curl}v})_{23} = (b_{12}b_{23} - b_{22}b_{13})(\widehat{\mathop{\rm Curl}} \,\hat{v})_{12} +-(b_{12}b_{33} - b_{32}b_{13})(\widehat{\mathop{\rm Curl}}\, \hat{v})_{31} ++(b_{22}b_{33} - b_{32}b_{23})(\widehat{\mathop{\rm Curl}}\, \hat{v})_{23}\,, +$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay6137}% +$\displaystyle \mathrm{M_1} := \left(\begin{array}{ccc} (\widehat{\mathop{\rm curl}}\, v)_1 & b_{12} & b_{13} \\ +(\widehat{\mathop{\rm curl}}\, v)_2 & b_{22} & b_{23} \\ +(\widehat{\mathop{\rm curl}}\, v)_3 & b_{32} & b_{33} +\end{array}\right) \,. +$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay6148}% +$\displaystyle \mathop{\rm curl}\underline v = \frac{1}{\det B_K}\,B_K\,(\widehat{\mathop{\rm curl}}\,\hat{\underline v} \circ F_K^{-1})\,.$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6150}% +$ (\mathop{\rm curl}\underline v)_1$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay6152}% +$\displaystyle (\mathop{\rm curl}\underline v)_1 = \frac{1}{\det B_K} (B_K)_{1j} ((\widehat{\mathop{\rm curl}}\,\hat{\underline v})_j \circ F^{-1})\,.$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6154}% +$ \det \mathrm{M_1}$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay6158}% +$\displaystyle \det \mathrm{M_1} = (\widehat{\mathop{\rm curl}}\, \hat{\underline v})_1 \det\mathcal{B}^{inv}_{11} +-(\widehat{\mathop{\rm curl}}\, \hat{\underline v})_2 \det\mathcal{B}^{inv}_{21} ++(\widehat{\mathop{\rm curl}}\, \hat{\underline v})_3 \det\mathcal{B}^{inv}_{31} \,, +$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6160}% +$ \mathcal{B}^{inv}_{ij}$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6162}% +$ 2 \times 2$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6164}% +$ B_K^{-1}$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6166}% +$ A \in \mathbb{R}^{3\times 3}$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay6168}% +$\displaystyle (A^{-1})_{ij} = \frac{1}{\det A} (-1)^{i+j} \det \mathcal{A}_{ji} \,,$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6170}% +$ \mathcal{A}_{ij}$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6174}% +$ A$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6178}% +$ A = B_K^{-1}$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay6180}% +$\displaystyle \frac{1}{\det B_K}\,\frac{1}{\det B_K^{-1}} (-1)^{1+j} \det \mathcal{B}^{inv}_{j1} (\widehat{\mathop{\rm curl}}\, \hat{\underline v})_j += (\widehat{\mathop{\rm curl}}\, \hat{\underline v})_1 \det \mathcal{B}^{inv}_{11} +-(\widehat{\mathop{\rm curl}}\, \hat{\underline v})_2 \det \mathcal{B}^{inv}_{21} ++(\widehat{\mathop{\rm curl}}\, \hat{\underline v})_3 \det \mathcal{B}^{inv}_{31} = \det \mathrm{M_1}\,. +$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +\stepcounter{subsection} +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6183}% +$ C$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6185}% +$ \hat{C} = [0,1]^d$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay6187}% +$\displaystyle C = F_C(\hat{C}) \quad C \ni x = B_C \hat{x} + \underline b_C \,, \hat{x} \in \hat{C}\,. +$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +\stepcounter{subsubsection} +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6191}% +$ \mathcal{Q}_{l,m}$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6193}% +$ \hat{C}$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6195}% +$ l$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6197}% +$ \hat{x}_1$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6199}% +$ m$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6201}% +$ \hat{x}_2$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6203}% +$ \mathcal{Q}_{l,m,n}$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6217}% +$ \hat{x}_3$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay6221}% +$\displaystyle \mathcal{P}^k = \left\{ \hat{\underline u} = \left(\begin{array}{cc} \hat{u}_1 \\ \hat{u}_2 \end{array}\right): \quad \hat{u}_1 \in \mathcal{Q}_{k-1,k}\,, \hat{u}_2 \in \mathcal{Q}_{k,k-1} \right\}\,,$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay6223}% +$\displaystyle \mathcal{P}^k = \left\{ \hat{\underline u} = \left(\begin{array}{ccc} \hat{u}_1 \\ \hat{u}_2 \\ \hat{u}_3 \end{array}\right):\quad \hat{u}_1 \in \mathcal{Q}_{k-1,k,k}\,, \hat{u}_2 \in \mathcal{Q}_{k,k-1,k}\,, \hat{u}_3 \in \mathcal{Q}_{k,k,k-1}\right\}\,.$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +\stepcounter{subsubsection} +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6228}% +$ \hat{C}\subset \mathbb{R}^2$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6237}% +$ \mathcal{P}^k$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay6241}% +$\displaystyle \hat{\alpha}(\hat{\underline u}) := \int_{\hat{e}} (\hat{\underline t}\cdot \hat{\underline u})\, \hat{\varphi }\,d\hat{s}\,, \quad \forall\, \hat{\varphi } \in \mathbb{P}_{k-1}(\hat{e})\,,$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6247}% +$ 4k$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay6249}% +$\displaystyle \hat{\alpha}(\hat{\underline u}) := \int_{\hat{C}} \hat{\underline u}\cdot \hat{\underline \varphi }\,d\hat{x}\,, \quad \forall\, \hat{\underline \varphi } = \left(\begin{array}{cc} \hat{\varphi }_1 \\ \hat{\varphi }_2 \end{array}\right) \,, \quad\hat{\varphi }_1\in\mathcal{Q}_{k-2,k-1}\,,\quad\hat{\varphi }_2\in\mathcal{Q}_{k-1,k-2}\,.$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6251}% +$ 2k(k-1)$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6273}% +$ 12k$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay6275}% +$\displaystyle \hat{\alpha}(\hat{\underline u}) := \int_{\hat{f}} (\hat{\underline u}\wedge \hat{\underline n})\cdot \hat{\underline \varphi }\,d\hat{a} \,,\quad \forall \,\hat{\underline \varphi } = \left(\begin{array}{cc} \hat{\varphi }_1 \\ \hat{\varphi }_2 \end{array}\right) \,, \quad\hat{\varphi }_1\in\mathcal{Q}_{k-2,k-1}(\hat{f})\,,\quad\hat{\varphi }_2\in\mathcal{Q}_{k-1,k-2}(\hat{f})\,.$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6281}% +$ 6\cdot 2k(k-1)$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay6283}% +$\displaystyle \hat{\alpha}(\hat{\underline u}) := \int_{\hat{C}} \hat{\underline u}\cdot \hat{\underline \varphi }\,d\hat{x} \,,\quad \forall\, \hat{\underline \varphi } = \left(\begin{array}{ccc} \hat{\varphi }_1 \\ \hat{\varphi }_2 \\ \hat{\varphi }_3\end{array}\right) \,,\quad\hat{\varphi }_1\in\mathcal{Q}_{k-1,k-2,k-2}\,,\quad\hat{\varphi _2}\in\mathcal{Q}_{k-2,k-1,k-2}\,, \quad\hat{\varphi _3}\in\mathcal{Q}_{k-2,k-2,k-1}\,.$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6285}% +$ 3k(k-1)^2$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6288}% +$ [0,1]^2$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay6290}% +$\displaystyle \hat{\underline t}_0 = \left(\begin{array}{cc} 1 \\ 0 \end{array}\right)\,,\quad +\hat{\underline t}_1 = \left(\begin{array}{cc} 0 \\ 1 \end{array}\right)\,,\quad +\hat{\underline t}_2 = \left(\begin{array}{cc} -1 \\ 0 \end{array}\right)\,, \quad +\hat{\underline t}_3 = \left(\begin{array}{cc} 0 \\ -1 \end{array}\right)\,, +$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay6292}% +$\displaystyle \hat{\underline N}_0 = \left(\begin{array}{cc} 1-\hat{y} \\ 0 \end{array}\right)\,,\quad \hat{\underline N}_1 = \left(\begin{array}{cc} 0 \\ \hat{x} \end{array}\right)\,,\quad \hat{\underline N}_2 = \left(\begin{array}{cc} -\hat{y} \\ 0 \end{array}\right)\,,\quad \hat{\underline N}_3 = \left(\begin{array}{cc} 0 \\ \hat{x}-1 \end{array}\right)\,.$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +\stepcounter{subsubsection} +\stepcounter{subsection} +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6296}% +$ F_C(\hat{C})$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6300}% +$ \hat{D}F_C(\hat{x})$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6302}% +$ F_C$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +\stepcounter{subsubsection} +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay6307}% +$\displaystyle \underline v(x) = (\hat{D}F_C^{-T} \hat{\underline v}_i) \circ F_C^{-1} (x)$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6315}% +$ \mathop{\rm curl}\underline v$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6317}% +$ \widehat{\mathop{\rm curl}}\,\hat{\underline v}$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay6330}% +$\displaystyle \mathop{\rm curl}\underline v(x) = (\det \hat{D}F)^{-1} \widehat{\mathop{\rm curl}}\, \hat{\underline v}(\hat{x})\,, \qquad x = F(\hat{x})\,,$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6334}% +$ F$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6338}% +$ (\hat{D}F(F^{-1}(x)))^{-1} = D(F^{-1})(x)$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6340}% +$ D(F^{-1})_{ij}(x)= +\frac{\partial \hat{x}_i}{\partial x_j}(x)$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay6342}% +$\displaystyle v_i(x) = \frac{\partial \hat{x}_j}{\partial x_i}(x) \,\hat{\underline v}_j (F^{-1}(x)) \,, \qquad i=1,2\,. +$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmldisplayA{displaymath6344}% +\begin{displaymath}\begin{split} \frac{\partial v_2}{\partial x_1} &= \frac{\partial \hat{x}_i}{\partial x_2}(x) \,\frac{\partial }{\partial x_1}\hat{\underline v}_i(F^{-1}(x)) \\ \frac{\partial v_1}{\partial x_2} &= \frac{\partial \hat{x}_i}{\partial x_1}(x) \,\frac{\partial }{\partial x_2}\hat{\underline v}_i(F^{-1}(x)) \,, \end{split}\end{displaymath}% +\lthtmldisplayZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmldisplayA{displaymath6346}% +\begin{displaymath}\begin{split} \frac{\partial v_2}{\partial x_1} &= \frac{\partial ^2 \hat{x}_i}{\partial x_1\partial x_2}(x)\, \hat{\underline v}_i(F^{-1}(x)) + \frac{\partial \hat{x}_i}{\partial x_2}(x) \,\frac{\partial }{\partial x_1}\hat{\underline v}_i(F^{-1}(x)) \\ \frac{\partial v_1}{\partial x_2} &= \frac{\partial ^2 \hat{x}_i}{\partial x_1\partial x_2}(x) \,\hat{\underline v}_i(F^{-1}(x)) + \frac{\partial \hat{x}_i}{\partial x_1}(x) \,\frac{\partial }{\partial x_2}\hat{\underline v}_i(F^{-1}(x)) \,. \end{split}\end{displaymath}% +\lthtmldisplayZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay6348}% +$\displaystyle \mathop{\rm curl}\underline v = \frac{\partial v_2}{\partial x_1} - \frac{\partial v_1}{\partial x_2} = +\frac{\partial \hat{x}_i}{\partial x_2}(x) \,\frac{\partial }{\partial x_1}\hat{\underline v}_i(F^{-1}(x)) +- \frac{\partial \hat{x}_i}{\partial x_1}(x) \,\frac{\partial }{\partial x_2}\hat{\underline v}_i(F^{-1}(x)) \, +$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +\stepcounter{subsubsection} +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6353}% +$ D(F_C^{-1})(x)$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6355}% +$ \frac{\partial v_i}{\partial x_j} - \frac{\partial v_j}{\partial x_i}$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6357}% +$ i,j = 1,2,3$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6359}% +$ \mathop{\rm Curl}v = Dv^T - Dv$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay6361}% +$\displaystyle \mathop{\rm Curl}v (x) = ((\hat{D}F_C^{-T} \widehat{\mathop{\rm Curl}}\,\hat{v} \,\hat{D}F_C^{-1}) \circ F_C^{-1})(x) += (DF_C^{-1})^T(x)\, (\widehat{\mathop{\rm Curl}}\,\hat{v}\circ F_C^{-1})(x)\,DF_C^{-1}(x) \,. +$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6363}% +$ B_C$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6365}% +$ \hat{D}F_C(\hat(x))$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6370}% +$ C = F_C(\hat{C})$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay6376}% +$\displaystyle \mathop{\rm curl}\underline v = \left(\frac{1}{\det \hat{D}F_C}\,\hat{D}F_C\, \widehat{\mathop{\rm curl}}\,\hat{\underline v} \right) \circ F_C^{-1}\,.$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +\stepcounter{subsection} +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6383}% +$ \mathcal{Q}^k$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6389}% +$ \mathcal{P}_K$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6393}% +$ K=F(\hat{K})$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6399}% +$ [0,|e|] \ni s \mapsto \underline x(s) \in e$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6401}% +$ [0,|\hat{e}|] \ni \hat{s} \mapsto \hat{\underline x}(\hat{s}) \in \hat{e}$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6411}% +$ \frac{d \underline x}{ds}$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6413}% +$ \frac{d \hat{\underline x}}{d\hat{s}}$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay6422}% +$\displaystyle \underline v\cdot \underline t = \frac{|\hat{e}|}{|e|} (\hat{\underline v}\cdot \hat{\underline t})\,,$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6424}% +$ |\hat{e}|$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6426}% +$ |e|$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay6432}% +$\displaystyle (\underline v(x))_i = (D(F^{-1})^T \hat{\underline v})_i = \frac{\partial \hat{x}_j}{\partial x_i}(x) \hat{\underline v}_j(\hat{x})\, +$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6434}% +$ \hat{x}_j = \hat{x}_j(\underline x(s))$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6436}% +$ \hat{x}_j = \hat{x}_j(\hat{s}(s))$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay6438}% +$\displaystyle \underline v\cdot \underline t= \underline v \cdot \frac{d \underline x}{ds} = \left( \hat{\underline v}_j\frac{\partial \hat{x}_j}{\partial x_i}\right) (x)\frac{dx_i}{ds} += \hat{\underline v}_j \frac{d \hat{x}_j}{ds} = \hat{\underline v}_j \frac{d \hat{x}_j}{d\hat{s}} \frac{d\hat{s}}{ds} += (\hat{\underline v}\cdot \hat{\underline t}) \frac{d\hat{s}}{ds} +$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6440}% +$ \frac{d\hat{s}}{ds}=\frac{|\hat{e}|}{|e|}$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6451}% +$ \alpha^{[K]}(\underline u) := \int_e (\underline v\cdot \underline t)\varphi \,ds$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay6453}% +$\displaystyle \alpha^{[K]}(\underline u) = \int_e (\underline v\cdot \underline t)\varphi \,ds = +\int_{\hat{e}} (\hat{\underline v} \cdot \hat{\underline t}) \hat{\varphi } \, d\hat{s}\, = \hat{\alpha}(\hat{\underline u})\,, +\qquad \forall\, \hat{\varphi } \in +\mathbb{P}_{k-1}(\hat{e})\,, \quad \varphi = \hat{\varphi } \circ F^{-1} \in \mathbb{P}_{k-1}(e)\,. +$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6455}% +$ K_- = F_-(\hat{K})$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6457}% +$ K_+ = F_+(\hat{K})$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6461}% +$ \underline N$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6465}% +$ \underline N_-$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6467}% +$ \underline N_+$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6475}% +$ e_+ =F_+(\hat{e}_i)$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6477}% +$ e_- =F_-(\hat{e}_j)$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6479}% +$ \underline t_+ $% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6485}% +$ \underline t_- = -\underline t_+$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6491}% +$ \int_{e_+}$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6495}% +$ \int_{e_-}$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6499}% +$ \underline t_-$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay6503}% +$\displaystyle \underline N_+\cdot\underline t_+ + \underline N_-\cdot\underline t_- = 0\,.$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6505}% +$ \alpha^{[K_+]}$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6507}% +$ \alpha^{[K_-]}$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6514}% +$ \hat{e} \ni \hat{x}(s) := \underline a + +s\, \hat{\underline t}$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6516}% +$ \hat{\underline p} \in \mathcal{S}^k$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay6520}% +$\displaystyle (\hat{\underline p}\cdot \hat{\underline t})|_{\hat{e}} \in \mathbb{P}_{k-1}(\hat{e})\,. +$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay6522}% +$\displaystyle \hat{\underline p} \in \mathcal{S}^k \quad \Longrightarrow \quad \textrm{for } i=1,2,3: +\quad \hat{p}_i(\hat{x}) = \prod_{j=1}^3 \hat{x}_j^{k_{ij}}\,, \quad +\textrm{where } \sum_{j=1}^3 k_{ij} = k\,. +$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6526}% +$ \hat{x}(s)$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay6528}% +$\displaystyle \hat{p}_i(\hat{x}(s)) = \prod_{j=1}^3 (a_j + s\,\hat{t}_j)^{k_{ij}} = s^k\,\prod_{j=1}^3 \hat{t}_j^{k_{ij}} + +\hat{\varphi }_{k-1}(s)\,, +$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6530}% +$ \hat{\varphi }_{k-1}(s) \in \mathbb{P}_{k-1}(\hat{e})$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay6532}% +$\displaystyle (\hat{\underline p}\cdot \hat{\underline t})|_{\hat{e}} = s^k\,\sum_{i=1}^3\hat{t}_i\left(\prod_{j=1}^3 \hat{t}_j^{k_{ij}}\right) + +\hat{\varphi }_{k-1}(s)\,. +$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6534}% +$ s^k$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6536}% +$ \hat{\underline p}(\hat{\underline t}) \cdot \hat{\underline t}$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6543}% +$ \hat{R} = \mathcal{P}^k$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6547}% +$ (\hat{\underline v}\cdot \hat{\underline t})|_{\hat{e}} \in \mathbb{P}_{k-1}(\hat{e})$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay6560}% +$\displaystyle \underline N_+ := \mathcal{P}_+(\hat{\underline N}_i) = \hat{D}F_+^{-T} \hat{\underline N}_i \,, \qquad \underline N_- := -\,\mathcal{P}_-(\hat{\underline N}_j) = -\hat{D}F_-^{-T}\hat{\underline N}_j\,.$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6566}% +$ \underline v := \mathcal{P}_K(\hat{\underline v})$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6570}% +$ \hat{\underline v} \in \hat{R}$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6584}% +$ (\underline v\cdot \underline t)|_{e} \in \mathbb{P}_{k-1}(e)$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay6590}% +$\displaystyle \int_{e_+} \left((\underline N_+\cdot \underline t_+) + (\underline N_-\cdot \underline t_-)\right)\,\varphi \,ds\,, \qquad \forall\,\varphi \in\mathbb{P}_{k-1}(e) +$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6592}% +$ \int_{e_+}(\underline N_-\cdot \underline t_-)\,\varphi \,ds = -\int_{e_-}(\underline N_-\cdot \underline t_-)\,\varphi \,ds$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay6598}% +$\displaystyle \int_{e_+} (\underline N_+ \cdot \underline t_+)\varphi \,ds = \int_{\hat{e}_i} (\hat{\underline N}_i\cdot \hat{\underline t}_i)\hat{\varphi }\,d\hat{s} = 1 \qquad \textrm{and} \qquad \int_{e_-} (\underline N_- \cdot \underline t_-)\varphi \,ds = -\int_{\hat{e}_j} (\hat{\underline N}_j\cdot \hat{\underline t}_j)\hat{\varphi }\,d\hat{s} = -1\,.$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6602}% +$ \hat{\alpha}_j(\hat{\underline +v}) = \int_{\hat{e}_j} \hat{\underline v} \cdot \hat{\underline t}_j\,d\hat{s}$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6604}% +$ \hat{\alpha}_j(\hat{\underline N}_i) = \delta_{ij}$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay6606}% +$\displaystyle v_j = \hat{\alpha}_j(\hat{\underline v}) = (\hat{\underline N}_j \cdot \hat{\underline t})\,|\hat{e}_j| = ({\underline N}_j \cdot {\underline t}_j)\, |e_j|\,, +$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6608}% +$ \alpha_j(\underline v)$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6610}% +$ e_j$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6612}% +$ |e_j|\left(\underline v\cdot \underline t_j\right)|_e$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6615}% +$ \alpha^{[K]}$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6619}% +$ \underline t = \frac{|\hat{e}|}{|e|}\,(\hat{D}F)\,\hat{\underline t}$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6623}% +$ \tilde{\underline t} = (\hat{D}F)\,\hat{\underline t}$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +\stepcounter{subsection} +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6626}% +$ V_h \subset H(\mathop{\rm curl};\Omega )$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay6628}% +$\displaystyle \| \underline u - \Pi_h^k \underline u\|_{H(\mathop{\rm curl}; \Omega )} = C\,\inf_{w\in V_h}\| \underline u - \underline w\|_{H(\mathop{\rm curl}; \Omega )}\,, +$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6630}% +$ \Pi_h^k \underline u \in \mathcal{R}^k$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6632}% +$ \Pi_h^k \underline u \in \mathcal{P}^k$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6636}% +$ \alpha(\underline u) = \alpha(\Pi_h^k \underline u)$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6638}% +$ \alpha$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6640}% +$ \Pi_h^k$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6642}% +$ \underline v\in H^r(\mathop{\rm curl})$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6644}% +$ r>\frac{1}{2}$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6647}% +$ \mathcal{T}_h$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6649}% +$ h>0$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6655}% +$ C>0$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6657}% +$ r$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6659}% +$ h$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay6663}% +$\displaystyle \| \underline v - \Pi_h^k \underline v\|_{H(\mathop{\rm curl}; \Omega )} \leq C\,h^{\min\{r,k\}} \|\underline v\|_{H^r(\mathop{\rm curl};\Omega )}\,,$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6665}% +$ \underline v\in H^r(\mathop{\rm curl};\Omega )$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6675}% +$ \mathcal{O}(h^k)$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6677}% +$ [\mathbb{P}^{k-1}(K)]^d \subseteq \mathcal{R}^k(K)$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay6679}% +$\displaystyle \| \underline v - \Pi_h^k \underline v\|_{L^2(\Omega )} \leq C h^k |\underline v|_{H^k(\Omega )}\,.$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6681}% +$ [\mathbb{P}^{k-1}(K)]^d \subseteq \mathcal{R}^k(K) \subsetneq [\mathbb{P}^k(K)]^d$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6685}% +$ H^k(K)$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6687}% +$ \mathcal{R}^k(K)$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6691}% +$ \| \underline u - \underline u_h\|_{L^2(\Omega )}$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6696}% +$ s>\frac{1}{2}$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay6698}% +$\displaystyle \| \underline u - \underline u_h\|_{L^2(\Omega )} \leq C h^s \| \underline u - \underline u_h\|_{H(\mathop{\rm curl}; \Omega )}\,.$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6702}% +$ s=1$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6704}% +$ [\mathbb{P}_k]^d$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +\stepcounter{section} +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6711}% +$ \Omega = [-1,1]^d$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay6715}% +$\displaystyle c\equiv 1 \,, \qquad \underline f(x,y) = \left(\begin{array}{cc} 3 - y^2 \\ 3 - x^2 \end{array}\right)\,.$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay6717}% +$\displaystyle c\equiv 1 \,, \qquad \underline f(x,y) = (2\pi^2 + 1)\left(\begin{array}{cc} \cos\pi x\sin\pi y \\ -\sin\pi x\cos\pi y \end{array}\right)\,.$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6721}% +$ 2^5$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6723}% +$ 2^{13}$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6731}% +$ \mathcal{O}(h)$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6733}% +$ L^2$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6735}% +$ \#$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6818}% +$ H(\mathop{\rm curl};\Omega )$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlpictureA{tex2html_wrap4265}% +% latex2html id marker 4265 +\includegraphics[width=9.5cm, height=7cm]{example1_errors.eps}% +\lthtmlpictureZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline6830}% +$ H(\mathop{\rm curl};(\Omega ))$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlpictureA{tex2html_wrap4271}% +% latex2html id marker 4271 +\includegraphics[width=9.5cm, height=7cm]{example2_errors.eps}% +\lthtmlpictureZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlpictureA{tex2html_wrap4293}% +\includegraphics[width=5.5cm, height=5.5cm]{grid.eps}% +\lthtmlpictureZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay6913}% +$\displaystyle c\equiv 1 \,, \qquad \underline f(x,y,z) = \left(\begin{array}{ccc} xy(1 - y^2)(1-z^2) + 2xy(1-z^2) \\ y^2(1 - x^2)(1-z^2) + (1-y^2)(2-x^2-z^2) \\ yz(1 - x^2)(1-y^2) + 2yz(1-x^2) \end{array}\right)\,.$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlpictureA{tex2html_wrap4329}% +\includegraphics[width=9.5cm, height=7cm]{field1.eps}% +\lthtmlpictureZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlpictureA{tex2html_wrap4335}% +\includegraphics[width=9.5cm, height=7cm]{field2.eps}% +\lthtmlpictureZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline7106}% +$ \mathbb{R}^3$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +\appendix +\stepcounter{section} +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline7119}% +$ \mathbb{R}^2$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline7121}% +$ \varphi (x,y)$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline7125}% +$ c>0$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline7127}% +$ w$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmldisplayA{displaymath7129}% +\begin{displaymath}\begin{split} -\Delta w + c\, w &= \varphi \quad \mathrm{in} \quad \Omega \\ \underline n \cdot \nabla w &= 0 \quad \mathrm{on} \quad \partial \Omega \,. \end{split}\end{displaymath}% +\lthtmldisplayZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline7131}% +$ \underline E := \nabla^{\perp} w$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmldisplayA{displaymath7133}% +\begin{displaymath}\begin{split} \underline \mathop{\rm curl}\mathop{\rm curl}\underline E + c\, \underline E = \underline f \quad \mathrm{in} \quad \Omega \,, \\ \underline E \wedge \underline n = 0 \quad \mathrm{on} \quad \partial \Omega \,, \end{split}\end{displaymath}% +\lthtmldisplayZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline7135}% +$ \underline f := \nabla^{\perp} \varphi $% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline7137}% +$ \nabla^{\perp} \varphi := \boldsymbol{R}\nabla\varphi = \left(\begin{array}{cc} \partial _y\varphi \\ -\partial _x\varphi +\end{array}\right)$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay7141}% +$\displaystyle \underline E \wedge \underline n = \underline E \cdot \underline t = {\nabla w}^T \boldsymbol{R}^T\boldsymbol{R}\, \underline n = \nabla w \cdot \underline n \,. +$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline7143}% +$ \underline E$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline7147}% +$ \nabla\cdot\nabla^{\perp}w = 0$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline7151}% +$ \underline \mathop{\rm curl}\mathop{\rm curl}\underline E = \nabla(\nabla\cdot\underline E) - \Delta\underline E$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline7153}% +$ \underline \mathop{\rm curl}\mathop{\rm curl}\underline E = - \Delta\underline E$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline7155}% +$ \nabla^{\perp}w$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline7157}% +$ \nabla^{\perp} \varphi $% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmldisplayA{displaymath7162}% +\begin{displaymath}\begin{split} -\Delta w &= \lambda \, w \quad \mathrm{in} \quad \Omega \\ \underline n \cdot \nabla w &= 0 \quad \mathrm{on} \quad \partial \Omega \,, \end{split}\end{displaymath}% +\lthtmldisplayZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline7164}% +$ \varphi = (\lambda + c)\,w$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline7166}% +$ \Omega = [-1,1]^2$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline7168}% +$ \lambda = 2\pi^2$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline7170}% +$ w = \cos\pi x\cos\pi y$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay7172}% +$\displaystyle \underline f = (2\pi^2 + c)\pi \left(\begin{array}{cc} \cos\pi x\sin\pi y \\ -\sin\pi x\cos\pi y \end{array}\right)\,, \qquad +\underline E = \pi \left(\begin{array}{cc} \cos\pi x\sin\pi y \\ -\sin\pi x\cos\pi y \end{array}\right)\,. +$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline7179}% +$ w(x,y) = (1-x^2)^2(1-y^2)^2$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline7181}% +$ \underline n \cdot \nabla w = 0$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline7183}% +$ \partial [-1,1]^2$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline7185}% +$ \varphi = -\Delta w + c w$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +\appendix +\stepcounter{section} +{\newpage\clearpage +\lthtmldisplayA{displaymath7188}% +\begin{displaymath}\begin{split} \varepsilon \frac{\partial \mathcal{E}}{\partial t} & = \mathop{\rm curl}\mathcal{H} - \sigma \mathcal{E} \,, \\ \mu \frac{\partial \mathcal{H}}{\partial t} & = -\mathop{\rm curl}\mathcal{E}\,, \end{split}\end{displaymath}% +\lthtmldisplayZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline7190}% +$ \mathcal{E}$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline7192}% +$ \mathcal{H}$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline7194}% +$ \varepsilon (x), \mu(x)$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline7196}% +$ \sigma(x)$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline7202}% +$ L^{\infty}(\Omega )^{d\times d}$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline7204}% +$ \varepsilon (x)$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline7206}% +$ \mu(x)$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline7211}% +$ \mathcal{E}(x,t)$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline7213}% +$ \mathcal{H}(x,t)$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmldisplayA{displaymath7215}% +\begin{displaymath}\begin{split} \mathcal{E}(x,t) &= \mathrm{Re} \left(E(x) \exp(i\omega t)\right) \,, \\ \mathcal{H}(x,t) &= \mathrm{Re} \left(H(x) \exp(i\omega t)\right) \,. \end{split}\end{displaymath}% +\lthtmldisplayZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline7217}% +$ E(x), H(x)$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline7219}% +$ \omega\neq 0$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline7222}% +$ E(x) \exp(i\omega t)$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline7224}% +$ H(x) \exp(i\omega t)$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline7226}% +$ H(x)$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay7228}% +$\displaystyle \mathop{\rm curl}(\mu^{-1} \mathop{\rm curl}E) - \omega^2\varepsilon E + i\omega\sigma E = 0 +$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline7230}% +$ |\omega|$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay7232}% +$\displaystyle \omega^2\varepsilon \ll \mu^{-1} \,,\quad \omega^2\varepsilon \ll \omega\sigma \,. +$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline7234}% +$ \omega^2\varepsilon E(x)$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay7236}% +$\displaystyle \mathop{\rm curl}(\mu^{-1} \mathop{\rm curl}E) + i\omega\sigma E = 0 +$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_indisplay7242}% +$\displaystyle E \wedge n = \Phi \quad \mathrm{on} \quad \partial \Omega \,.$% +\lthtmlindisplaymathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline7244}% +$ \tilde{E}$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmlinlinemathA{tex2html_wrap_inline7246}% +$ \underline u = E - \tilde{E}$% +\lthtmlinlinemathZ +\lthtmlcheckvsize\clearpage} + +{\newpage\clearpage +\lthtmldisplayA{displaymath7248}% +\begin{displaymath}\begin{split} \mathop{\rm curl}(\mu^{-1} \mathop{\rm curl}u) + i\omega\sigma u &= F \quad \mathrm{in} \quad \Omega \,, \\ u \wedge n &= 0 \quad \mathrm{on} \quad \partial \Omega \,. \end{split}\end{displaymath}% +\lthtmldisplayZ +\lthtmlcheckvsize\clearpage} + + +\end{document} diff --git a/deal.II/doc/reports/nedelec/img1.gif b/deal.II/doc/reports/nedelec/img1.gif new file mode 100644 index 0000000000..6cbf0cfcb4 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img1.gif differ diff --git a/deal.II/doc/reports/nedelec/img10.gif b/deal.II/doc/reports/nedelec/img10.gif new file mode 100644 index 0000000000..8271ff5bd8 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img10.gif differ diff --git a/deal.II/doc/reports/nedelec/img100.gif b/deal.II/doc/reports/nedelec/img100.gif new file mode 100644 index 0000000000..b6a7230797 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img100.gif differ diff --git a/deal.II/doc/reports/nedelec/img101.gif b/deal.II/doc/reports/nedelec/img101.gif new file mode 100644 index 0000000000..7ca04de180 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img101.gif differ diff --git a/deal.II/doc/reports/nedelec/img102.gif b/deal.II/doc/reports/nedelec/img102.gif new file mode 100644 index 0000000000..6945631375 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img102.gif differ diff --git a/deal.II/doc/reports/nedelec/img103.gif b/deal.II/doc/reports/nedelec/img103.gif new file mode 100644 index 0000000000..8c5d203316 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img103.gif differ diff --git a/deal.II/doc/reports/nedelec/img104.gif b/deal.II/doc/reports/nedelec/img104.gif new file mode 100644 index 0000000000..50687199db Binary files /dev/null and b/deal.II/doc/reports/nedelec/img104.gif differ diff --git a/deal.II/doc/reports/nedelec/img105.gif b/deal.II/doc/reports/nedelec/img105.gif new file mode 100644 index 0000000000..18540a369e Binary files /dev/null and b/deal.II/doc/reports/nedelec/img105.gif differ diff --git a/deal.II/doc/reports/nedelec/img106.gif b/deal.II/doc/reports/nedelec/img106.gif new file mode 100644 index 0000000000..b2aa890847 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img106.gif differ diff --git a/deal.II/doc/reports/nedelec/img107.gif b/deal.II/doc/reports/nedelec/img107.gif new file mode 100644 index 0000000000..7efd6d8e20 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img107.gif differ diff --git a/deal.II/doc/reports/nedelec/img108.gif b/deal.II/doc/reports/nedelec/img108.gif new file mode 100644 index 0000000000..7bded2474b Binary files /dev/null and b/deal.II/doc/reports/nedelec/img108.gif differ diff --git a/deal.II/doc/reports/nedelec/img109.gif b/deal.II/doc/reports/nedelec/img109.gif new file mode 100644 index 0000000000..9427885c8d Binary files /dev/null and b/deal.II/doc/reports/nedelec/img109.gif differ diff --git a/deal.II/doc/reports/nedelec/img11.gif b/deal.II/doc/reports/nedelec/img11.gif new file mode 100644 index 0000000000..bafbfc0320 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img11.gif differ diff --git a/deal.II/doc/reports/nedelec/img110.gif b/deal.II/doc/reports/nedelec/img110.gif new file mode 100644 index 0000000000..c496f94593 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img110.gif differ diff --git a/deal.II/doc/reports/nedelec/img111.gif b/deal.II/doc/reports/nedelec/img111.gif new file mode 100644 index 0000000000..fcd2adb17b Binary files /dev/null and b/deal.II/doc/reports/nedelec/img111.gif differ diff --git a/deal.II/doc/reports/nedelec/img112.gif b/deal.II/doc/reports/nedelec/img112.gif new file mode 100644 index 0000000000..72d9586a11 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img112.gif differ diff --git a/deal.II/doc/reports/nedelec/img113.gif b/deal.II/doc/reports/nedelec/img113.gif new file mode 100644 index 0000000000..ccf93f0570 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img113.gif differ diff --git a/deal.II/doc/reports/nedelec/img114.gif b/deal.II/doc/reports/nedelec/img114.gif new file mode 100644 index 0000000000..45ff3facb6 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img114.gif differ diff --git a/deal.II/doc/reports/nedelec/img115.gif b/deal.II/doc/reports/nedelec/img115.gif new file mode 100644 index 0000000000..6e8ad923b7 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img115.gif differ diff --git a/deal.II/doc/reports/nedelec/img116.gif b/deal.II/doc/reports/nedelec/img116.gif new file mode 100644 index 0000000000..06fa7a66e5 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img116.gif differ diff --git a/deal.II/doc/reports/nedelec/img117.gif b/deal.II/doc/reports/nedelec/img117.gif new file mode 100644 index 0000000000..6146a63e15 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img117.gif differ diff --git a/deal.II/doc/reports/nedelec/img118.gif b/deal.II/doc/reports/nedelec/img118.gif new file mode 100644 index 0000000000..195efbdbc8 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img118.gif differ diff --git a/deal.II/doc/reports/nedelec/img119.gif b/deal.II/doc/reports/nedelec/img119.gif new file mode 100644 index 0000000000..7e89b2ebd4 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img119.gif differ diff --git a/deal.II/doc/reports/nedelec/img12.gif b/deal.II/doc/reports/nedelec/img12.gif new file mode 100644 index 0000000000..1345d64c2a Binary files /dev/null and b/deal.II/doc/reports/nedelec/img12.gif differ diff --git a/deal.II/doc/reports/nedelec/img120.gif b/deal.II/doc/reports/nedelec/img120.gif new file mode 100644 index 0000000000..32eb0f9782 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img120.gif differ diff --git a/deal.II/doc/reports/nedelec/img121.gif b/deal.II/doc/reports/nedelec/img121.gif new file mode 100644 index 0000000000..53382ad9a0 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img121.gif differ diff --git a/deal.II/doc/reports/nedelec/img122.gif b/deal.II/doc/reports/nedelec/img122.gif new file mode 100644 index 0000000000..9ad1c1c0c7 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img122.gif differ diff --git a/deal.II/doc/reports/nedelec/img123.gif b/deal.II/doc/reports/nedelec/img123.gif new file mode 100644 index 0000000000..7d478221a3 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img123.gif differ diff --git a/deal.II/doc/reports/nedelec/img124.gif b/deal.II/doc/reports/nedelec/img124.gif new file mode 100644 index 0000000000..ba1bcd3787 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img124.gif differ diff --git a/deal.II/doc/reports/nedelec/img125.gif b/deal.II/doc/reports/nedelec/img125.gif new file mode 100644 index 0000000000..f7a1476817 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img125.gif differ diff --git a/deal.II/doc/reports/nedelec/img126.gif b/deal.II/doc/reports/nedelec/img126.gif new file mode 100644 index 0000000000..2a762682ad Binary files /dev/null and b/deal.II/doc/reports/nedelec/img126.gif differ diff --git a/deal.II/doc/reports/nedelec/img127.gif b/deal.II/doc/reports/nedelec/img127.gif new file mode 100644 index 0000000000..5ffce91f0f Binary files /dev/null and b/deal.II/doc/reports/nedelec/img127.gif differ diff --git a/deal.II/doc/reports/nedelec/img128.gif b/deal.II/doc/reports/nedelec/img128.gif new file mode 100644 index 0000000000..eabe506922 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img128.gif differ diff --git a/deal.II/doc/reports/nedelec/img129.gif b/deal.II/doc/reports/nedelec/img129.gif new file mode 100644 index 0000000000..3c4eab3337 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img129.gif differ diff --git a/deal.II/doc/reports/nedelec/img13.gif b/deal.II/doc/reports/nedelec/img13.gif new file mode 100644 index 0000000000..0998cdb003 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img13.gif differ diff --git a/deal.II/doc/reports/nedelec/img130.gif b/deal.II/doc/reports/nedelec/img130.gif new file mode 100644 index 0000000000..87a2265547 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img130.gif differ diff --git a/deal.II/doc/reports/nedelec/img131.gif b/deal.II/doc/reports/nedelec/img131.gif new file mode 100644 index 0000000000..4997e55db8 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img131.gif differ diff --git a/deal.II/doc/reports/nedelec/img132.gif b/deal.II/doc/reports/nedelec/img132.gif new file mode 100644 index 0000000000..7ad2aa25b9 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img132.gif differ diff --git a/deal.II/doc/reports/nedelec/img133.gif b/deal.II/doc/reports/nedelec/img133.gif new file mode 100644 index 0000000000..fb50c68906 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img133.gif differ diff --git a/deal.II/doc/reports/nedelec/img134.gif b/deal.II/doc/reports/nedelec/img134.gif new file mode 100644 index 0000000000..f6a45a8dc7 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img134.gif differ diff --git a/deal.II/doc/reports/nedelec/img135.gif b/deal.II/doc/reports/nedelec/img135.gif new file mode 100644 index 0000000000..42d33b7e4d Binary files /dev/null and b/deal.II/doc/reports/nedelec/img135.gif differ diff --git a/deal.II/doc/reports/nedelec/img136.gif b/deal.II/doc/reports/nedelec/img136.gif new file mode 100644 index 0000000000..4d36f6f958 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img136.gif differ diff --git a/deal.II/doc/reports/nedelec/img137.gif b/deal.II/doc/reports/nedelec/img137.gif new file mode 100644 index 0000000000..23c3dbadbb Binary files /dev/null and b/deal.II/doc/reports/nedelec/img137.gif differ diff --git a/deal.II/doc/reports/nedelec/img138.gif b/deal.II/doc/reports/nedelec/img138.gif new file mode 100644 index 0000000000..67be493ccc Binary files /dev/null and b/deal.II/doc/reports/nedelec/img138.gif differ diff --git a/deal.II/doc/reports/nedelec/img139.gif b/deal.II/doc/reports/nedelec/img139.gif new file mode 100644 index 0000000000..362b81e11f Binary files /dev/null and b/deal.II/doc/reports/nedelec/img139.gif differ diff --git a/deal.II/doc/reports/nedelec/img14.gif b/deal.II/doc/reports/nedelec/img14.gif new file mode 100644 index 0000000000..a22ecf9623 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img14.gif differ diff --git a/deal.II/doc/reports/nedelec/img140.gif b/deal.II/doc/reports/nedelec/img140.gif new file mode 100644 index 0000000000..3f2ee26bbb Binary files /dev/null and b/deal.II/doc/reports/nedelec/img140.gif differ diff --git a/deal.II/doc/reports/nedelec/img141.gif b/deal.II/doc/reports/nedelec/img141.gif new file mode 100644 index 0000000000..459e9b3eda Binary files /dev/null and b/deal.II/doc/reports/nedelec/img141.gif differ diff --git a/deal.II/doc/reports/nedelec/img142.gif b/deal.II/doc/reports/nedelec/img142.gif new file mode 100644 index 0000000000..58c7976e1a Binary files /dev/null and b/deal.II/doc/reports/nedelec/img142.gif differ diff --git a/deal.II/doc/reports/nedelec/img143.gif b/deal.II/doc/reports/nedelec/img143.gif new file mode 100644 index 0000000000..5ef586ab79 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img143.gif differ diff --git a/deal.II/doc/reports/nedelec/img144.gif b/deal.II/doc/reports/nedelec/img144.gif new file mode 100644 index 0000000000..7314d5af45 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img144.gif differ diff --git a/deal.II/doc/reports/nedelec/img145.gif b/deal.II/doc/reports/nedelec/img145.gif new file mode 100644 index 0000000000..8c30aed733 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img145.gif differ diff --git a/deal.II/doc/reports/nedelec/img146.gif b/deal.II/doc/reports/nedelec/img146.gif new file mode 100644 index 0000000000..4285ae8b73 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img146.gif differ diff --git a/deal.II/doc/reports/nedelec/img147.gif b/deal.II/doc/reports/nedelec/img147.gif new file mode 100644 index 0000000000..a9a8ef7cd4 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img147.gif differ diff --git a/deal.II/doc/reports/nedelec/img148.gif b/deal.II/doc/reports/nedelec/img148.gif new file mode 100644 index 0000000000..851a316b33 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img148.gif differ diff --git a/deal.II/doc/reports/nedelec/img149.gif b/deal.II/doc/reports/nedelec/img149.gif new file mode 100644 index 0000000000..3168a1496d Binary files /dev/null and b/deal.II/doc/reports/nedelec/img149.gif differ diff --git a/deal.II/doc/reports/nedelec/img15.gif b/deal.II/doc/reports/nedelec/img15.gif new file mode 100644 index 0000000000..76e1d31792 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img15.gif differ diff --git a/deal.II/doc/reports/nedelec/img150.gif b/deal.II/doc/reports/nedelec/img150.gif new file mode 100644 index 0000000000..436b1543cf Binary files /dev/null and b/deal.II/doc/reports/nedelec/img150.gif differ diff --git a/deal.II/doc/reports/nedelec/img151.gif b/deal.II/doc/reports/nedelec/img151.gif new file mode 100644 index 0000000000..bd7d29b51a Binary files /dev/null and b/deal.II/doc/reports/nedelec/img151.gif differ diff --git a/deal.II/doc/reports/nedelec/img152.gif b/deal.II/doc/reports/nedelec/img152.gif new file mode 100644 index 0000000000..b9f63c93ec Binary files /dev/null and b/deal.II/doc/reports/nedelec/img152.gif differ diff --git a/deal.II/doc/reports/nedelec/img153.gif b/deal.II/doc/reports/nedelec/img153.gif new file mode 100644 index 0000000000..65c5b9e3f5 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img153.gif differ diff --git a/deal.II/doc/reports/nedelec/img154.gif b/deal.II/doc/reports/nedelec/img154.gif new file mode 100644 index 0000000000..b3a07ffa6f Binary files /dev/null and b/deal.II/doc/reports/nedelec/img154.gif differ diff --git a/deal.II/doc/reports/nedelec/img155.gif b/deal.II/doc/reports/nedelec/img155.gif new file mode 100644 index 0000000000..538b74d70a Binary files /dev/null and b/deal.II/doc/reports/nedelec/img155.gif differ diff --git a/deal.II/doc/reports/nedelec/img156.gif b/deal.II/doc/reports/nedelec/img156.gif new file mode 100644 index 0000000000..97fe926b42 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img156.gif differ diff --git a/deal.II/doc/reports/nedelec/img157.gif b/deal.II/doc/reports/nedelec/img157.gif new file mode 100644 index 0000000000..e4cd862daf Binary files /dev/null and b/deal.II/doc/reports/nedelec/img157.gif differ diff --git a/deal.II/doc/reports/nedelec/img158.gif b/deal.II/doc/reports/nedelec/img158.gif new file mode 100644 index 0000000000..25a9bbe599 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img158.gif differ diff --git a/deal.II/doc/reports/nedelec/img159.gif b/deal.II/doc/reports/nedelec/img159.gif new file mode 100644 index 0000000000..0ab5524b40 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img159.gif differ diff --git a/deal.II/doc/reports/nedelec/img16.gif b/deal.II/doc/reports/nedelec/img16.gif new file mode 100644 index 0000000000..cc59f0fdfa Binary files /dev/null and b/deal.II/doc/reports/nedelec/img16.gif differ diff --git a/deal.II/doc/reports/nedelec/img160.gif b/deal.II/doc/reports/nedelec/img160.gif new file mode 100644 index 0000000000..fbafab03a0 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img160.gif differ diff --git a/deal.II/doc/reports/nedelec/img161.gif b/deal.II/doc/reports/nedelec/img161.gif new file mode 100644 index 0000000000..1f6e6974fc Binary files /dev/null and b/deal.II/doc/reports/nedelec/img161.gif differ diff --git a/deal.II/doc/reports/nedelec/img162.gif b/deal.II/doc/reports/nedelec/img162.gif new file mode 100644 index 0000000000..0390d9c321 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img162.gif differ diff --git a/deal.II/doc/reports/nedelec/img163.gif b/deal.II/doc/reports/nedelec/img163.gif new file mode 100644 index 0000000000..d79ddb5821 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img163.gif differ diff --git a/deal.II/doc/reports/nedelec/img164.gif b/deal.II/doc/reports/nedelec/img164.gif new file mode 100644 index 0000000000..648e0284d2 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img164.gif differ diff --git a/deal.II/doc/reports/nedelec/img165.gif b/deal.II/doc/reports/nedelec/img165.gif new file mode 100644 index 0000000000..575a3039ff Binary files /dev/null and b/deal.II/doc/reports/nedelec/img165.gif differ diff --git a/deal.II/doc/reports/nedelec/img166.gif b/deal.II/doc/reports/nedelec/img166.gif new file mode 100644 index 0000000000..a762bb2f20 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img166.gif differ diff --git a/deal.II/doc/reports/nedelec/img167.gif b/deal.II/doc/reports/nedelec/img167.gif new file mode 100644 index 0000000000..8855254acb Binary files /dev/null and b/deal.II/doc/reports/nedelec/img167.gif differ diff --git a/deal.II/doc/reports/nedelec/img168.gif b/deal.II/doc/reports/nedelec/img168.gif new file mode 100644 index 0000000000..89a81373af Binary files /dev/null and b/deal.II/doc/reports/nedelec/img168.gif differ diff --git a/deal.II/doc/reports/nedelec/img169.gif b/deal.II/doc/reports/nedelec/img169.gif new file mode 100644 index 0000000000..f9a68737c1 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img169.gif differ diff --git a/deal.II/doc/reports/nedelec/img17.gif b/deal.II/doc/reports/nedelec/img17.gif new file mode 100644 index 0000000000..5d848f28aa Binary files /dev/null and b/deal.II/doc/reports/nedelec/img17.gif differ diff --git a/deal.II/doc/reports/nedelec/img170.gif b/deal.II/doc/reports/nedelec/img170.gif new file mode 100644 index 0000000000..f5da41fc1f Binary files /dev/null and b/deal.II/doc/reports/nedelec/img170.gif differ diff --git a/deal.II/doc/reports/nedelec/img171.gif b/deal.II/doc/reports/nedelec/img171.gif new file mode 100644 index 0000000000..0f68ec5d87 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img171.gif differ diff --git a/deal.II/doc/reports/nedelec/img172.gif b/deal.II/doc/reports/nedelec/img172.gif new file mode 100644 index 0000000000..5754bff23c Binary files /dev/null and b/deal.II/doc/reports/nedelec/img172.gif differ diff --git a/deal.II/doc/reports/nedelec/img173.gif b/deal.II/doc/reports/nedelec/img173.gif new file mode 100644 index 0000000000..5d113d2521 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img173.gif differ diff --git a/deal.II/doc/reports/nedelec/img174.gif b/deal.II/doc/reports/nedelec/img174.gif new file mode 100644 index 0000000000..40d2fe4cac Binary files /dev/null and b/deal.II/doc/reports/nedelec/img174.gif differ diff --git a/deal.II/doc/reports/nedelec/img175.gif b/deal.II/doc/reports/nedelec/img175.gif new file mode 100644 index 0000000000..a17d2bc32a Binary files /dev/null and b/deal.II/doc/reports/nedelec/img175.gif differ diff --git a/deal.II/doc/reports/nedelec/img176.gif b/deal.II/doc/reports/nedelec/img176.gif new file mode 100644 index 0000000000..331bd92849 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img176.gif differ diff --git a/deal.II/doc/reports/nedelec/img177.gif b/deal.II/doc/reports/nedelec/img177.gif new file mode 100644 index 0000000000..765027a9c4 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img177.gif differ diff --git a/deal.II/doc/reports/nedelec/img178.gif b/deal.II/doc/reports/nedelec/img178.gif new file mode 100644 index 0000000000..c8d977a00a Binary files /dev/null and b/deal.II/doc/reports/nedelec/img178.gif differ diff --git a/deal.II/doc/reports/nedelec/img179.gif b/deal.II/doc/reports/nedelec/img179.gif new file mode 100644 index 0000000000..4841921a84 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img179.gif differ diff --git a/deal.II/doc/reports/nedelec/img18.gif b/deal.II/doc/reports/nedelec/img18.gif new file mode 100644 index 0000000000..6c2cd980f5 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img18.gif differ diff --git a/deal.II/doc/reports/nedelec/img180.gif b/deal.II/doc/reports/nedelec/img180.gif new file mode 100644 index 0000000000..62f68219b2 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img180.gif differ diff --git a/deal.II/doc/reports/nedelec/img181.gif b/deal.II/doc/reports/nedelec/img181.gif new file mode 100644 index 0000000000..fe54c8383c Binary files /dev/null and b/deal.II/doc/reports/nedelec/img181.gif differ diff --git a/deal.II/doc/reports/nedelec/img182.gif b/deal.II/doc/reports/nedelec/img182.gif new file mode 100644 index 0000000000..0741dc6f4c Binary files /dev/null and b/deal.II/doc/reports/nedelec/img182.gif differ diff --git a/deal.II/doc/reports/nedelec/img183.gif b/deal.II/doc/reports/nedelec/img183.gif new file mode 100644 index 0000000000..55ddc4d69c Binary files /dev/null and b/deal.II/doc/reports/nedelec/img183.gif differ diff --git a/deal.II/doc/reports/nedelec/img184.gif b/deal.II/doc/reports/nedelec/img184.gif new file mode 100644 index 0000000000..1bff6cb1b1 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img184.gif differ diff --git a/deal.II/doc/reports/nedelec/img185.gif b/deal.II/doc/reports/nedelec/img185.gif new file mode 100644 index 0000000000..f08a3d5069 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img185.gif differ diff --git a/deal.II/doc/reports/nedelec/img186.gif b/deal.II/doc/reports/nedelec/img186.gif new file mode 100644 index 0000000000..c0e8094600 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img186.gif differ diff --git a/deal.II/doc/reports/nedelec/img187.gif b/deal.II/doc/reports/nedelec/img187.gif new file mode 100644 index 0000000000..88180d0c6a Binary files /dev/null and b/deal.II/doc/reports/nedelec/img187.gif differ diff --git a/deal.II/doc/reports/nedelec/img188.gif b/deal.II/doc/reports/nedelec/img188.gif new file mode 100644 index 0000000000..a01cf02e6f Binary files /dev/null and b/deal.II/doc/reports/nedelec/img188.gif differ diff --git a/deal.II/doc/reports/nedelec/img189.gif b/deal.II/doc/reports/nedelec/img189.gif new file mode 100644 index 0000000000..819d3d6587 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img189.gif differ diff --git a/deal.II/doc/reports/nedelec/img19.gif b/deal.II/doc/reports/nedelec/img19.gif new file mode 100644 index 0000000000..5bc2b33b91 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img19.gif differ diff --git a/deal.II/doc/reports/nedelec/img190.gif b/deal.II/doc/reports/nedelec/img190.gif new file mode 100644 index 0000000000..0f7af34ab6 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img190.gif differ diff --git a/deal.II/doc/reports/nedelec/img191.gif b/deal.II/doc/reports/nedelec/img191.gif new file mode 100644 index 0000000000..83a2063644 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img191.gif differ diff --git a/deal.II/doc/reports/nedelec/img192.gif b/deal.II/doc/reports/nedelec/img192.gif new file mode 100644 index 0000000000..11c49c21a3 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img192.gif differ diff --git a/deal.II/doc/reports/nedelec/img193.gif b/deal.II/doc/reports/nedelec/img193.gif new file mode 100644 index 0000000000..3d34d7a56c Binary files /dev/null and b/deal.II/doc/reports/nedelec/img193.gif differ diff --git a/deal.II/doc/reports/nedelec/img194.gif b/deal.II/doc/reports/nedelec/img194.gif new file mode 100644 index 0000000000..3c4b338e4e Binary files /dev/null and b/deal.II/doc/reports/nedelec/img194.gif differ diff --git a/deal.II/doc/reports/nedelec/img195.gif b/deal.II/doc/reports/nedelec/img195.gif new file mode 100644 index 0000000000..581aadf7b9 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img195.gif differ diff --git a/deal.II/doc/reports/nedelec/img196.gif b/deal.II/doc/reports/nedelec/img196.gif new file mode 100644 index 0000000000..a0a5590c0c Binary files /dev/null and b/deal.II/doc/reports/nedelec/img196.gif differ diff --git a/deal.II/doc/reports/nedelec/img197.gif b/deal.II/doc/reports/nedelec/img197.gif new file mode 100644 index 0000000000..ee6e0cd26e Binary files /dev/null and b/deal.II/doc/reports/nedelec/img197.gif differ diff --git a/deal.II/doc/reports/nedelec/img198.gif b/deal.II/doc/reports/nedelec/img198.gif new file mode 100644 index 0000000000..63e329c668 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img198.gif differ diff --git a/deal.II/doc/reports/nedelec/img199.gif b/deal.II/doc/reports/nedelec/img199.gif new file mode 100644 index 0000000000..e59e44717a Binary files /dev/null and b/deal.II/doc/reports/nedelec/img199.gif differ diff --git a/deal.II/doc/reports/nedelec/img2.gif b/deal.II/doc/reports/nedelec/img2.gif new file mode 100644 index 0000000000..c4e0711248 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img2.gif differ diff --git a/deal.II/doc/reports/nedelec/img20.gif b/deal.II/doc/reports/nedelec/img20.gif new file mode 100644 index 0000000000..ef4b409309 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img20.gif differ diff --git a/deal.II/doc/reports/nedelec/img200.gif b/deal.II/doc/reports/nedelec/img200.gif new file mode 100644 index 0000000000..93a135f355 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img200.gif differ diff --git a/deal.II/doc/reports/nedelec/img201.gif b/deal.II/doc/reports/nedelec/img201.gif new file mode 100644 index 0000000000..bfc12ea01d Binary files /dev/null and b/deal.II/doc/reports/nedelec/img201.gif differ diff --git a/deal.II/doc/reports/nedelec/img202.gif b/deal.II/doc/reports/nedelec/img202.gif new file mode 100644 index 0000000000..614c328824 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img202.gif differ diff --git a/deal.II/doc/reports/nedelec/img203.gif b/deal.II/doc/reports/nedelec/img203.gif new file mode 100644 index 0000000000..0a2e4f4406 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img203.gif differ diff --git a/deal.II/doc/reports/nedelec/img204.gif b/deal.II/doc/reports/nedelec/img204.gif new file mode 100644 index 0000000000..165606a792 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img204.gif differ diff --git a/deal.II/doc/reports/nedelec/img205.gif b/deal.II/doc/reports/nedelec/img205.gif new file mode 100644 index 0000000000..807ead1ec4 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img205.gif differ diff --git a/deal.II/doc/reports/nedelec/img206.gif b/deal.II/doc/reports/nedelec/img206.gif new file mode 100644 index 0000000000..71563ed160 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img206.gif differ diff --git a/deal.II/doc/reports/nedelec/img207.gif b/deal.II/doc/reports/nedelec/img207.gif new file mode 100644 index 0000000000..9120e260e2 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img207.gif differ diff --git a/deal.II/doc/reports/nedelec/img208.gif b/deal.II/doc/reports/nedelec/img208.gif new file mode 100644 index 0000000000..3903d3a306 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img208.gif differ diff --git a/deal.II/doc/reports/nedelec/img209.gif b/deal.II/doc/reports/nedelec/img209.gif new file mode 100644 index 0000000000..dc27688d48 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img209.gif differ diff --git a/deal.II/doc/reports/nedelec/img21.gif b/deal.II/doc/reports/nedelec/img21.gif new file mode 100644 index 0000000000..33ee15e01f Binary files /dev/null and b/deal.II/doc/reports/nedelec/img21.gif differ diff --git a/deal.II/doc/reports/nedelec/img210.gif b/deal.II/doc/reports/nedelec/img210.gif new file mode 100644 index 0000000000..4b5848b16a Binary files /dev/null and b/deal.II/doc/reports/nedelec/img210.gif differ diff --git a/deal.II/doc/reports/nedelec/img211.gif b/deal.II/doc/reports/nedelec/img211.gif new file mode 100644 index 0000000000..43716a20b2 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img211.gif differ diff --git a/deal.II/doc/reports/nedelec/img212.gif b/deal.II/doc/reports/nedelec/img212.gif new file mode 100644 index 0000000000..a8f212aaa1 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img212.gif differ diff --git a/deal.II/doc/reports/nedelec/img213.gif b/deal.II/doc/reports/nedelec/img213.gif new file mode 100644 index 0000000000..b61c949038 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img213.gif differ diff --git a/deal.II/doc/reports/nedelec/img214.gif b/deal.II/doc/reports/nedelec/img214.gif new file mode 100644 index 0000000000..f5c23362e7 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img214.gif differ diff --git a/deal.II/doc/reports/nedelec/img215.gif b/deal.II/doc/reports/nedelec/img215.gif new file mode 100644 index 0000000000..a768e4d3cc Binary files /dev/null and b/deal.II/doc/reports/nedelec/img215.gif differ diff --git a/deal.II/doc/reports/nedelec/img216.gif b/deal.II/doc/reports/nedelec/img216.gif new file mode 100644 index 0000000000..3a0fd6e3ab Binary files /dev/null and b/deal.II/doc/reports/nedelec/img216.gif differ diff --git a/deal.II/doc/reports/nedelec/img217.gif b/deal.II/doc/reports/nedelec/img217.gif new file mode 100644 index 0000000000..b2944b8ff7 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img217.gif differ diff --git a/deal.II/doc/reports/nedelec/img218.gif b/deal.II/doc/reports/nedelec/img218.gif new file mode 100644 index 0000000000..26a145cd1b Binary files /dev/null and b/deal.II/doc/reports/nedelec/img218.gif differ diff --git a/deal.II/doc/reports/nedelec/img219.gif b/deal.II/doc/reports/nedelec/img219.gif new file mode 100644 index 0000000000..fe81f803a5 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img219.gif differ diff --git a/deal.II/doc/reports/nedelec/img22.gif b/deal.II/doc/reports/nedelec/img22.gif new file mode 100644 index 0000000000..4ba365c4c2 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img22.gif differ diff --git a/deal.II/doc/reports/nedelec/img220.gif b/deal.II/doc/reports/nedelec/img220.gif new file mode 100644 index 0000000000..bc8026d551 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img220.gif differ diff --git a/deal.II/doc/reports/nedelec/img221.gif b/deal.II/doc/reports/nedelec/img221.gif new file mode 100644 index 0000000000..73605a1e14 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img221.gif differ diff --git a/deal.II/doc/reports/nedelec/img222.gif b/deal.II/doc/reports/nedelec/img222.gif new file mode 100644 index 0000000000..3f10d3313a Binary files /dev/null and b/deal.II/doc/reports/nedelec/img222.gif differ diff --git a/deal.II/doc/reports/nedelec/img223.gif b/deal.II/doc/reports/nedelec/img223.gif new file mode 100644 index 0000000000..cd19761538 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img223.gif differ diff --git a/deal.II/doc/reports/nedelec/img224.gif b/deal.II/doc/reports/nedelec/img224.gif new file mode 100644 index 0000000000..20de769e5e Binary files /dev/null and b/deal.II/doc/reports/nedelec/img224.gif differ diff --git a/deal.II/doc/reports/nedelec/img225.gif b/deal.II/doc/reports/nedelec/img225.gif new file mode 100644 index 0000000000..7e82a54dfa Binary files /dev/null and b/deal.II/doc/reports/nedelec/img225.gif differ diff --git a/deal.II/doc/reports/nedelec/img226.gif b/deal.II/doc/reports/nedelec/img226.gif new file mode 100644 index 0000000000..fd7880fa2d Binary files /dev/null and b/deal.II/doc/reports/nedelec/img226.gif differ diff --git a/deal.II/doc/reports/nedelec/img227.gif b/deal.II/doc/reports/nedelec/img227.gif new file mode 100644 index 0000000000..427fce475f Binary files /dev/null and b/deal.II/doc/reports/nedelec/img227.gif differ diff --git a/deal.II/doc/reports/nedelec/img228.gif b/deal.II/doc/reports/nedelec/img228.gif new file mode 100644 index 0000000000..d80516ea8c Binary files /dev/null and b/deal.II/doc/reports/nedelec/img228.gif differ diff --git a/deal.II/doc/reports/nedelec/img229.gif b/deal.II/doc/reports/nedelec/img229.gif new file mode 100644 index 0000000000..8a42fc0256 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img229.gif differ diff --git a/deal.II/doc/reports/nedelec/img23.gif b/deal.II/doc/reports/nedelec/img23.gif new file mode 100644 index 0000000000..fbefef3a05 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img23.gif differ diff --git a/deal.II/doc/reports/nedelec/img230.gif b/deal.II/doc/reports/nedelec/img230.gif new file mode 100644 index 0000000000..c41a913496 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img230.gif differ diff --git a/deal.II/doc/reports/nedelec/img231.gif b/deal.II/doc/reports/nedelec/img231.gif new file mode 100644 index 0000000000..ea1d3be492 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img231.gif differ diff --git a/deal.II/doc/reports/nedelec/img232.gif b/deal.II/doc/reports/nedelec/img232.gif new file mode 100644 index 0000000000..6aed78e542 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img232.gif differ diff --git a/deal.II/doc/reports/nedelec/img233.gif b/deal.II/doc/reports/nedelec/img233.gif new file mode 100644 index 0000000000..6022c2129b Binary files /dev/null and b/deal.II/doc/reports/nedelec/img233.gif differ diff --git a/deal.II/doc/reports/nedelec/img234.gif b/deal.II/doc/reports/nedelec/img234.gif new file mode 100644 index 0000000000..6b041c5a5f Binary files /dev/null and b/deal.II/doc/reports/nedelec/img234.gif differ diff --git a/deal.II/doc/reports/nedelec/img235.gif b/deal.II/doc/reports/nedelec/img235.gif new file mode 100644 index 0000000000..02046d18f5 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img235.gif differ diff --git a/deal.II/doc/reports/nedelec/img236.gif b/deal.II/doc/reports/nedelec/img236.gif new file mode 100644 index 0000000000..8fee55926c Binary files /dev/null and b/deal.II/doc/reports/nedelec/img236.gif differ diff --git a/deal.II/doc/reports/nedelec/img237.gif b/deal.II/doc/reports/nedelec/img237.gif new file mode 100644 index 0000000000..25ab77e9f2 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img237.gif differ diff --git a/deal.II/doc/reports/nedelec/img238.gif b/deal.II/doc/reports/nedelec/img238.gif new file mode 100644 index 0000000000..ea5d0f8dc4 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img238.gif differ diff --git a/deal.II/doc/reports/nedelec/img239.gif b/deal.II/doc/reports/nedelec/img239.gif new file mode 100644 index 0000000000..170cade501 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img239.gif differ diff --git a/deal.II/doc/reports/nedelec/img24.gif b/deal.II/doc/reports/nedelec/img24.gif new file mode 100644 index 0000000000..218d68bb28 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img24.gif differ diff --git a/deal.II/doc/reports/nedelec/img240.gif b/deal.II/doc/reports/nedelec/img240.gif new file mode 100644 index 0000000000..8f4fb496e9 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img240.gif differ diff --git a/deal.II/doc/reports/nedelec/img241.gif b/deal.II/doc/reports/nedelec/img241.gif new file mode 100644 index 0000000000..bf991ff877 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img241.gif differ diff --git a/deal.II/doc/reports/nedelec/img242.gif b/deal.II/doc/reports/nedelec/img242.gif new file mode 100644 index 0000000000..fd55c13252 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img242.gif differ diff --git a/deal.II/doc/reports/nedelec/img243.gif b/deal.II/doc/reports/nedelec/img243.gif new file mode 100644 index 0000000000..0b1f9a18b3 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img243.gif differ diff --git a/deal.II/doc/reports/nedelec/img244.gif b/deal.II/doc/reports/nedelec/img244.gif new file mode 100644 index 0000000000..1c958ecba0 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img244.gif differ diff --git a/deal.II/doc/reports/nedelec/img245.gif b/deal.II/doc/reports/nedelec/img245.gif new file mode 100644 index 0000000000..bcf9ea70c7 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img245.gif differ diff --git a/deal.II/doc/reports/nedelec/img246.gif b/deal.II/doc/reports/nedelec/img246.gif new file mode 100644 index 0000000000..6209a60e20 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img246.gif differ diff --git a/deal.II/doc/reports/nedelec/img247.gif b/deal.II/doc/reports/nedelec/img247.gif new file mode 100644 index 0000000000..d5ae9c33b4 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img247.gif differ diff --git a/deal.II/doc/reports/nedelec/img248.gif b/deal.II/doc/reports/nedelec/img248.gif new file mode 100644 index 0000000000..e117220012 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img248.gif differ diff --git a/deal.II/doc/reports/nedelec/img249.gif b/deal.II/doc/reports/nedelec/img249.gif new file mode 100644 index 0000000000..b78ae4e13d Binary files /dev/null and b/deal.II/doc/reports/nedelec/img249.gif differ diff --git a/deal.II/doc/reports/nedelec/img25.gif b/deal.II/doc/reports/nedelec/img25.gif new file mode 100644 index 0000000000..9b980228b3 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img25.gif differ diff --git a/deal.II/doc/reports/nedelec/img250.gif b/deal.II/doc/reports/nedelec/img250.gif new file mode 100644 index 0000000000..7d66016d11 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img250.gif differ diff --git a/deal.II/doc/reports/nedelec/img251.gif b/deal.II/doc/reports/nedelec/img251.gif new file mode 100644 index 0000000000..ca69e530c6 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img251.gif differ diff --git a/deal.II/doc/reports/nedelec/img252.gif b/deal.II/doc/reports/nedelec/img252.gif new file mode 100644 index 0000000000..dd744404ba Binary files /dev/null and b/deal.II/doc/reports/nedelec/img252.gif differ diff --git a/deal.II/doc/reports/nedelec/img253.gif b/deal.II/doc/reports/nedelec/img253.gif new file mode 100644 index 0000000000..8e3441a01f Binary files /dev/null and b/deal.II/doc/reports/nedelec/img253.gif differ diff --git a/deal.II/doc/reports/nedelec/img254.gif b/deal.II/doc/reports/nedelec/img254.gif new file mode 100644 index 0000000000..0b9a693ea5 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img254.gif differ diff --git a/deal.II/doc/reports/nedelec/img255.gif b/deal.II/doc/reports/nedelec/img255.gif new file mode 100644 index 0000000000..e6e4e2a15c Binary files /dev/null and b/deal.II/doc/reports/nedelec/img255.gif differ diff --git a/deal.II/doc/reports/nedelec/img256.gif b/deal.II/doc/reports/nedelec/img256.gif new file mode 100644 index 0000000000..27d8550fad Binary files /dev/null and b/deal.II/doc/reports/nedelec/img256.gif differ diff --git a/deal.II/doc/reports/nedelec/img257.gif b/deal.II/doc/reports/nedelec/img257.gif new file mode 100644 index 0000000000..80daadac67 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img257.gif differ diff --git a/deal.II/doc/reports/nedelec/img258.gif b/deal.II/doc/reports/nedelec/img258.gif new file mode 100644 index 0000000000..d553cb2d7b Binary files /dev/null and b/deal.II/doc/reports/nedelec/img258.gif differ diff --git a/deal.II/doc/reports/nedelec/img259.gif b/deal.II/doc/reports/nedelec/img259.gif new file mode 100644 index 0000000000..a4d053003f Binary files /dev/null and b/deal.II/doc/reports/nedelec/img259.gif differ diff --git a/deal.II/doc/reports/nedelec/img26.gif b/deal.II/doc/reports/nedelec/img26.gif new file mode 100644 index 0000000000..2a37f757b7 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img26.gif differ diff --git a/deal.II/doc/reports/nedelec/img260.gif b/deal.II/doc/reports/nedelec/img260.gif new file mode 100644 index 0000000000..ad76243404 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img260.gif differ diff --git a/deal.II/doc/reports/nedelec/img261.gif b/deal.II/doc/reports/nedelec/img261.gif new file mode 100644 index 0000000000..9608ca2fef Binary files /dev/null and b/deal.II/doc/reports/nedelec/img261.gif differ diff --git a/deal.II/doc/reports/nedelec/img262.gif b/deal.II/doc/reports/nedelec/img262.gif new file mode 100644 index 0000000000..8084d5da9b Binary files /dev/null and b/deal.II/doc/reports/nedelec/img262.gif differ diff --git a/deal.II/doc/reports/nedelec/img263.gif b/deal.II/doc/reports/nedelec/img263.gif new file mode 100644 index 0000000000..2a1be8acfa Binary files /dev/null and b/deal.II/doc/reports/nedelec/img263.gif differ diff --git a/deal.II/doc/reports/nedelec/img264.gif b/deal.II/doc/reports/nedelec/img264.gif new file mode 100644 index 0000000000..9e29823908 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img264.gif differ diff --git a/deal.II/doc/reports/nedelec/img265.gif b/deal.II/doc/reports/nedelec/img265.gif new file mode 100644 index 0000000000..4970b877e2 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img265.gif differ diff --git a/deal.II/doc/reports/nedelec/img266.gif b/deal.II/doc/reports/nedelec/img266.gif new file mode 100644 index 0000000000..9ef835a2d3 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img266.gif differ diff --git a/deal.II/doc/reports/nedelec/img267.gif b/deal.II/doc/reports/nedelec/img267.gif new file mode 100644 index 0000000000..9d311d23a0 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img267.gif differ diff --git a/deal.II/doc/reports/nedelec/img268.gif b/deal.II/doc/reports/nedelec/img268.gif new file mode 100644 index 0000000000..5f3feeb3da Binary files /dev/null and b/deal.II/doc/reports/nedelec/img268.gif differ diff --git a/deal.II/doc/reports/nedelec/img269.gif b/deal.II/doc/reports/nedelec/img269.gif new file mode 100644 index 0000000000..7b030b6d07 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img269.gif differ diff --git a/deal.II/doc/reports/nedelec/img27.gif b/deal.II/doc/reports/nedelec/img27.gif new file mode 100644 index 0000000000..37cb317243 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img27.gif differ diff --git a/deal.II/doc/reports/nedelec/img270.gif b/deal.II/doc/reports/nedelec/img270.gif new file mode 100644 index 0000000000..39c50b6695 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img270.gif differ diff --git a/deal.II/doc/reports/nedelec/img271.gif b/deal.II/doc/reports/nedelec/img271.gif new file mode 100644 index 0000000000..789bbc95d5 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img271.gif differ diff --git a/deal.II/doc/reports/nedelec/img272.gif b/deal.II/doc/reports/nedelec/img272.gif new file mode 100644 index 0000000000..5e8de0d328 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img272.gif differ diff --git a/deal.II/doc/reports/nedelec/img273.gif b/deal.II/doc/reports/nedelec/img273.gif new file mode 100644 index 0000000000..b12a45e8f3 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img273.gif differ diff --git a/deal.II/doc/reports/nedelec/img274.gif b/deal.II/doc/reports/nedelec/img274.gif new file mode 100644 index 0000000000..df6dff39f6 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img274.gif differ diff --git a/deal.II/doc/reports/nedelec/img275.gif b/deal.II/doc/reports/nedelec/img275.gif new file mode 100644 index 0000000000..a3b8b96010 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img275.gif differ diff --git a/deal.II/doc/reports/nedelec/img276.gif b/deal.II/doc/reports/nedelec/img276.gif new file mode 100644 index 0000000000..46cbe6afd3 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img276.gif differ diff --git a/deal.II/doc/reports/nedelec/img277.gif b/deal.II/doc/reports/nedelec/img277.gif new file mode 100644 index 0000000000..3016ac191c Binary files /dev/null and b/deal.II/doc/reports/nedelec/img277.gif differ diff --git a/deal.II/doc/reports/nedelec/img278.gif b/deal.II/doc/reports/nedelec/img278.gif new file mode 100644 index 0000000000..ef4cd4ac86 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img278.gif differ diff --git a/deal.II/doc/reports/nedelec/img279.gif b/deal.II/doc/reports/nedelec/img279.gif new file mode 100644 index 0000000000..5acb2a9ef2 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img279.gif differ diff --git a/deal.II/doc/reports/nedelec/img28.gif b/deal.II/doc/reports/nedelec/img28.gif new file mode 100644 index 0000000000..bb8b99888c Binary files /dev/null and b/deal.II/doc/reports/nedelec/img28.gif differ diff --git a/deal.II/doc/reports/nedelec/img280.gif b/deal.II/doc/reports/nedelec/img280.gif new file mode 100644 index 0000000000..267810e5fa Binary files /dev/null and b/deal.II/doc/reports/nedelec/img280.gif differ diff --git a/deal.II/doc/reports/nedelec/img281.gif b/deal.II/doc/reports/nedelec/img281.gif new file mode 100644 index 0000000000..83898d0dc1 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img281.gif differ diff --git a/deal.II/doc/reports/nedelec/img282.gif b/deal.II/doc/reports/nedelec/img282.gif new file mode 100644 index 0000000000..75f3551e07 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img282.gif differ diff --git a/deal.II/doc/reports/nedelec/img283.gif b/deal.II/doc/reports/nedelec/img283.gif new file mode 100644 index 0000000000..dd3eba7fe3 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img283.gif differ diff --git a/deal.II/doc/reports/nedelec/img284.gif b/deal.II/doc/reports/nedelec/img284.gif new file mode 100644 index 0000000000..23d53747bd Binary files /dev/null and b/deal.II/doc/reports/nedelec/img284.gif differ diff --git a/deal.II/doc/reports/nedelec/img285.gif b/deal.II/doc/reports/nedelec/img285.gif new file mode 100644 index 0000000000..2a38222ffe Binary files /dev/null and b/deal.II/doc/reports/nedelec/img285.gif differ diff --git a/deal.II/doc/reports/nedelec/img286.gif b/deal.II/doc/reports/nedelec/img286.gif new file mode 100644 index 0000000000..2701c3f055 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img286.gif differ diff --git a/deal.II/doc/reports/nedelec/img287.gif b/deal.II/doc/reports/nedelec/img287.gif new file mode 100644 index 0000000000..fd46d2382b Binary files /dev/null and b/deal.II/doc/reports/nedelec/img287.gif differ diff --git a/deal.II/doc/reports/nedelec/img288.gif b/deal.II/doc/reports/nedelec/img288.gif new file mode 100644 index 0000000000..a28920353f Binary files /dev/null and b/deal.II/doc/reports/nedelec/img288.gif differ diff --git a/deal.II/doc/reports/nedelec/img289.gif b/deal.II/doc/reports/nedelec/img289.gif new file mode 100644 index 0000000000..c94378d7f8 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img289.gif differ diff --git a/deal.II/doc/reports/nedelec/img29.gif b/deal.II/doc/reports/nedelec/img29.gif new file mode 100644 index 0000000000..1b675dd303 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img29.gif differ diff --git a/deal.II/doc/reports/nedelec/img290.gif b/deal.II/doc/reports/nedelec/img290.gif new file mode 100644 index 0000000000..ecfc4eac2c Binary files /dev/null and b/deal.II/doc/reports/nedelec/img290.gif differ diff --git a/deal.II/doc/reports/nedelec/img291.gif b/deal.II/doc/reports/nedelec/img291.gif new file mode 100644 index 0000000000..12a8fc91c5 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img291.gif differ diff --git a/deal.II/doc/reports/nedelec/img292.gif b/deal.II/doc/reports/nedelec/img292.gif new file mode 100644 index 0000000000..1a90228c7b Binary files /dev/null and b/deal.II/doc/reports/nedelec/img292.gif differ diff --git a/deal.II/doc/reports/nedelec/img293.gif b/deal.II/doc/reports/nedelec/img293.gif new file mode 100644 index 0000000000..c4011f95cb Binary files /dev/null and b/deal.II/doc/reports/nedelec/img293.gif differ diff --git a/deal.II/doc/reports/nedelec/img294.gif b/deal.II/doc/reports/nedelec/img294.gif new file mode 100644 index 0000000000..c4b74fd758 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img294.gif differ diff --git a/deal.II/doc/reports/nedelec/img295.gif b/deal.II/doc/reports/nedelec/img295.gif new file mode 100644 index 0000000000..88097cf701 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img295.gif differ diff --git a/deal.II/doc/reports/nedelec/img296.gif b/deal.II/doc/reports/nedelec/img296.gif new file mode 100644 index 0000000000..3acdd6bc89 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img296.gif differ diff --git a/deal.II/doc/reports/nedelec/img297.gif b/deal.II/doc/reports/nedelec/img297.gif new file mode 100644 index 0000000000..1f1e226a11 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img297.gif differ diff --git a/deal.II/doc/reports/nedelec/img298.gif b/deal.II/doc/reports/nedelec/img298.gif new file mode 100644 index 0000000000..788dffaaa5 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img298.gif differ diff --git a/deal.II/doc/reports/nedelec/img299.gif b/deal.II/doc/reports/nedelec/img299.gif new file mode 100644 index 0000000000..294c93db6b Binary files /dev/null and b/deal.II/doc/reports/nedelec/img299.gif differ diff --git a/deal.II/doc/reports/nedelec/img3.gif b/deal.II/doc/reports/nedelec/img3.gif new file mode 100644 index 0000000000..b6cf9efdbe Binary files /dev/null and b/deal.II/doc/reports/nedelec/img3.gif differ diff --git a/deal.II/doc/reports/nedelec/img30.gif b/deal.II/doc/reports/nedelec/img30.gif new file mode 100644 index 0000000000..d9e3e59d23 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img30.gif differ diff --git a/deal.II/doc/reports/nedelec/img300.gif b/deal.II/doc/reports/nedelec/img300.gif new file mode 100644 index 0000000000..f201112d52 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img300.gif differ diff --git a/deal.II/doc/reports/nedelec/img301.gif b/deal.II/doc/reports/nedelec/img301.gif new file mode 100644 index 0000000000..7759003727 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img301.gif differ diff --git a/deal.II/doc/reports/nedelec/img302.gif b/deal.II/doc/reports/nedelec/img302.gif new file mode 100644 index 0000000000..70d00e92fe Binary files /dev/null and b/deal.II/doc/reports/nedelec/img302.gif differ diff --git a/deal.II/doc/reports/nedelec/img303.gif b/deal.II/doc/reports/nedelec/img303.gif new file mode 100644 index 0000000000..5768a92e98 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img303.gif differ diff --git a/deal.II/doc/reports/nedelec/img304.gif b/deal.II/doc/reports/nedelec/img304.gif new file mode 100644 index 0000000000..651c919f25 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img304.gif differ diff --git a/deal.II/doc/reports/nedelec/img305.gif b/deal.II/doc/reports/nedelec/img305.gif new file mode 100644 index 0000000000..be12db55e7 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img305.gif differ diff --git a/deal.II/doc/reports/nedelec/img306.gif b/deal.II/doc/reports/nedelec/img306.gif new file mode 100644 index 0000000000..14706761a6 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img306.gif differ diff --git a/deal.II/doc/reports/nedelec/img307.gif b/deal.II/doc/reports/nedelec/img307.gif new file mode 100644 index 0000000000..37de64c99f Binary files /dev/null and b/deal.II/doc/reports/nedelec/img307.gif differ diff --git a/deal.II/doc/reports/nedelec/img308.gif b/deal.II/doc/reports/nedelec/img308.gif new file mode 100644 index 0000000000..fcc62308e4 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img308.gif differ diff --git a/deal.II/doc/reports/nedelec/img309.gif b/deal.II/doc/reports/nedelec/img309.gif new file mode 100644 index 0000000000..e5c9049af2 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img309.gif differ diff --git a/deal.II/doc/reports/nedelec/img31.gif b/deal.II/doc/reports/nedelec/img31.gif new file mode 100644 index 0000000000..1b845cffff Binary files /dev/null and b/deal.II/doc/reports/nedelec/img31.gif differ diff --git a/deal.II/doc/reports/nedelec/img310.gif b/deal.II/doc/reports/nedelec/img310.gif new file mode 100644 index 0000000000..c9a61a218b Binary files /dev/null and b/deal.II/doc/reports/nedelec/img310.gif differ diff --git a/deal.II/doc/reports/nedelec/img311.gif b/deal.II/doc/reports/nedelec/img311.gif new file mode 100644 index 0000000000..d8c2eb4a32 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img311.gif differ diff --git a/deal.II/doc/reports/nedelec/img312.gif b/deal.II/doc/reports/nedelec/img312.gif new file mode 100644 index 0000000000..9d33ef204b Binary files /dev/null and b/deal.II/doc/reports/nedelec/img312.gif differ diff --git a/deal.II/doc/reports/nedelec/img313.gif b/deal.II/doc/reports/nedelec/img313.gif new file mode 100644 index 0000000000..a33597c3d2 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img313.gif differ diff --git a/deal.II/doc/reports/nedelec/img314.gif b/deal.II/doc/reports/nedelec/img314.gif new file mode 100644 index 0000000000..a6182db537 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img314.gif differ diff --git a/deal.II/doc/reports/nedelec/img315.gif b/deal.II/doc/reports/nedelec/img315.gif new file mode 100644 index 0000000000..976d354246 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img315.gif differ diff --git a/deal.II/doc/reports/nedelec/img316.gif b/deal.II/doc/reports/nedelec/img316.gif new file mode 100644 index 0000000000..34b261d8a0 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img316.gif differ diff --git a/deal.II/doc/reports/nedelec/img317.gif b/deal.II/doc/reports/nedelec/img317.gif new file mode 100644 index 0000000000..8f4c1542c4 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img317.gif differ diff --git a/deal.II/doc/reports/nedelec/img318.gif b/deal.II/doc/reports/nedelec/img318.gif new file mode 100644 index 0000000000..863ac86c39 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img318.gif differ diff --git a/deal.II/doc/reports/nedelec/img319.gif b/deal.II/doc/reports/nedelec/img319.gif new file mode 100644 index 0000000000..d17a73ade4 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img319.gif differ diff --git a/deal.II/doc/reports/nedelec/img32.gif b/deal.II/doc/reports/nedelec/img32.gif new file mode 100644 index 0000000000..dbfb48ad30 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img32.gif differ diff --git a/deal.II/doc/reports/nedelec/img320.gif b/deal.II/doc/reports/nedelec/img320.gif new file mode 100644 index 0000000000..f8af152a43 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img320.gif differ diff --git a/deal.II/doc/reports/nedelec/img321.gif b/deal.II/doc/reports/nedelec/img321.gif new file mode 100644 index 0000000000..24374f2b47 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img321.gif differ diff --git a/deal.II/doc/reports/nedelec/img322.gif b/deal.II/doc/reports/nedelec/img322.gif new file mode 100644 index 0000000000..12c112f699 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img322.gif differ diff --git a/deal.II/doc/reports/nedelec/img323.gif b/deal.II/doc/reports/nedelec/img323.gif new file mode 100644 index 0000000000..cf4ed0755e Binary files /dev/null and b/deal.II/doc/reports/nedelec/img323.gif differ diff --git a/deal.II/doc/reports/nedelec/img324.gif b/deal.II/doc/reports/nedelec/img324.gif new file mode 100644 index 0000000000..cd1adac69d Binary files /dev/null and b/deal.II/doc/reports/nedelec/img324.gif differ diff --git a/deal.II/doc/reports/nedelec/img325.gif b/deal.II/doc/reports/nedelec/img325.gif new file mode 100644 index 0000000000..7807aded5a Binary files /dev/null and b/deal.II/doc/reports/nedelec/img325.gif differ diff --git a/deal.II/doc/reports/nedelec/img326.gif b/deal.II/doc/reports/nedelec/img326.gif new file mode 100644 index 0000000000..377438604e Binary files /dev/null and b/deal.II/doc/reports/nedelec/img326.gif differ diff --git a/deal.II/doc/reports/nedelec/img327.gif b/deal.II/doc/reports/nedelec/img327.gif new file mode 100644 index 0000000000..216a0a0ea4 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img327.gif differ diff --git a/deal.II/doc/reports/nedelec/img328.gif b/deal.II/doc/reports/nedelec/img328.gif new file mode 100644 index 0000000000..294d83dcff Binary files /dev/null and b/deal.II/doc/reports/nedelec/img328.gif differ diff --git a/deal.II/doc/reports/nedelec/img329.gif b/deal.II/doc/reports/nedelec/img329.gif new file mode 100644 index 0000000000..a6aca11086 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img329.gif differ diff --git a/deal.II/doc/reports/nedelec/img33.gif b/deal.II/doc/reports/nedelec/img33.gif new file mode 100644 index 0000000000..e60a47d2ff Binary files /dev/null and b/deal.II/doc/reports/nedelec/img33.gif differ diff --git a/deal.II/doc/reports/nedelec/img330.gif b/deal.II/doc/reports/nedelec/img330.gif new file mode 100644 index 0000000000..1e892af1de Binary files /dev/null and b/deal.II/doc/reports/nedelec/img330.gif differ diff --git a/deal.II/doc/reports/nedelec/img331.gif b/deal.II/doc/reports/nedelec/img331.gif new file mode 100644 index 0000000000..d8b4e6126f Binary files /dev/null and b/deal.II/doc/reports/nedelec/img331.gif differ diff --git a/deal.II/doc/reports/nedelec/img332.gif b/deal.II/doc/reports/nedelec/img332.gif new file mode 100644 index 0000000000..f7924ca91d Binary files /dev/null and b/deal.II/doc/reports/nedelec/img332.gif differ diff --git a/deal.II/doc/reports/nedelec/img333.gif b/deal.II/doc/reports/nedelec/img333.gif new file mode 100644 index 0000000000..d5b951c1f6 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img333.gif differ diff --git a/deal.II/doc/reports/nedelec/img334.gif b/deal.II/doc/reports/nedelec/img334.gif new file mode 100644 index 0000000000..145c443056 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img334.gif differ diff --git a/deal.II/doc/reports/nedelec/img335.gif b/deal.II/doc/reports/nedelec/img335.gif new file mode 100644 index 0000000000..6d2b45dde3 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img335.gif differ diff --git a/deal.II/doc/reports/nedelec/img336.gif b/deal.II/doc/reports/nedelec/img336.gif new file mode 100644 index 0000000000..6e5259c5f6 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img336.gif differ diff --git a/deal.II/doc/reports/nedelec/img337.gif b/deal.II/doc/reports/nedelec/img337.gif new file mode 100644 index 0000000000..a811d786d1 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img337.gif differ diff --git a/deal.II/doc/reports/nedelec/img338.gif b/deal.II/doc/reports/nedelec/img338.gif new file mode 100644 index 0000000000..5ab0dc68e1 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img338.gif differ diff --git a/deal.II/doc/reports/nedelec/img339.gif b/deal.II/doc/reports/nedelec/img339.gif new file mode 100644 index 0000000000..b99ee518af Binary files /dev/null and b/deal.II/doc/reports/nedelec/img339.gif differ diff --git a/deal.II/doc/reports/nedelec/img34.gif b/deal.II/doc/reports/nedelec/img34.gif new file mode 100644 index 0000000000..0dba656002 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img34.gif differ diff --git a/deal.II/doc/reports/nedelec/img340.gif b/deal.II/doc/reports/nedelec/img340.gif new file mode 100644 index 0000000000..bb1958d67b Binary files /dev/null and b/deal.II/doc/reports/nedelec/img340.gif differ diff --git a/deal.II/doc/reports/nedelec/img341.gif b/deal.II/doc/reports/nedelec/img341.gif new file mode 100644 index 0000000000..c7d5898fdc Binary files /dev/null and b/deal.II/doc/reports/nedelec/img341.gif differ diff --git a/deal.II/doc/reports/nedelec/img342.gif b/deal.II/doc/reports/nedelec/img342.gif new file mode 100644 index 0000000000..e9174cbbbe Binary files /dev/null and b/deal.II/doc/reports/nedelec/img342.gif differ diff --git a/deal.II/doc/reports/nedelec/img343.gif b/deal.II/doc/reports/nedelec/img343.gif new file mode 100644 index 0000000000..0ed0b2c4ec Binary files /dev/null and b/deal.II/doc/reports/nedelec/img343.gif differ diff --git a/deal.II/doc/reports/nedelec/img344.gif b/deal.II/doc/reports/nedelec/img344.gif new file mode 100644 index 0000000000..c182506ecc Binary files /dev/null and b/deal.II/doc/reports/nedelec/img344.gif differ diff --git a/deal.II/doc/reports/nedelec/img345.gif b/deal.II/doc/reports/nedelec/img345.gif new file mode 100644 index 0000000000..12618485e7 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img345.gif differ diff --git a/deal.II/doc/reports/nedelec/img346.gif b/deal.II/doc/reports/nedelec/img346.gif new file mode 100644 index 0000000000..c5d4e319a8 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img346.gif differ diff --git a/deal.II/doc/reports/nedelec/img347.gif b/deal.II/doc/reports/nedelec/img347.gif new file mode 100644 index 0000000000..6bb1e84bf1 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img347.gif differ diff --git a/deal.II/doc/reports/nedelec/img348.gif b/deal.II/doc/reports/nedelec/img348.gif new file mode 100644 index 0000000000..fcfb3eadf0 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img348.gif differ diff --git a/deal.II/doc/reports/nedelec/img349.gif b/deal.II/doc/reports/nedelec/img349.gif new file mode 100644 index 0000000000..52ae5e4a74 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img349.gif differ diff --git a/deal.II/doc/reports/nedelec/img35.gif b/deal.II/doc/reports/nedelec/img35.gif new file mode 100644 index 0000000000..fe127ee176 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img35.gif differ diff --git a/deal.II/doc/reports/nedelec/img350.gif b/deal.II/doc/reports/nedelec/img350.gif new file mode 100644 index 0000000000..7c73623f13 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img350.gif differ diff --git a/deal.II/doc/reports/nedelec/img351.gif b/deal.II/doc/reports/nedelec/img351.gif new file mode 100644 index 0000000000..6757b7d654 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img351.gif differ diff --git a/deal.II/doc/reports/nedelec/img352.gif b/deal.II/doc/reports/nedelec/img352.gif new file mode 100644 index 0000000000..63a5b7743d Binary files /dev/null and b/deal.II/doc/reports/nedelec/img352.gif differ diff --git a/deal.II/doc/reports/nedelec/img353.gif b/deal.II/doc/reports/nedelec/img353.gif new file mode 100644 index 0000000000..829d74db8f Binary files /dev/null and b/deal.II/doc/reports/nedelec/img353.gif differ diff --git a/deal.II/doc/reports/nedelec/img354.gif b/deal.II/doc/reports/nedelec/img354.gif new file mode 100644 index 0000000000..e1a34d692d Binary files /dev/null and b/deal.II/doc/reports/nedelec/img354.gif differ diff --git a/deal.II/doc/reports/nedelec/img355.gif b/deal.II/doc/reports/nedelec/img355.gif new file mode 100644 index 0000000000..bfe195c1f3 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img355.gif differ diff --git a/deal.II/doc/reports/nedelec/img356.gif b/deal.II/doc/reports/nedelec/img356.gif new file mode 100644 index 0000000000..11844c0d92 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img356.gif differ diff --git a/deal.II/doc/reports/nedelec/img357.gif b/deal.II/doc/reports/nedelec/img357.gif new file mode 100644 index 0000000000..e1489ede45 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img357.gif differ diff --git a/deal.II/doc/reports/nedelec/img358.gif b/deal.II/doc/reports/nedelec/img358.gif new file mode 100644 index 0000000000..4f8a8881a7 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img358.gif differ diff --git a/deal.II/doc/reports/nedelec/img359.gif b/deal.II/doc/reports/nedelec/img359.gif new file mode 100644 index 0000000000..6cbf0cfcb4 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img359.gif differ diff --git a/deal.II/doc/reports/nedelec/img36.gif b/deal.II/doc/reports/nedelec/img36.gif new file mode 100644 index 0000000000..33c10f632e Binary files /dev/null and b/deal.II/doc/reports/nedelec/img36.gif differ diff --git a/deal.II/doc/reports/nedelec/img360.gif b/deal.II/doc/reports/nedelec/img360.gif new file mode 100644 index 0000000000..611d44f80e Binary files /dev/null and b/deal.II/doc/reports/nedelec/img360.gif differ diff --git a/deal.II/doc/reports/nedelec/img361.gif b/deal.II/doc/reports/nedelec/img361.gif new file mode 100644 index 0000000000..b6cf9efdbe Binary files /dev/null and b/deal.II/doc/reports/nedelec/img361.gif differ diff --git a/deal.II/doc/reports/nedelec/img362.gif b/deal.II/doc/reports/nedelec/img362.gif new file mode 100644 index 0000000000..cf195f80c2 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img362.gif differ diff --git a/deal.II/doc/reports/nedelec/img363.gif b/deal.II/doc/reports/nedelec/img363.gif new file mode 100644 index 0000000000..9c29332949 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img363.gif differ diff --git a/deal.II/doc/reports/nedelec/img364.gif b/deal.II/doc/reports/nedelec/img364.gif new file mode 100644 index 0000000000..f5e33d4f70 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img364.gif differ diff --git a/deal.II/doc/reports/nedelec/img365.gif b/deal.II/doc/reports/nedelec/img365.gif new file mode 100644 index 0000000000..e2b70d8e01 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img365.gif differ diff --git a/deal.II/doc/reports/nedelec/img366.gif b/deal.II/doc/reports/nedelec/img366.gif new file mode 100644 index 0000000000..fbd80ba6e3 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img366.gif differ diff --git a/deal.II/doc/reports/nedelec/img367.gif b/deal.II/doc/reports/nedelec/img367.gif new file mode 100644 index 0000000000..0836f701a0 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img367.gif differ diff --git a/deal.II/doc/reports/nedelec/img368.gif b/deal.II/doc/reports/nedelec/img368.gif new file mode 100644 index 0000000000..8820c729bf Binary files /dev/null and b/deal.II/doc/reports/nedelec/img368.gif differ diff --git a/deal.II/doc/reports/nedelec/img369.gif b/deal.II/doc/reports/nedelec/img369.gif new file mode 100644 index 0000000000..c7bf32e484 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img369.gif differ diff --git a/deal.II/doc/reports/nedelec/img37.gif b/deal.II/doc/reports/nedelec/img37.gif new file mode 100644 index 0000000000..526b0f9c02 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img37.gif differ diff --git a/deal.II/doc/reports/nedelec/img370.gif b/deal.II/doc/reports/nedelec/img370.gif new file mode 100644 index 0000000000..266909f56a Binary files /dev/null and b/deal.II/doc/reports/nedelec/img370.gif differ diff --git a/deal.II/doc/reports/nedelec/img371.gif b/deal.II/doc/reports/nedelec/img371.gif new file mode 100644 index 0000000000..2cf358dab2 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img371.gif differ diff --git a/deal.II/doc/reports/nedelec/img372.gif b/deal.II/doc/reports/nedelec/img372.gif new file mode 100644 index 0000000000..fe0478de3b Binary files /dev/null and b/deal.II/doc/reports/nedelec/img372.gif differ diff --git a/deal.II/doc/reports/nedelec/img373.gif b/deal.II/doc/reports/nedelec/img373.gif new file mode 100644 index 0000000000..32e3ae5df7 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img373.gif differ diff --git a/deal.II/doc/reports/nedelec/img374.gif b/deal.II/doc/reports/nedelec/img374.gif new file mode 100644 index 0000000000..3678839218 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img374.gif differ diff --git a/deal.II/doc/reports/nedelec/img375.gif b/deal.II/doc/reports/nedelec/img375.gif new file mode 100644 index 0000000000..ad1dfe400f Binary files /dev/null and b/deal.II/doc/reports/nedelec/img375.gif differ diff --git a/deal.II/doc/reports/nedelec/img376.gif b/deal.II/doc/reports/nedelec/img376.gif new file mode 100644 index 0000000000..fab2275f01 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img376.gif differ diff --git a/deal.II/doc/reports/nedelec/img377.gif b/deal.II/doc/reports/nedelec/img377.gif new file mode 100644 index 0000000000..40a991db94 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img377.gif differ diff --git a/deal.II/doc/reports/nedelec/img378.gif b/deal.II/doc/reports/nedelec/img378.gif new file mode 100644 index 0000000000..c806a27628 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img378.gif differ diff --git a/deal.II/doc/reports/nedelec/img379.gif b/deal.II/doc/reports/nedelec/img379.gif new file mode 100644 index 0000000000..d6110f61d0 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img379.gif differ diff --git a/deal.II/doc/reports/nedelec/img38.gif b/deal.II/doc/reports/nedelec/img38.gif new file mode 100644 index 0000000000..dc85604f7a Binary files /dev/null and b/deal.II/doc/reports/nedelec/img38.gif differ diff --git a/deal.II/doc/reports/nedelec/img380.gif b/deal.II/doc/reports/nedelec/img380.gif new file mode 100644 index 0000000000..75324b6884 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img380.gif differ diff --git a/deal.II/doc/reports/nedelec/img381.gif b/deal.II/doc/reports/nedelec/img381.gif new file mode 100644 index 0000000000..a96e94d14b Binary files /dev/null and b/deal.II/doc/reports/nedelec/img381.gif differ diff --git a/deal.II/doc/reports/nedelec/img382.gif b/deal.II/doc/reports/nedelec/img382.gif new file mode 100644 index 0000000000..3c409fa903 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img382.gif differ diff --git a/deal.II/doc/reports/nedelec/img383.gif b/deal.II/doc/reports/nedelec/img383.gif new file mode 100644 index 0000000000..ce23aa2eb7 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img383.gif differ diff --git a/deal.II/doc/reports/nedelec/img384.gif b/deal.II/doc/reports/nedelec/img384.gif new file mode 100644 index 0000000000..e7e34b5388 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img384.gif differ diff --git a/deal.II/doc/reports/nedelec/img385.gif b/deal.II/doc/reports/nedelec/img385.gif new file mode 100644 index 0000000000..b3682267fe Binary files /dev/null and b/deal.II/doc/reports/nedelec/img385.gif differ diff --git a/deal.II/doc/reports/nedelec/img386.gif b/deal.II/doc/reports/nedelec/img386.gif new file mode 100644 index 0000000000..2e8cc19445 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img386.gif differ diff --git a/deal.II/doc/reports/nedelec/img387.gif b/deal.II/doc/reports/nedelec/img387.gif new file mode 100644 index 0000000000..81a9b939a2 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img387.gif differ diff --git a/deal.II/doc/reports/nedelec/img388.gif b/deal.II/doc/reports/nedelec/img388.gif new file mode 100644 index 0000000000..ac2ebb9cf4 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img388.gif differ diff --git a/deal.II/doc/reports/nedelec/img389.gif b/deal.II/doc/reports/nedelec/img389.gif new file mode 100644 index 0000000000..7604bde9db Binary files /dev/null and b/deal.II/doc/reports/nedelec/img389.gif differ diff --git a/deal.II/doc/reports/nedelec/img39.gif b/deal.II/doc/reports/nedelec/img39.gif new file mode 100644 index 0000000000..2022b4e870 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img39.gif differ diff --git a/deal.II/doc/reports/nedelec/img390.gif b/deal.II/doc/reports/nedelec/img390.gif new file mode 100644 index 0000000000..c0c84f28e3 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img390.gif differ diff --git a/deal.II/doc/reports/nedelec/img391.gif b/deal.II/doc/reports/nedelec/img391.gif new file mode 100644 index 0000000000..19abb911ba Binary files /dev/null and b/deal.II/doc/reports/nedelec/img391.gif differ diff --git a/deal.II/doc/reports/nedelec/img392.gif b/deal.II/doc/reports/nedelec/img392.gif new file mode 100644 index 0000000000..b0838564fc Binary files /dev/null and b/deal.II/doc/reports/nedelec/img392.gif differ diff --git a/deal.II/doc/reports/nedelec/img393.gif b/deal.II/doc/reports/nedelec/img393.gif new file mode 100644 index 0000000000..b8fbc78cc7 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img393.gif differ diff --git a/deal.II/doc/reports/nedelec/img394.gif b/deal.II/doc/reports/nedelec/img394.gif new file mode 100644 index 0000000000..8fc5f12af8 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img394.gif differ diff --git a/deal.II/doc/reports/nedelec/img395.gif b/deal.II/doc/reports/nedelec/img395.gif new file mode 100644 index 0000000000..a13a07f2d7 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img395.gif differ diff --git a/deal.II/doc/reports/nedelec/img396.gif b/deal.II/doc/reports/nedelec/img396.gif new file mode 100644 index 0000000000..b4783830e7 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img396.gif differ diff --git a/deal.II/doc/reports/nedelec/img397.gif b/deal.II/doc/reports/nedelec/img397.gif new file mode 100644 index 0000000000..37294c5752 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img397.gif differ diff --git a/deal.II/doc/reports/nedelec/img398.gif b/deal.II/doc/reports/nedelec/img398.gif new file mode 100644 index 0000000000..dd5bd00a97 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img398.gif differ diff --git a/deal.II/doc/reports/nedelec/img399.gif b/deal.II/doc/reports/nedelec/img399.gif new file mode 100644 index 0000000000..d8943710c7 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img399.gif differ diff --git a/deal.II/doc/reports/nedelec/img4.gif b/deal.II/doc/reports/nedelec/img4.gif new file mode 100644 index 0000000000..a200bb261b Binary files /dev/null and b/deal.II/doc/reports/nedelec/img4.gif differ diff --git a/deal.II/doc/reports/nedelec/img40.gif b/deal.II/doc/reports/nedelec/img40.gif new file mode 100644 index 0000000000..3572a0cbff Binary files /dev/null and b/deal.II/doc/reports/nedelec/img40.gif differ diff --git a/deal.II/doc/reports/nedelec/img400.gif b/deal.II/doc/reports/nedelec/img400.gif new file mode 100644 index 0000000000..1d27255440 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img400.gif differ diff --git a/deal.II/doc/reports/nedelec/img401.gif b/deal.II/doc/reports/nedelec/img401.gif new file mode 100644 index 0000000000..b46afa77b8 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img401.gif differ diff --git a/deal.II/doc/reports/nedelec/img402.gif b/deal.II/doc/reports/nedelec/img402.gif new file mode 100644 index 0000000000..dab1b5f60d Binary files /dev/null and b/deal.II/doc/reports/nedelec/img402.gif differ diff --git a/deal.II/doc/reports/nedelec/img403.gif b/deal.II/doc/reports/nedelec/img403.gif new file mode 100644 index 0000000000..e581f9b364 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img403.gif differ diff --git a/deal.II/doc/reports/nedelec/img404.gif b/deal.II/doc/reports/nedelec/img404.gif new file mode 100644 index 0000000000..ce2c957fbb Binary files /dev/null and b/deal.II/doc/reports/nedelec/img404.gif differ diff --git a/deal.II/doc/reports/nedelec/img405.gif b/deal.II/doc/reports/nedelec/img405.gif new file mode 100644 index 0000000000..a2372c9f6a Binary files /dev/null and b/deal.II/doc/reports/nedelec/img405.gif differ diff --git a/deal.II/doc/reports/nedelec/img406.gif b/deal.II/doc/reports/nedelec/img406.gif new file mode 100644 index 0000000000..d60c9bdc79 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img406.gif differ diff --git a/deal.II/doc/reports/nedelec/img407.gif b/deal.II/doc/reports/nedelec/img407.gif new file mode 100644 index 0000000000..277eaaf046 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img407.gif differ diff --git a/deal.II/doc/reports/nedelec/img408.gif b/deal.II/doc/reports/nedelec/img408.gif new file mode 100644 index 0000000000..223550adbd Binary files /dev/null and b/deal.II/doc/reports/nedelec/img408.gif differ diff --git a/deal.II/doc/reports/nedelec/img409.gif b/deal.II/doc/reports/nedelec/img409.gif new file mode 100644 index 0000000000..4f89d33e0d Binary files /dev/null and b/deal.II/doc/reports/nedelec/img409.gif differ diff --git a/deal.II/doc/reports/nedelec/img41.gif b/deal.II/doc/reports/nedelec/img41.gif new file mode 100644 index 0000000000..d951798859 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img41.gif differ diff --git a/deal.II/doc/reports/nedelec/img410.gif b/deal.II/doc/reports/nedelec/img410.gif new file mode 100644 index 0000000000..15a1c9fd44 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img410.gif differ diff --git a/deal.II/doc/reports/nedelec/img411.gif b/deal.II/doc/reports/nedelec/img411.gif new file mode 100644 index 0000000000..d971122629 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img411.gif differ diff --git a/deal.II/doc/reports/nedelec/img412.gif b/deal.II/doc/reports/nedelec/img412.gif new file mode 100644 index 0000000000..e12cedcea1 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img412.gif differ diff --git a/deal.II/doc/reports/nedelec/img413.gif b/deal.II/doc/reports/nedelec/img413.gif new file mode 100644 index 0000000000..04eaed2d2a Binary files /dev/null and b/deal.II/doc/reports/nedelec/img413.gif differ diff --git a/deal.II/doc/reports/nedelec/img414.gif b/deal.II/doc/reports/nedelec/img414.gif new file mode 100644 index 0000000000..67f1aeca73 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img414.gif differ diff --git a/deal.II/doc/reports/nedelec/img415.gif b/deal.II/doc/reports/nedelec/img415.gif new file mode 100644 index 0000000000..387d0e6e57 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img415.gif differ diff --git a/deal.II/doc/reports/nedelec/img416.gif b/deal.II/doc/reports/nedelec/img416.gif new file mode 100644 index 0000000000..1d01be70f9 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img416.gif differ diff --git a/deal.II/doc/reports/nedelec/img417.gif b/deal.II/doc/reports/nedelec/img417.gif new file mode 100644 index 0000000000..fc4a7d8678 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img417.gif differ diff --git a/deal.II/doc/reports/nedelec/img418.gif b/deal.II/doc/reports/nedelec/img418.gif new file mode 100644 index 0000000000..05f01bdf70 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img418.gif differ diff --git a/deal.II/doc/reports/nedelec/img42.gif b/deal.II/doc/reports/nedelec/img42.gif new file mode 100644 index 0000000000..da55052a7d Binary files /dev/null and b/deal.II/doc/reports/nedelec/img42.gif differ diff --git a/deal.II/doc/reports/nedelec/img43.gif b/deal.II/doc/reports/nedelec/img43.gif new file mode 100644 index 0000000000..5e67630af0 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img43.gif differ diff --git a/deal.II/doc/reports/nedelec/img44.gif b/deal.II/doc/reports/nedelec/img44.gif new file mode 100644 index 0000000000..72e90398f8 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img44.gif differ diff --git a/deal.II/doc/reports/nedelec/img45.gif b/deal.II/doc/reports/nedelec/img45.gif new file mode 100644 index 0000000000..bdb74999af Binary files /dev/null and b/deal.II/doc/reports/nedelec/img45.gif differ diff --git a/deal.II/doc/reports/nedelec/img46.gif b/deal.II/doc/reports/nedelec/img46.gif new file mode 100644 index 0000000000..21145b2bb8 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img46.gif differ diff --git a/deal.II/doc/reports/nedelec/img47.gif b/deal.II/doc/reports/nedelec/img47.gif new file mode 100644 index 0000000000..3261cf5f0a Binary files /dev/null and b/deal.II/doc/reports/nedelec/img47.gif differ diff --git a/deal.II/doc/reports/nedelec/img48.gif b/deal.II/doc/reports/nedelec/img48.gif new file mode 100644 index 0000000000..5353a48dfb Binary files /dev/null and b/deal.II/doc/reports/nedelec/img48.gif differ diff --git a/deal.II/doc/reports/nedelec/img49.gif b/deal.II/doc/reports/nedelec/img49.gif new file mode 100644 index 0000000000..362f3d38bf Binary files /dev/null and b/deal.II/doc/reports/nedelec/img49.gif differ diff --git a/deal.II/doc/reports/nedelec/img5.gif b/deal.II/doc/reports/nedelec/img5.gif new file mode 100644 index 0000000000..103a1c9569 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img5.gif differ diff --git a/deal.II/doc/reports/nedelec/img50.gif b/deal.II/doc/reports/nedelec/img50.gif new file mode 100644 index 0000000000..fd837063a7 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img50.gif differ diff --git a/deal.II/doc/reports/nedelec/img51.gif b/deal.II/doc/reports/nedelec/img51.gif new file mode 100644 index 0000000000..179d964883 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img51.gif differ diff --git a/deal.II/doc/reports/nedelec/img52.gif b/deal.II/doc/reports/nedelec/img52.gif new file mode 100644 index 0000000000..19de754ef1 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img52.gif differ diff --git a/deal.II/doc/reports/nedelec/img53.gif b/deal.II/doc/reports/nedelec/img53.gif new file mode 100644 index 0000000000..42f236ff11 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img53.gif differ diff --git a/deal.II/doc/reports/nedelec/img54.gif b/deal.II/doc/reports/nedelec/img54.gif new file mode 100644 index 0000000000..16ddc0f227 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img54.gif differ diff --git a/deal.II/doc/reports/nedelec/img55.gif b/deal.II/doc/reports/nedelec/img55.gif new file mode 100644 index 0000000000..d2e7454af3 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img55.gif differ diff --git a/deal.II/doc/reports/nedelec/img56.gif b/deal.II/doc/reports/nedelec/img56.gif new file mode 100644 index 0000000000..1ffc453d3d Binary files /dev/null and b/deal.II/doc/reports/nedelec/img56.gif differ diff --git a/deal.II/doc/reports/nedelec/img57.gif b/deal.II/doc/reports/nedelec/img57.gif new file mode 100644 index 0000000000..fbe17fbf4c Binary files /dev/null and b/deal.II/doc/reports/nedelec/img57.gif differ diff --git a/deal.II/doc/reports/nedelec/img58.gif b/deal.II/doc/reports/nedelec/img58.gif new file mode 100644 index 0000000000..871b3e2168 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img58.gif differ diff --git a/deal.II/doc/reports/nedelec/img59.gif b/deal.II/doc/reports/nedelec/img59.gif new file mode 100644 index 0000000000..d7d7270832 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img59.gif differ diff --git a/deal.II/doc/reports/nedelec/img6.gif b/deal.II/doc/reports/nedelec/img6.gif new file mode 100644 index 0000000000..46574e9244 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img6.gif differ diff --git a/deal.II/doc/reports/nedelec/img60.gif b/deal.II/doc/reports/nedelec/img60.gif new file mode 100644 index 0000000000..ddc1dbfcc5 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img60.gif differ diff --git a/deal.II/doc/reports/nedelec/img61.gif b/deal.II/doc/reports/nedelec/img61.gif new file mode 100644 index 0000000000..9866303d66 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img61.gif differ diff --git a/deal.II/doc/reports/nedelec/img62.gif b/deal.II/doc/reports/nedelec/img62.gif new file mode 100644 index 0000000000..f9042292a1 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img62.gif differ diff --git a/deal.II/doc/reports/nedelec/img63.gif b/deal.II/doc/reports/nedelec/img63.gif new file mode 100644 index 0000000000..1c0bb4eb22 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img63.gif differ diff --git a/deal.II/doc/reports/nedelec/img64.gif b/deal.II/doc/reports/nedelec/img64.gif new file mode 100644 index 0000000000..626618fa44 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img64.gif differ diff --git a/deal.II/doc/reports/nedelec/img65.gif b/deal.II/doc/reports/nedelec/img65.gif new file mode 100644 index 0000000000..fa68d6f852 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img65.gif differ diff --git a/deal.II/doc/reports/nedelec/img66.gif b/deal.II/doc/reports/nedelec/img66.gif new file mode 100644 index 0000000000..59fc11cca0 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img66.gif differ diff --git a/deal.II/doc/reports/nedelec/img67.gif b/deal.II/doc/reports/nedelec/img67.gif new file mode 100644 index 0000000000..ef6a435e1d Binary files /dev/null and b/deal.II/doc/reports/nedelec/img67.gif differ diff --git a/deal.II/doc/reports/nedelec/img68.gif b/deal.II/doc/reports/nedelec/img68.gif new file mode 100644 index 0000000000..74bf10b08f Binary files /dev/null and b/deal.II/doc/reports/nedelec/img68.gif differ diff --git a/deal.II/doc/reports/nedelec/img69.gif b/deal.II/doc/reports/nedelec/img69.gif new file mode 100644 index 0000000000..0c888467c7 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img69.gif differ diff --git a/deal.II/doc/reports/nedelec/img7.gif b/deal.II/doc/reports/nedelec/img7.gif new file mode 100644 index 0000000000..f7e8d1fa05 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img7.gif differ diff --git a/deal.II/doc/reports/nedelec/img70.gif b/deal.II/doc/reports/nedelec/img70.gif new file mode 100644 index 0000000000..847f73c732 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img70.gif differ diff --git a/deal.II/doc/reports/nedelec/img71.gif b/deal.II/doc/reports/nedelec/img71.gif new file mode 100644 index 0000000000..f54e5871bd Binary files /dev/null and b/deal.II/doc/reports/nedelec/img71.gif differ diff --git a/deal.II/doc/reports/nedelec/img72.gif b/deal.II/doc/reports/nedelec/img72.gif new file mode 100644 index 0000000000..3cbbd4061d Binary files /dev/null and b/deal.II/doc/reports/nedelec/img72.gif differ diff --git a/deal.II/doc/reports/nedelec/img73.gif b/deal.II/doc/reports/nedelec/img73.gif new file mode 100644 index 0000000000..77d8b59f3f Binary files /dev/null and b/deal.II/doc/reports/nedelec/img73.gif differ diff --git a/deal.II/doc/reports/nedelec/img74.gif b/deal.II/doc/reports/nedelec/img74.gif new file mode 100644 index 0000000000..bfbb1ed8f1 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img74.gif differ diff --git a/deal.II/doc/reports/nedelec/img75.gif b/deal.II/doc/reports/nedelec/img75.gif new file mode 100644 index 0000000000..5ea7f4dd57 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img75.gif differ diff --git a/deal.II/doc/reports/nedelec/img76.gif b/deal.II/doc/reports/nedelec/img76.gif new file mode 100644 index 0000000000..2a10f7c8ba Binary files /dev/null and b/deal.II/doc/reports/nedelec/img76.gif differ diff --git a/deal.II/doc/reports/nedelec/img77.gif b/deal.II/doc/reports/nedelec/img77.gif new file mode 100644 index 0000000000..2a2ed6fbb4 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img77.gif differ diff --git a/deal.II/doc/reports/nedelec/img78.gif b/deal.II/doc/reports/nedelec/img78.gif new file mode 100644 index 0000000000..55450f2a39 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img78.gif differ diff --git a/deal.II/doc/reports/nedelec/img79.gif b/deal.II/doc/reports/nedelec/img79.gif new file mode 100644 index 0000000000..3b6b4f3651 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img79.gif differ diff --git a/deal.II/doc/reports/nedelec/img8.gif b/deal.II/doc/reports/nedelec/img8.gif new file mode 100644 index 0000000000..febf2a3c0c Binary files /dev/null and b/deal.II/doc/reports/nedelec/img8.gif differ diff --git a/deal.II/doc/reports/nedelec/img80.gif b/deal.II/doc/reports/nedelec/img80.gif new file mode 100644 index 0000000000..0f84b420aa Binary files /dev/null and b/deal.II/doc/reports/nedelec/img80.gif differ diff --git a/deal.II/doc/reports/nedelec/img81.gif b/deal.II/doc/reports/nedelec/img81.gif new file mode 100644 index 0000000000..96b99cc044 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img81.gif differ diff --git a/deal.II/doc/reports/nedelec/img82.gif b/deal.II/doc/reports/nedelec/img82.gif new file mode 100644 index 0000000000..3e6d26c6df Binary files /dev/null and b/deal.II/doc/reports/nedelec/img82.gif differ diff --git a/deal.II/doc/reports/nedelec/img83.gif b/deal.II/doc/reports/nedelec/img83.gif new file mode 100644 index 0000000000..cad7366b7b Binary files /dev/null and b/deal.II/doc/reports/nedelec/img83.gif differ diff --git a/deal.II/doc/reports/nedelec/img84.gif b/deal.II/doc/reports/nedelec/img84.gif new file mode 100644 index 0000000000..86303cecd5 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img84.gif differ diff --git a/deal.II/doc/reports/nedelec/img85.gif b/deal.II/doc/reports/nedelec/img85.gif new file mode 100644 index 0000000000..3004020569 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img85.gif differ diff --git a/deal.II/doc/reports/nedelec/img86.gif b/deal.II/doc/reports/nedelec/img86.gif new file mode 100644 index 0000000000..9b4535f2ea Binary files /dev/null and b/deal.II/doc/reports/nedelec/img86.gif differ diff --git a/deal.II/doc/reports/nedelec/img87.gif b/deal.II/doc/reports/nedelec/img87.gif new file mode 100644 index 0000000000..e9c964b985 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img87.gif differ diff --git a/deal.II/doc/reports/nedelec/img88.gif b/deal.II/doc/reports/nedelec/img88.gif new file mode 100644 index 0000000000..0cdb5cf823 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img88.gif differ diff --git a/deal.II/doc/reports/nedelec/img89.gif b/deal.II/doc/reports/nedelec/img89.gif new file mode 100644 index 0000000000..a43690273c Binary files /dev/null and b/deal.II/doc/reports/nedelec/img89.gif differ diff --git a/deal.II/doc/reports/nedelec/img9.gif b/deal.II/doc/reports/nedelec/img9.gif new file mode 100644 index 0000000000..e3b8203e44 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img9.gif differ diff --git a/deal.II/doc/reports/nedelec/img90.gif b/deal.II/doc/reports/nedelec/img90.gif new file mode 100644 index 0000000000..2948f2dd32 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img90.gif differ diff --git a/deal.II/doc/reports/nedelec/img91.gif b/deal.II/doc/reports/nedelec/img91.gif new file mode 100644 index 0000000000..7839b70f5d Binary files /dev/null and b/deal.II/doc/reports/nedelec/img91.gif differ diff --git a/deal.II/doc/reports/nedelec/img92.gif b/deal.II/doc/reports/nedelec/img92.gif new file mode 100644 index 0000000000..c6b5f2ecf7 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img92.gif differ diff --git a/deal.II/doc/reports/nedelec/img93.gif b/deal.II/doc/reports/nedelec/img93.gif new file mode 100644 index 0000000000..08f422ee63 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img93.gif differ diff --git a/deal.II/doc/reports/nedelec/img94.gif b/deal.II/doc/reports/nedelec/img94.gif new file mode 100644 index 0000000000..89ba2bb935 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img94.gif differ diff --git a/deal.II/doc/reports/nedelec/img95.gif b/deal.II/doc/reports/nedelec/img95.gif new file mode 100644 index 0000000000..e90a6ffc1a Binary files /dev/null and b/deal.II/doc/reports/nedelec/img95.gif differ diff --git a/deal.II/doc/reports/nedelec/img96.gif b/deal.II/doc/reports/nedelec/img96.gif new file mode 100644 index 0000000000..27f1c32548 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img96.gif differ diff --git a/deal.II/doc/reports/nedelec/img97.gif b/deal.II/doc/reports/nedelec/img97.gif new file mode 100644 index 0000000000..9c73223458 Binary files /dev/null and b/deal.II/doc/reports/nedelec/img97.gif differ diff --git a/deal.II/doc/reports/nedelec/img98.gif b/deal.II/doc/reports/nedelec/img98.gif new file mode 100644 index 0000000000..6d2a9dfa6f Binary files /dev/null and b/deal.II/doc/reports/nedelec/img98.gif differ diff --git a/deal.II/doc/reports/nedelec/img99.gif b/deal.II/doc/reports/nedelec/img99.gif new file mode 100644 index 0000000000..faf65ff3dd Binary files /dev/null and b/deal.II/doc/reports/nedelec/img99.gif differ diff --git a/deal.II/doc/reports/nedelec/index.html b/deal.II/doc/reports/nedelec/index.html new file mode 100644 index 0000000000..c7412e06ac --- /dev/null +++ b/deal.II/doc/reports/nedelec/index.html @@ -0,0 +1,157 @@ + + + + + +An -conforming FEM: Nédélec's elements of first type + + + + + + + + + + + + + + +

    An +$ H(\mathop {\rm curl};\Omega )$-conforming FEM: +
    +Nédélec's elements of first type

    +

    Anna Schneebeli, April 30, 2003

    +

    +Abstract: The aim of this report is to give an introduction to Nédélec's +$ H(\mathop {\rm curl};\Omega )$-conforming finite element method of first +type. As the name suggests, this method has been introduced in 1980 by J. C. Nédélec in [8]. +
    +In the first section, we present the model problem and introduce the framework for its variational formulation. +
    +In the second section, we present Nédélec's elements of first type for +$ H(\mathop {\rm curl};\Omega )$. +We start by considering the case of affine grids in two and three space dimensions. We introduce the Piola transformation for vector +fields and discuss the choice of function spaces and degrees of freedom. These results are then extendend to bi- and +trilinear grids. We explain the practical construction of global shape functions and conclude this section with some remarks +on approximation results. +
    +Numerical results, which serve to illustrate the convergence of the method, are presented in the third section. +In Appendix A, we demonstrate how solutions of the two-dimensional model problem can be constructed from solutions of the scalar Laplace +equation. +
    +In Appendix B we motivate the model problem studied in the report by considering the +time-harmonic Maxwell's equations in the low-frequency case. +
    +

    + +


    + + + + + +

    +
    + +2003-04-30 +
    + + diff --git a/deal.II/doc/reports/nedelec/main.css b/deal.II/doc/reports/nedelec/main.css new file mode 100644 index 0000000000..aad8978165 --- /dev/null +++ b/deal.II/doc/reports/nedelec/main.css @@ -0,0 +1,30 @@ +/* Century Schoolbook font is very similar to Computer Modern Math: cmmi */ +.MATH { font-family: "Century Schoolbook", serif; } +.MATH I { font-family: "Century Schoolbook", serif; font-shape: italic } +.BOLDMATH { font-family: "Century Schoolbook", serif; font-weight: bold } + +/* implement both fixed-size and relative sizes */ +SMALL.XTINY { font-size : xx-small } +SMALL.TINY { font-size : x-small } +SMALL.SCRIPTSIZE { font-size : smaller } +SMALL.FOOTNOTESIZE { font-size : small } +SMALL.SMALL { } +BIG.LARGE { } +BIG.XLARGE { font-size : large } +BIG.XXLARGE { font-size : x-large } +BIG.HUGE { font-size : larger } +BIG.XHUGE { font-size : xx-large } + +/* heading styles */ +H1 { } +H2 { } +H3 { } +H4 { } +H5 { } + +/* mathematics styles */ +DIV.displaymath { } /* math displays */ +TD.eqno { } /* equation-number cells */ + + +/* document-specific styles come next */ diff --git a/deal.II/doc/reports/nedelec/main.html b/deal.II/doc/reports/nedelec/main.html new file mode 100644 index 0000000000..c7412e06ac --- /dev/null +++ b/deal.II/doc/reports/nedelec/main.html @@ -0,0 +1,157 @@ + + + + + +An -conforming FEM: Nédélec's elements of first type + + + + + + + + + + + + + + +

    An +$ H(\mathop {\rm curl};\Omega )$-conforming FEM: +
    +Nédélec's elements of first type

    +

    Anna Schneebeli, April 30, 2003

    +

    +Abstract: The aim of this report is to give an introduction to Nédélec's +$ H(\mathop {\rm curl};\Omega )$-conforming finite element method of first +type. As the name suggests, this method has been introduced in 1980 by J. C. Nédélec in [8]. +
    +In the first section, we present the model problem and introduce the framework for its variational formulation. +
    +In the second section, we present Nédélec's elements of first type for +$ H(\mathop {\rm curl};\Omega )$. +We start by considering the case of affine grids in two and three space dimensions. We introduce the Piola transformation for vector +fields and discuss the choice of function spaces and degrees of freedom. These results are then extendend to bi- and +trilinear grids. We explain the practical construction of global shape functions and conclude this section with some remarks +on approximation results. +
    +Numerical results, which serve to illustrate the convergence of the method, are presented in the third section. +In Appendix A, we demonstrate how solutions of the two-dimensional model problem can be constructed from solutions of the scalar Laplace +equation. +
    +In Appendix B we motivate the model problem studied in the report by considering the +time-harmonic Maxwell's equations in the low-frequency case. +
    +

    + +


    + + + + + +

    +
    + +2003-04-30 +
    + + diff --git a/deal.II/doc/reports/nedelec/nedelec.ps b/deal.II/doc/reports/nedelec/nedelec.ps new file mode 100644 index 0000000000..7ca06c5f8b --- /dev/null +++ b/deal.II/doc/reports/nedelec/nedelec.ps @@ -0,0 +1,7846 @@ +%!PS-Adobe-2.0 +%%Creator: dvips(k) 5.86 Copyright 1999 Radical Eye Software +%%Title: main.dvi +%%Pages: 23 +%%PageOrder: Ascend +%%BoundingBox: 0 0 596 842 +%%DocumentFonts: Helvetica +%%EndComments +%DVIPSWebPage: (www.radicaleye.com) +%DVIPSCommandLine: dvips main -o nedelec.ps +%DVIPSParameters: dpi=600, compressed +%DVIPSSource: TeX output 2003.04.30:1719 +%%BeginProcSet: texc.pro +%! +/TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S +N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72 +mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0 +0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{ +landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize +mul 0}ifelse TR}if Resolution VResolution vsize -72 div 1 add mul TR[ +matrix currentmatrix{A A round sub abs 0.00001 lt{round}if}forall round +exch round exch]setmatrix}N/@landscape{/isls true N}B/@manualfeed{ +statusdict/manualfeed true put}B/@copies{/#copies X}B/FMat[1 0 0 -1 0 0] +N/FBB[0 0 0 0]N/nn 0 N/IEn 0 N/ctr 0 N/df-tail{/nn 8 dict N nn begin +/FontType 3 N/FontMatrix fntrx N/FontBBox FBB N string/base X array +/BitMaps X/BuildChar{CharBuilder}N/Encoding IEn N end A{/foo setfont}2 +array copy cvx N load 0 nn put/ctr 0 N[}B/sf 0 N/df{/sf 1 N/fntrx FMat N +df-tail}B/dfs{div/sf X/fntrx[sf 0 0 sf neg 0 0]N df-tail}B/E{pop nn A +definefont setfont}B/Cw{Cd A length 5 sub get}B/Ch{Cd A length 4 sub get +}B/Cx{128 Cd A length 3 sub get sub}B/Cy{Cd A length 2 sub get 127 sub} +B/Cdx{Cd A length 1 sub get}B/Ci{Cd A type/stringtype ne{ctr get/ctr ctr +1 add N}if}B/id 0 N/rw 0 N/rc 0 N/gp 0 N/cp 0 N/G 0 N/CharBuilder{save 3 +1 roll S A/base get 2 index get S/BitMaps get S get/Cd X pop/ctr 0 N Cdx +0 Cx Cy Ch sub Cx Cw add Cy setcachedevice Cw Ch true[1 0 0 -1 -.1 Cx +sub Cy .1 sub]/id Ci N/rw Cw 7 add 8 idiv string N/rc 0 N/gp 0 N/cp 0 N{ +rc 0 ne{rc 1 sub/rc X rw}{G}ifelse}imagemask restore}B/G{{id gp get/gp +gp 1 add N A 18 mod S 18 idiv pl S get exec}loop}B/adv{cp add/cp X}B +/chg{rw cp id gp 4 index getinterval putinterval A gp add/gp X adv}B/nd{ +/cp 0 N rw exit}B/lsh{rw cp 2 copy get A 0 eq{pop 1}{A 255 eq{pop 254}{ +A A add 255 and S 1 and or}ifelse}ifelse put 1 adv}B/rsh{rw cp 2 copy +get A 0 eq{pop 128}{A 255 eq{pop 127}{A 2 idiv S 128 and or}ifelse} +ifelse put 1 adv}B/clr{rw cp 2 index string putinterval adv}B/set{rw cp +fillstr 0 4 index getinterval putinterval adv}B/fillstr 18 string 0 1 17 +{2 copy 255 put pop}for N/pl[{adv 1 chg}{adv 1 chg nd}{1 add chg}{1 add +chg nd}{adv lsh}{adv lsh nd}{adv rsh}{adv rsh nd}{1 add adv}{/rc X nd}{ +1 add set}{1 add clr}{adv 2 chg}{adv 2 chg nd}{pop nd}]A{bind pop} +forall N/D{/cc X A type/stringtype ne{]}if nn/base get cc ctr put nn +/BitMaps get S ctr S sf 1 ne{A A length 1 sub A 2 index S get sf div put +}if put/ctr ctr 1 add N}B/I{cc 1 add D}B/bop{userdict/bop-hook known{ +bop-hook}if/SI save N @rigin 0 0 moveto/V matrix currentmatrix A 1 get A +mul exch 0 get A mul add .99 lt{/QV}{/RV}ifelse load def pop pop}N/eop{ +SI restore userdict/eop-hook known{eop-hook}if showpage}N/@start{ +userdict/start-hook known{start-hook}if pop/VResolution X/Resolution X +1000 div/DVImag X/IEn 256 array N 2 string 0 1 255{IEn S A 360 add 36 4 +index cvrs cvn put}for pop 65781.76 div/vsize X 65781.76 div/hsize X}N +/p{show}N/RMat[1 0 0 -1 0 0]N/BDot 260 string N/Rx 0 N/Ry 0 N/V{}B/RV/v{ +/Ry X/Rx X V}B statusdict begin/product where{pop false[(Display)(NeXT) +(LaserWriter 16/600)]{A length product length le{A length product exch 0 +exch getinterval eq{pop true exit}if}{pop}ifelse}forall}{false}ifelse +end{{gsave TR -.1 .1 TR 1 1 scale Rx Ry false RMat{BDot}imagemask +grestore}}{{gsave TR -.1 .1 TR Rx Ry scale 1 1 false RMat{BDot} +imagemask grestore}}ifelse B/QV{gsave newpath transform round exch round +exch itransform moveto Rx 0 rlineto 0 Ry neg rlineto Rx neg 0 rlineto +fill grestore}B/a{moveto}B/delta 0 N/tail{A/delta X 0 rmoveto}B/M{S p +delta add tail}B/b{S p tail}B/c{-4 M}B/d{-3 M}B/e{-2 M}B/f{-1 M}B/g{0 M} +B/h{1 M}B/i{2 M}B/j{3 M}B/k{4 M}B/w{0 rmoveto}B/l{p -4 w}B/m{p -3 w}B/n{ +p -2 w}B/o{p -1 w}B/q{p 1 w}B/r{p 2 w}B/s{p 3 w}B/t{p 4 w}B/x{0 S +rmoveto}B/y{3 2 roll p a}B/bos{/SS save N}B/eos{SS restore}B end + +%%EndProcSet +%%BeginProcSet: special.pro +%! +TeXDict begin/SDict 200 dict N SDict begin/@SpecialDefaults{/hs 612 N +/vs 792 N/ho 0 N/vo 0 N/hsc 1 N/vsc 1 N/ang 0 N/CLIP 0 N/rwiSeen false N +/rhiSeen false N/letter{}N/note{}N/a4{}N/legal{}N}B/@scaleunit 100 N +/@hscale{@scaleunit div/hsc X}B/@vscale{@scaleunit div/vsc X}B/@hsize{ +/hs X/CLIP 1 N}B/@vsize{/vs X/CLIP 1 N}B/@clip{/CLIP 2 N}B/@hoffset{/ho +X}B/@voffset{/vo X}B/@angle{/ang X}B/@rwi{10 div/rwi X/rwiSeen true N}B +/@rhi{10 div/rhi X/rhiSeen true N}B/@llx{/llx X}B/@lly{/lly X}B/@urx{ +/urx X}B/@ury{/ury X}B/magscale true def end/@MacSetUp{userdict/md known +{userdict/md get type/dicttype eq{userdict begin md length 10 add md +maxlength ge{/md md dup length 20 add dict copy def}if end md begin +/letter{}N/note{}N/legal{}N/od{txpose 1 0 mtx defaultmatrix dtransform S +atan/pa X newpath clippath mark{transform{itransform moveto}}{transform{ +itransform lineto}}{6 -2 roll transform 6 -2 roll transform 6 -2 roll +transform{itransform 6 2 roll itransform 6 2 roll itransform 6 2 roll +curveto}}{{closepath}}pathforall newpath counttomark array astore/gc xdf +pop ct 39 0 put 10 fz 0 fs 2 F/|______Courier fnt invertflag{PaintBlack} +if}N/txpose{pxs pys scale ppr aload pop por{noflips{pop S neg S TR pop 1 +-1 scale}if xflip yflip and{pop S neg S TR 180 rotate 1 -1 scale ppr 3 +get ppr 1 get neg sub neg ppr 2 get ppr 0 get neg sub neg TR}if xflip +yflip not and{pop S neg S TR pop 180 rotate ppr 3 get ppr 1 get neg sub +neg 0 TR}if yflip xflip not and{ppr 1 get neg ppr 0 get neg TR}if}{ +noflips{TR pop pop 270 rotate 1 -1 scale}if xflip yflip and{TR pop pop +90 rotate 1 -1 scale ppr 3 get ppr 1 get neg sub neg ppr 2 get ppr 0 get +neg sub neg TR}if xflip yflip not and{TR pop pop 90 rotate ppr 3 get ppr +1 get neg sub neg 0 TR}if yflip xflip not and{TR pop pop 270 rotate ppr +2 get ppr 0 get neg sub neg 0 S TR}if}ifelse scaleby96{ppr aload pop 4 +-1 roll add 2 div 3 1 roll add 2 div 2 copy TR .96 dup scale neg S neg S +TR}if}N/cp{pop pop showpage pm restore}N end}if}if}N/normalscale{ +Resolution 72 div VResolution 72 div neg scale magscale{DVImag dup scale +}if 0 setgray}N/psfts{S 65781.76 div N}N/startTexFig{/psf$SavedState +save N userdict maxlength dict begin/magscale true def normalscale +currentpoint TR/psf$ury psfts/psf$urx psfts/psf$lly psfts/psf$llx psfts +/psf$y psfts/psf$x psfts currentpoint/psf$cy X/psf$cx X/psf$sx psf$x +psf$urx psf$llx sub div N/psf$sy psf$y psf$ury psf$lly sub div N psf$sx +psf$sy scale psf$cx psf$sx div psf$llx sub psf$cy psf$sy div psf$ury sub +TR/showpage{}N/erasepage{}N/copypage{}N/p 3 def @MacSetUp}N/doclip{ +psf$llx psf$lly psf$urx psf$ury currentpoint 6 2 roll newpath 4 copy 4 2 +roll moveto 6 -1 roll S lineto S lineto S lineto closepath clip newpath +moveto}N/endTexFig{end psf$SavedState restore}N/@beginspecial{SDict +begin/SpecialSave save N gsave normalscale currentpoint TR +@SpecialDefaults count/ocount X/dcount countdictstack N}N/@setspecial{ +CLIP 1 eq{newpath 0 0 moveto hs 0 rlineto 0 vs rlineto hs neg 0 rlineto +closepath clip}if ho vo TR hsc vsc scale ang rotate rwiSeen{rwi urx llx +sub div rhiSeen{rhi ury lly sub div}{dup}ifelse scale llx neg lly neg TR +}{rhiSeen{rhi ury lly sub div dup scale llx neg lly neg TR}if}ifelse +CLIP 2 eq{newpath llx lly moveto urx lly lineto urx ury lineto llx ury +lineto closepath clip}if/showpage{}N/erasepage{}N/copypage{}N newpath}N +/@endspecial{count ocount sub{pop}repeat countdictstack dcount sub{end} +repeat grestore SpecialSave restore end}N/@defspecial{SDict begin}N +/@fedspecial{end}B/li{lineto}B/rl{rlineto}B/rc{rcurveto}B/np{/SaveX +currentpoint/SaveY X N 1 setlinecap newpath}N/st{stroke SaveX SaveY +moveto}N/fil{fill SaveX SaveY moveto}N/ellipse{/endangle X/startangle X +/yrad X/xrad X/savematrix matrix currentmatrix N TR xrad yrad scale 0 0 +1 startangle endangle arc savematrix setmatrix}N end + +%%EndProcSet +TeXDict begin 39158280 55380996 1000 600 600 (main.dvi) +@start +%DVIPSBitmapFont: Fa cmtt10 10.95 11 +/Fa 11 109 df<120FEA3FC0EA7FE0A2EAFFF0A4EA7FE0A2EA3FC0EA0F000C0C6E8B30> +46 D<147F4A7EA2497FA4497F14F7A401077F14E3A3010F7FA314C1A2011F7FA490383F +80FEA590387F007FA4498049133F90B6FCA34881A39038FC001F00038149130FA4000781 +491307A2D87FFFEB7FFFB56CB51280A46C496C130029397DB830>65 +D<007FB512F0B612FE6F7E82826C813A03F8001FF815076F7E1501A26F7EA615015EA24B +5A1507ED1FF0ED7FE090B65A5E4BC7FC6F7E16E0829039F8000FF8ED03FC6F7E1500167F +A3EE3F80A6167F1700A25E4B5A1503ED1FFC007FB6FCB75A5E16C05E6C02FCC7FC29387E +B730>I<007FB6FCB71280A46C1500260007F0C7FCB3B3A8007FB6FCB71280A46C150021 +3879B730>73 D<383FFFF8487FB57EA26C5B6C5BD801FCC9FCB3B0EE0F80EE1FC0A9003F +B7FC5AB8FCA27E6C16802A387EB730>76 DI<003FB712C04816E0B8FCA43AFE003F800FA8007CED07C0C791C7FCB3B1011FB5FC +4980A46D91C7FC2B387EB730>84 D97 D<913801FFE04A7F5CA2 +8080EC0007AAEB03FE90381FFF874913E790B6FC5A5A481303380FFC00D81FF0133F4913 +1F485A150F4848130790C7FCA25AA25AA87E6C140FA27F003F141F6D133F6C7E6D137F39 +0FF801FF2607FE07EBFFC06CB712E06C16F06C14F76D01C713E0011F010313C0D907FCC8 +FC2C397DB730>100 D<49B4FC010713E0011F13F8017F7F90B57E488048018113803A07 +FC007FC04848133FD81FE0EB1FE0150F484814F0491307127F90C7FCED03F85A5AB7FCA5 +16F048C9FC7E7EA27F003FEC01F06DEB03F86C7E6C7E6D1307D807FEEB1FF03A03FFC07F +E06C90B5FC6C15C0013F14806DEBFE00010713F8010013C0252A7CA830>I<387FFFF8B5 +7EA47EEA0001B3B3A8007FB612F0B712F8A46C15F025387BB730>108 +D E +%EndDVIPSBitmapFont +%DVIPSBitmapFont: Fb cmr8 8 1 +/Fb 1 51 df50 D E +%EndDVIPSBitmapFont +%DVIPSBitmapFont: Fc cmmi10 10.95 2 +/Fc 2 77 df<49B6D8C03FB512F81BF01780D900010180C7383FF00093C85B4B5EA2197F +14034B5EA219FF14074B93C7FCA260140F4B5DA21803141F4B5DA21807143F4B5DA2180F +4AB7FC61A20380C7121F14FF92C85BA2183F5B4A5EA2187F13034A5EA218FF13074A93C8 +FCA25F130F4A5DA21703131F4A5DA2013F1507A24A5D496C4A7EB6D8E01FB512FCA2614D +3E7DBD4C>72 D<49B612F0A3D900010180C7FC93C8FC5DA314035DA314075DA3140F5DA3 +141F5DA3143F5DA3147F5DA314FF92C9FCA35B5C180C181E0103161C5C183C183813074A +1578187018F0130F4AEC01E0A21703011FED07C04A140F171F013FED3F8017FF4A130301 +7F021F1300B9FCA25F373E7DBD3E>76 D E +%EndDVIPSBitmapFont +%DVIPSBitmapFont: Fd cmtt10 10 30 +/Fd 30 121 df<007FB6FCB71280A46C150021067B9B2C>45 D<121FEA3F80EA7FC0EAFF +E0A5EA7FC0EA3F80EA1F000B0B708A2C>I<1507ED0F80151FA2153F16005D157E15FE5D +14015D14035DA214075D140F5D141F5D143F92C7FC5C147E14FE5CA213015C13035C1307 +5C130F5C131F5CA2133F91C8FC5B137E13FE5B12015B12035B12075BA2120F5B121F5B12 +3F90C9FC5A127E12FE5AA25A127821417BB92C>I<121FEA3F80EA7FC0EAFFE0A5EA7FC0 +EA3F80EA1F00C7FCAE121FEA3F80EA7FC0EAFFE0A5EA7FC0EA3F80EA1F000B2470A32C> +58 D<14FE497EA4497FA214EFA2130781A214C7A2010F7FA314C390381F83F0A590383F +01F8A490387E00FCA549137E90B512FEA34880A29038F8003FA34848EB1F80A4000715C0 +49130FD87FFEEBFFFC6D5AB514FE6C15FC497E27347EB32C>65 D<007FB512E015F8B612 +FE6C8016C03903F0003FED0FE0ED07F01503A2ED01F8A6ED03F0A21507ED0FE0ED1FC0ED +FF8090B612005D5D15FF16C09039F0001FE0ED07F0ED03F81501ED00FCA216FE167EA616 +FE16FC1501ED03F8150FED3FF0007FB612E016C0B712806CECFE0015F027337FB22C>I< +007FB5FCB612C015F0816C803907E003FEEC00FFED7F80153FED1FC0ED0FE0A2150716F0 +150316F81501A4ED00FCACED01F8A3150316F0A2150716E0150FED1FC0153FED7F80EDFF +00EC03FE007FB55AB65A5D15C06C91C7FC26337EB22C>68 D<007FB612F0B712F8A37E39 +03F00001A7ED00F01600A4EC01E04A7EA490B5FCA5EBF003A46E5A91C8FCA5163C167EA8 +007FB612FEB7FCA36C15FC27337EB22C>I<007FB512F8B612FCA36C14F839000FC000B3 +B3A5007FB512F8B612FCA36C14F81E3379B22C>73 D<387FFFE0B57EA36C5BD803F0C8FC +B3AE16F0ED01F8A8007FB6FCB7FCA36C15F025337DB22C>76 DI<007FB512C0B612F88115FF6C15802603 +F00013C0153FED0FE0ED07F0A2150316F81501A6150316F01507A2ED0FE0ED3FC015FF90 +B61280160015FC5D15C001F0C8FCB0387FFF80B57EA36C5B25337EB22C>80 +D<007FB612FCB712FEA43AFC007E007EA70078153CC71400B3AF90383FFFFCA2497F6D5B +A227337EB22C>84 D<3801FFF0000713FE001F6D7E15E048809038C01FF81407EC01FC38 +1F80000006C77EC8127EA3ECFFFE131F90B5FC1203120F48EB807E383FF800EA7FC090C7 +FC12FE5AA47E007F14FEEB8003383FE01F6CB612FC6C15FE6C14BF0001EBFE1F3A003FF0 +07FC27247CA32C>97 DI<903803FFE0011F13F8017F13FE48B5FC48804848C6FCEA +0FF0485A49137E4848131890C9FC5A127EA25AA8127EA2127F6C140F6DEB1F806C7E6D13 +3F6C6CEB7F003907FE03FF6CB55A6C5C6C6C5B011F13E0010390C7FC21247AA32C>IIIIII<1307EB1FC0A2497EA36D5AA20107C7FC90C8FCA7387FFFC080B5FC7EA2 +EA0007B3A8007FB512FCB612FEA36C14FC1F3479B32C>I<387FFFE0B57EA37EEA0003B3 +B3A5007FB61280B712C0A36C158022337BB22C>108 D<397FF01FE039FFF87FFC9038F9 +FFFE01FB7F6CB6FC00019038F03F80ECC01F02807FEC000F5B5BA25BB3267FFFE0B5FCB5 +00F11480A36C01E0140029247FA32C>110 DI<397FF01FE039FFF8FFF801FB13FE +90B6FC6C158000019038F07FC09138801FE091380007F049EB03F85BED01FC491300A216 +FE167EA816FE6D14FCA2ED01F86D13036DEB07F0150F9138801FE09138E07FC091B51280 +160001FB5B01F813F8EC3FC091C8FCAD387FFFE0B57EA36C5B27367FA32C>I114 +D<131E133FA9007FB6FCB71280A36C1500D8003FC8FCB1ED03C0ED07E0A5EC800F011FEB +1FC0ECE07F6DB51280160001035B6D13F89038003FE0232E7EAD2C>116 +D119 D<3A3FFF03FFF048018713F8A3 +6C010313F03A00FC007E005D90387E01F8013F5BEB1F83EC87E090380FCFC0903807EF80 +EB03FF6D90C7FC5C6D5A147C14FE130180903803EF80903807CFC0EB0FC7EC83E090381F +01F0013F7FEB7E00017C137C49137E0001803A7FFF01FFFC1483B514FE6C15FC14012724 +7EA32C>I E +%EndDVIPSBitmapFont +%DVIPSBitmapFont: Fe cmsy5 5 1 +/Fe 1 1 df0 D E +%EndDVIPSBitmapFont +%DVIPSBitmapFont: Ff cmmi5 5 5 +/Ff 5 115 df104 D<137013F8A213F013E01300A6EA0F80EA1FC0EA31E01261A2EAC3C01203EA0780 +A3EA0F001308EA1E18A213301370EA0FE0EA07800D1D7D9C16>III<380F07E0383F8FF83833D81CEA63F038C3 +E03CEBC07C1203143838078000A448C7FCA4121E120C16127D911C>114 +D E +%EndDVIPSBitmapFont +%DVIPSBitmapFont: Fg msam10 10 1 +/Fg 1 4 df<007FB812F8B912FCA300F0CA123CB3B3ACB912FCA36C17F836387BB741>3 +D E +%EndDVIPSBitmapFont +%DVIPSBitmapFont: Fh cmsy7 7 8 +/Fh 8 107 df0 D<0060140600F0140E0078141E6C143C6C1478 +6C14F039078001E03903C003C03901E007803900F00F00EB781E6D5A6D5A6D5A6D5A6D5A +497E497EEB1E78497E497E497E3901E007803903C003C039078001E048C712F0001E1478 +48143C48141E48140E006014061F1F769D34>2 D<017F157F2601FFE0903803FFC00007 +01F890380FF1F0260F83FC90381F0038261E00FF013C7F001890263F8078130C4890261F +C0E07F007090260FE1C07F0060EB07E3913803F780486DB4C7EA01806E5A157E157F8182 +4B7E0060DAF7E0EB0300913801E3F0DBC3F85B6C90260381FC13066C90260F00FE5B001C +011E90387F803C6C017C90381FE0F82607C7F86DB45A2601FFE0010313C06C6CC86CC7FC +391B7C9942>49 D<49B5FC130F133F01FFC7FCEA01F8EA03E0EA078048C8FC121E121C12 +3C123812781270A212F05AA2B7FCA300E0C8FCA27E1270A212781238123C121C121E7E6C +7EEA03E0EA01F86CB4FC013FB5FC130F130120277AA12D>I<1406140EB3B2007FB712E0 +B8FC7E2B287CA734>63 D<147EEB03FEEB0FE0EB1F00133E5BB35BA2485AEA07E0EAFF80 +00FCC7FCB47EEA07E0EA01F06C7EA2137CB37F7FEB0FE0EB03FEEB007E173B7BAB22> +102 D<12FCB47EEA0FE0EA01F06C7E137CB37FA27FEB0FC0EB03FEEB007EEB03FEEB0FC0 +EB1F00133EA25BB35B485AEA0FE0EAFF8000FCC7FC173B7BAB22>I<12E0B3B3B3A5033B +78AB14>106 D E +%EndDVIPSBitmapFont +%DVIPSBitmapFont: Fi cmr5 5 3 +/Fi 3 51 df<14E0B0B712C0A3C700E0C7FCB022237C9B2B>43 D<1360EA01E0120F12FF +12F11201B3A3387FFF80A2111C7B9B1C>49 DI E +%EndDVIPSBitmapFont +%DVIPSBitmapFont: Fj cmmib10 10 1 +/Fj 1 83 df<0103B712E04916FEF0FFC085D90007D9800113F89438003FFCF00FFE5C93 +C76C7EA21A805C5DA3023F4B13005DA24E5A147F4B5D4E5A4E5A02FF4B5A4B495B050790 +C7FCEF3FFC4990B612F0188018E0DBE0017F496E6C7E4B6D7E717EA2496F7E5DA25F495E +92C7FCA2173F5B4A5DA3013F037F14604A4B13F0A21901017F033F14E04A1603B600F890 +391FFC07C094390FFE1F8071B51200050113FCCBEA3FF0443A7CB848>82 +D E +%EndDVIPSBitmapFont +%DVIPSBitmapFont: Fk cmr10 10.95 51 +/Fk 51 124 df<913801FFC0021F13FC9139FF007F80D903F8EB0FE0D90FF0EB07F8D91F +C0EB01FCD97F806DB4FC49C86C7E48486F7E00038348486F7E000F8349150F001F834915 +07003F83A348486F7EAA6C6C4B5AA3001F5FA26C6C4B5AA200075F6D151F00035FA26C6C +4B5A00005FA2017F4BC7FC6D157EA26D6C5C010F5DA26D6C495A00E0EF0380010315E0D8 +70019238C007006E130301001580A36C0160EC000E003C017049131E263FFFF0ECFFFEA3 +6C5FA339407CBF42>10 D12 D14 +D<4B6C130C4B6C131EA20307143EA24C133CA2030F147CA293C71278A24B14F8A2031E5C +A2033E1301A2033C5CA3037C1303A203785CA203F81307A24B5CA20201140F007FBAFCBB +1280A26C1900C72707C0003EC8FC4B133CA3020F147CA292C71278A24A14F8A2021E5CA3 +023E1301007FBAFCBB1280A26C1900C727F80007C0C8FC4A5CA20101140FA24A91C9FCA3 +01035CA24A131EA20107143EA24A133CA2010F147CA291C71278A34914F8A2011E5CA201 +3E1301A2013C5CA201186D5A41517BBE4C>35 D<1430147014E0EB01C0EB03801307EB0F +00131E133E133C5B13F85B12015B1203A2485AA2120F5BA2121F90C7FCA25AA3123E127E +A6127C12FCB2127C127EA6123E123FA37EA27F120FA27F1207A26C7EA212017F12007F13 +787F133E131E7FEB07801303EB01C0EB00E014701430145A77C323>40 +D<12C07E12707E7E121E7E6C7E7F12036C7E7F12007F1378137CA27FA2133F7FA2148013 +0FA214C0A3130714E0A6130314F0B214E01307A614C0130FA31480A2131F1400A25B133E +A25BA2137813F85B12015B485A12075B48C7FC121E121C5A5A5A5A145A7BC323>I<1506 +150FB3A9007FB912E0BA12F0A26C18E0C8000FC9FCB3A915063C3C7BB447>43 +D<121EEA7F8012FF13C0A213E0A3127FEA1E601200A413E013C0A312011380120313005A +120E5A1218123812300B1C798919>II<121EEA7F80A2EAFFC0A4 +EA7F80A2EA1E000A0A798919>I48 +DIII<150E15 +1E153EA2157EA215FE1401A21403EC077E1406140E141CA214381470A214E0EB01C0A2EB +0380EB0700A2130E5BA25B5BA25B5B1201485A90C7FC5A120E120C121C5AA25A5AB8FCA3 +C8EAFE00AC4A7E49B6FCA3283E7EBD2D>I<00061403D80780131F01F813FE90B5FC5D5D +5D15C092C7FC14FCEB3FE090C9FCACEB01FE90380FFF8090383E03E090387001F8496C7E +49137E497F90C713800006141FC813C0A216E0150FA316F0A3120C127F7F12FFA416E090 +C7121F12FC007015C012780038EC3F80123C6CEC7F00001F14FE6C6C485A6C6C485A3903 +F80FE0C6B55A013F90C7FCEB07F8243F7CBC2D>II<1238123C123F90B612FCA316F85A16F016E00078C712010070EC03C0ED +078016005D48141E151C153C5DC8127015F04A5A5D14034A5A92C7FC5C141EA25CA2147C +147814F8A213015C1303A31307A3130F5CA2131FA6133FAA6D5A0107C8FC26407BBD2D> +III<121EEA7F80A2EAFFC0A4EA7F80A2EA1E00C7FCB3121E +EA7F80A2EAFFC0A4EA7F80A2EA1E000A2779A619>I<121EEA7F80A2EAFFC0A4EA7F80A2 +EA1E00C7FCB3121E127FEAFF80A213C0A4127F121E1200A412011380A3120313005A1206 +120E120C121C5A1230A20A3979A619>I +67 D69 DI78 D<003FB91280A3903AF0007FE001 +018090393FC0003F48C7ED1FC0007E1707127C00781703A300701701A548EF00E0A5C816 +00B3B14B7E4B7E0107B612FEA33B3D7DBC42>84 D +86 D97 DI<49B4FC010F13E090383F00F8017C131E4848131F4848137F0007ECFF80485A5B12 +1FA24848EB7F00151C007F91C7FCA290C9FC5AAB6C7EA3003FEC01C07F001F140316806C +6C13076C6C14000003140E6C6C131E6C6C137890383F01F090380FFFC0D901FEC7FC222A +7DA828>IIII<167C903903F801FF903A1FFF078F8090397E0FDE +1F9038F803F83803F001A23B07E000FC0600000F6EC7FC49137E001F147FA8000F147E6D +13FE00075C6C6C485AA23901F803E03903FE0FC026071FFFC8FCEB03F80006CAFC120EA3 +120FA27F7F6CB512E015FE6C6E7E6C15E06C810003813A0FC0001FFC48C7EA01FE003E14 +0048157E825A82A46C5D007C153E007E157E6C5D6C6C495A6C6C495AD803F0EB0FC0D800 +FE017FC7FC90383FFFFC010313C0293D7EA82D>III108 D<2701F801FE14FF00FF90 +2707FFC00313E0913B1E07E00F03F0913B7803F03C01F80007903BE001F87000FC2603F9 +C06D487F000101805C01FBD900FF147F91C75B13FF4992C7FCA2495CB3A6486C496CECFF +80B5D8F87FD9FC3F13FEA347287DA74C>I<3901F801FE00FF903807FFC091381E07E091 +387803F000079038E001F82603F9C07F0001138001FB6D7E91C7FC13FF5BA25BB3A6486C +497EB5D8F87F13FCA32E287DA733>I<14FF010713E090381F81F890387E007E01F8131F +4848EB0F804848EB07C04848EB03E0000F15F04848EB01F8A2003F15FCA248C812FEA448 +15FFA96C15FEA36C6CEB01FCA3001F15F86C6CEB03F0A26C6CEB07E06C6CEB0FC06C6CEB +1F80D8007EEB7E0090383F81FC90380FFFF0010090C7FC282A7EA82D>I<3901FC03FC00 +FF90381FFF8091387C0FE09039FDE003F03A07FFC001FC6C496C7E6C90C7127F49EC3F80 +5BEE1FC017E0A2EE0FF0A3EE07F8AAEE0FF0A4EE1FE0A2EE3FC06D1580EE7F007F6E13FE +9138C001F89039FDE007F09039FC780FC0DA3FFFC7FCEC07F891C9FCAD487EB512F8A32D +3A7EA733>I<3901F807E000FFEB1FF8EC787CECE1FE3807F9C100031381EA01FB1401EC +00FC01FF1330491300A35BB3A5487EB512FEA31F287EA724>114 +D<90383FC0603901FFF8E03807C03F381F000F003E1307003C1303127C0078130112F814 +00A27E7E7E6D1300EA7FF8EBFFC06C13F86C13FE6C7F6C1480000114C0D8003F13E00103 +13F0EB001FEC0FF800E01303A214017E1400A27E15F07E14016C14E06CEB03C090388007 +8039F3E01F0038E0FFFC38C01FE01D2A7DA824>I<131CA6133CA4137CA213FCA2120112 +031207001FB512C0B6FCA2D801FCC7FCB3A215E0A912009038FE01C0A2EB7F03013F1380 +90381F8700EB07FEEB01F81B397EB723>IIIIII123 D E +%EndDVIPSBitmapFont +%DVIPSBitmapFont: Fl cmex10 10 31 +/Fl 31 101 df<1430147014E0EB01C01303EB0780EB0F00A2131E5BA25B13F85B12015B +1203A2485AA3485AA3121F90C7FCA25AA3123EA2127EA6127C12FCB3A2127C127EA6123E +A2123FA37EA27F120FA36C7EA36C7EA212017F12007F13787FA27F7FA2EB0780EB03C013 +01EB00E0147014301462738226>0 D<12C07E12707E123C7E7EA26C7E6C7EA26C7E7F12 +007F1378137CA27FA37FA31480130FA214C0A31307A214E0A6130314F0B3A214E01307A6 +14C0A2130FA31480A2131F1400A3133EA35BA2137813F85B12015B485AA2485A48C7FCA2 +121E5A12385A5A5A14627C8226>I<1538EC01F8EC07E0EC1F80EC7E005CEB03F85C495A +A2495AB3AB131F5CA249C7FC137E5BEA03F8EA07E0EA3F8000FCC8FCA2EA3F80EA07E0EA +03F8C67E137E7F6D7EA280130FB3AB6D7EA26D7E80EB00FC147EEC1F80EC07E0EC01F8EC +00381D62778230>8 D<12E012FCEA3F80EA07E0EA03F8C67E137E7F6D7EA280130FB3AB +6D7EA26D7E80EB00FC147EEC1F80EC07E0EC01F8A2EC07E0EC1F80EC7E005CEB03F85C49 +5AA2495AB3AB131F5CA249C7FC137E5BEA03F8EA07E0EA3F8000FCC8FC12E01D62778230 +>I<151E153E157C15F8EC01F0EC03E01407EC0FC0EC1F8015005C147E5CA2495A495AA2 +495AA2495AA2495AA249C7FCA2137EA213FE5B12015BA212035BA21207A25B120FA35B12 +1FA45B123FA548C8FCA912FEB3A8127FA96C7EA5121F7FA4120F7FA312077FA21203A27F +1201A27F12007F137EA27FA26D7EA26D7EA26D7EA26D7EA26D7E6D7EA2147E80801580EC +0FC0EC07E01403EC01F0EC00F8157C153E151E1F94718232>16 D<12F07E127C7E7E6C7E +7F6C7E6C7E12017F6C7E137EA27F6D7EA26D7EA26D7EA26D7EA26D7EA26D7EA280147E14 +7F80A21580141FA215C0A2140F15E0A3140715F0A4140315F8A5EC01FCA9EC00FEB3A8EC +01FCA9EC03F8A515F01407A415E0140FA315C0141FA21580A2143F1500A25C147E14FE5C +A2495AA2495AA2495AA2495AA2495AA249C7FC137EA25B485A5B1203485A485A5B48C8FC +123E5A5A5A1F947D8232>I<160F161F163E167C16F8ED01F0ED03E0ED07C0150FED1F80 +1600153E157E5D4A5A5D14034A5A5D140F4A5AA24AC7FC143E147E5CA2495AA2495AA249 +5AA2130F5CA2495AA2133F91C8FCA25B137E13FEA25B1201A25B1203A35B1207A35B120F +A35BA2121FA45B123FA690C9FC5AAA12FEB3AC127FAA7E7FA6121F7FA4120FA27FA31207 +7FA312037FA312017FA212007FA2137E137F7FA280131FA26D7EA2801307A26D7EA26D7E +A26D7EA2147E143E143F6E7EA26E7E1407816E7E1401816E7E157E153E811680ED0FC015 +07ED03E0ED01F0ED00F8167C163E161F160F28C66E823D>I<12F07E127C7E7E6C7E6C7E +6C7E7F6C7E1200137C137E7F6D7E130F806D7E1303806D7EA26D7E147C147E80A26E7EA2 +6E7EA26E7EA2811403A26E7EA2811400A281157E157FA2811680A2151F16C0A3150F16E0 +A3150716F0A31503A216F8A4150116FCA6150016FEAA167FB3AC16FEAA16FC1501A616F8 +1503A416F0A21507A316E0150FA316C0151FA31680153FA216005DA2157E15FE5DA21401 +5DA24A5AA214075DA24A5AA24A5AA24AC7FCA2147E147C14FC495AA2495A5C1307495A5C +131F49C8FC137E137C5B1201485A5B485A485A48C9FC123E5A5A5A28C67E823D>I<161E +167EED01FE1507ED0FF8ED3FE0ED7FC0EDFF80913801FE004A5A4A5A5D140F4A5A5D143F +5D147F92C7FCA25C5CB3B3B3A313015CA3495AA213075C495AA2495A495A137F49C8FC48 +5A485AEA07F0EA1FE0485AB4C9FC12FCA2B4FCEA3FC06C7EEA07F0EA03FC6C7E6C7E6D7E +133F6D7E6D7EA26D7E801303A26D7EA3801300B3B3B3A38080A281143F81141F816E7E14 +07816E7E6E7E913800FF80ED7FC0ED3FE0ED0FF8ED07FE1501ED007E161E27C675823E> +26 D<12F012FCB4FC13C0EA3FE0EA0FF86C7E6C7EC67E6D7E6D7E131F806D7E13078013 +03801301A2801300B3B3B3A38080A36E7EA281141F6E7EA26E7E6E7E816E7E6E7EED7F80 +ED1FC0ED0FF0ED07F8ED01FEED007EA2ED01FEED07F8ED0FF0ED1FC0ED7F80EDFF004A5A +4A5A5D4A5A4A5AA24A5A143F5DA24AC7FCA35C5CB3B3B3A313015CA213035C13075C130F +495A5C133F495A49C8FCEA03FE485A485AEA3FE0B45A90C9FC12FC12F027C675823E>I< +EE01C0EE03E0A2160717C0A2160F1780161F1700A25E163E167E167CA216FC5EA215015E +15035EA215075E150F5EA2151F93C7FC5D153EA2157E157C15FC5DA214015DA214035D14 +075DA2140F5D141F92C8FCA25C143E147E147CA214FC5C13015CA213035CA213075C130F +5CA2131F91C9FC5B133EA2137E137C13FC5BA212015B12035BA212075BA2120F5B121F90 +CAFCA25A123E127E127CA212FC5A7E127CA2127E123E123F7EA27F120F7F1207A27F1203 +A27F12017F1200A27F137C137E133EA2133F7F80130FA2801307801303A2801301A28013 +0080147CA2147E143E143F80A281140F811407A2811403811401A2811400A281157C157E +153EA2153F8182150FA2821507821503A2821501821500A282167CA2167E163E163F82A2 +1780160F17C01607A217E01603A2EE01C02BC776823E>I<127012F8A27E127CA2127E12 +3E123F7EA27F120F7F1207A27F1203A27F12017F1200A27F137C137E133EA2133F7F8013 +0FA2801307801303A2801301A280130080147CA2147E143E143F80A281140F811407A281 +1403811401A2811400A281157C157E153EA2153F8182150FA2821507821503A282150182 +1500A282167CA2167E163E163F82A21780160F17C01607A217E01603160717C0A2160F17 +80161F1700A25E163E167E167CA216FC5EA215015E15035EA215075E150F5EA2151F93C7 +FC5D153EA2157E157C15FC5DA214015DA214035D14075DA2140F5D141F92C8FCA25C143E +147E147CA214FC5C13015CA213035CA213075C130F5CA2131F91C9FC5B133EA2137E137C +13FC5BA212015B12035BA212075BA2120F5B121F90CAFCA25A123E127E127CA212FC5AA2 +12702BC778823E>I<176017F0EE01F8A3EE03F0A3EE07E0A3EE0FC0A3EE1F80A3EE3F00 +A3167EA35EA34B5AA34B5AA34B5AA44B5AA34B5AA34BC7FCA3157EA35DA34A5AA34A5AA3 +4A5AA34A5AA34A5AA44AC8FCA3147EA35CA3495AA3495AA3495AA3495AA3495AA349C9FC +A4137EA35BA3485AA3485AA3485AA3485AA3485AA348CAFCA3127EA35AA4127EA37EA36C +7EA36C7EA36C7EA36C7EA36C7EA36C7EA3137EA37FA46D7EA36D7EA36D7EA36D7EA36D7E +A36D7EA3147EA380A36E7EA46E7EA36E7EA36E7EA36E7EA36E7EA3157EA381A36F7EA36F +7EA36F7EA46F7EA36F7EA36F7EA3167EA382A3EE1F80A3EE0FC0A3EE07E0A3EE03F0A3EE +01F8A3EE00F017602DF8748243>42 D<1230127812FCA3127EA37EA36C7EA36C7EA36C7E +A36C7EA36C7EA36C7EA3137EA37FA46D7EA36D7EA36D7EA36D7EA36D7EA36D7EA3147EA3 +80A36E7EA36E7EA46E7EA36E7EA36E7EA36E7EA3157EA381A36F7EA36F7EA36F7EA46F7E +A36F7EA36F7EA3167EA382A3EE1F80A3EE0FC0A3EE07E0A3EE03F0A3EE01F8A4EE03F0A3 +EE07E0A3EE0FC0A3EE1F80A3EE3F00A3167EA35EA34B5AA34B5AA34B5AA44B5AA34B5AA3 +4BC7FCA3157EA35DA34A5AA34A5AA34A5AA34A5AA44A5AA34AC8FCA3147EA35CA3495AA3 +495AA3495AA3495AA3495AA349C9FCA4137EA35BA3485AA3485AA3485AA3485AA3485AA3 +48CAFCA3127EA35AA3127812302DF8778243>I<177C17FCEE01F8A2EE03F0EE07E0EE0F +C0A2EE1F80EE3F005E167E5E15015E15034B5A5E150F5E151F4B5AA24BC7FCA215FEA24A +5AA24A5AA24A5AA2140F5D141F5D143F5DA2147F92C8FC5CA25C13015C1303A25C1307A3 +495AA3495AA3133F5CA3137F5CA313FF91C9FCA35A5BA31203A25BA31207A35BA3120FA4 +5BA2121FA65BA2123FA85BA2127FAE5B12FFB3A62E95688149>48 +D<12F87E127EA27E6C7E6C7EA26C7E6C7E7F12016C7E7F137E137F6D7E131F80130F806D +7EA26D7EA26D7EA26D7EA2147FA26E7EA281141F81140F811407A281140381A214018114 +0081A28182A36F7EA36F7EA382150FA3821507A3821503A3821501A382A281A31780A316 +7FA317C0A4163FA217E0A6161FA217F0A8160FA217F8AE160717FCB3A62E957E8149>I< +EC01F01407140F143F147F903801FFC0491380491300495A495A495A495A5C495A485B5A +91C7FC485AA2485AA2485AA2123F5BA2127F5BA412FF5BB3B3A71C4B607E4A>56 +D<12F812FE6C7E7F13F0EA3FF86C7E6C7EEA03FF6C7F6C7F6D7E6D7E806D7E130F6D7E80 +7F15807F15C07FA2EC7FE0A3EC3FF0A415F8141FB3B3A71D4B737E4A>IIIII64 DII< +EAFF80B3B3B00934598049>I<167F923801FFC0923803C0F0923807803892380F007892 +381F01FC151E153EA2157E92387C0070170015FCA44A5AA81403A45DA41407A94A5AAA4A +5AA95DA4143FA492C8FCA7143E147EA4147C123800FE13FC5CA2495A5CEA7803387007C0 +383C0F80D80FFEC9FCEA03F82E5C7C7F27>82 D88 DII<197C953807FFC0067F13FC0507B612C0057F15FC040FB50083EBFFE093B526F0001F +13FE030F01FCC8387FFFE092B50080030313FE020F01F0CA381FFFE0DAFFFCCCEA7FFE01 +1F0180963803FFF02601FFF0CEEA1FFFD81FFED013F0D8FF80F503FE00F0D2121E771080 +BF78>100 D E +%EndDVIPSBitmapFont +%DVIPSBitmapFont: Fm cmti10 10 68 +/Fm 68 123 df<04FFEB03F003039038E00FFC923A0FC0F01F1E923A3F00783E0F923A7E +01F87C3FDB7C03EBFC7F03FC14F8DA01F813F905F1137EDC01E1133C913B03F00003F000 +A314074B130760A3140F4B130F60A3010FB812C0A3903C001F80001F8000A3023F143F92 +C790C7FCA44A5C027E147EA402FE14FE4A5CA413014A13015FA313034A13035FA313074A +495AA44948495AA44948495AA3001CD9038090C8FC007E90380FC03F013E143E00FE011F +5B133C017C5C3AF8780F01E0D878F0EB07C0273FE003FFC9FC390F8000FC404C82BA33> +11 DI< +DC7FC0EB1FFF922603FFF890B512E0923C0FC07C03F801F0923C1F001E0FC00078033E90 +267E1F80137C4BD9FE3FC712FC03FC027E13015D02014A5A057815F84A48D901F8EB00E0 +1B00A302074A5A5DA31707020F5D5DA3010FBA12C0A21B80903D001F80000FC0001FA21A +3F023F021F150092C75BA2621A7E4A143F027E92C7FC1AFE62A25F02FE027E13014A5FA3 +05FE130301014B5C4A1870A219070401EDE0F001034B15E05CA2F2E1C0010714034D14C3 +4A933803E380F101E7963800FF00010F4A48143C4A94C7FCA34A495A131F5F001CEB0380 +007E90380FC01F013F92CAFC26FE3E1F133E013C5C5E3AF8780F01F0D878F0EB83E03A3F +E003FF80270F8000FECBFC4E4C82BA49>14 D<130FEB1F80133F137FEBFF00485A5BEA03 +F0485A485A485A003EC7FC5A5A12E05A111064B92A>19 D<3901E003C03907F00FE0000F +131F01F813F0001F133FA3000F131F3907B00F6038003000A2017013E0016013C0EBE001 +01C01380000113030180130000035B3807000E000E5B485B485B485B48485A00C05B1C19 +71B92B>34 D39 D<150C151C153815F0EC01E0EC +03C0EC0780EC0F00141E5C147C5C5C495A1303495A5C130F49C7FCA2133EA25BA25BA248 +5AA212035B12075BA2120F5BA2121FA290C8FCA25AA2123EA2127EA2127CA412FC5AAD12 +78A57EA3121C121EA2120E7EA26C7E6C7EA212001E5274BD22>I<140C140E80EC0380A2 +EC01C015E0A2140015F0A21578A4157C153CAB157CA715FCA215F8A21401A215F0A21403 +A215E0A21407A215C0140F1580A2141F1500A2143EA25CA25CA2495AA2495A5C1307495A +91C7FC5B133E133C5B5B485A12035B48C8FC120E5A12785A12C01E527FBD22>I44 D<387FFFF8A2B5FCA214F0150579941E>I<120EEA3F80 +127F12FFA31300127E123C0909778819>I48 D<15181538157815F0140114031407EC0FE0141F14 +7FEB03FF90383FEFC0148FEB1C1F13001580A2143FA21500A25CA2147EA214FEA25CA213 +01A25CA21303A25CA21307A25CA2130FA25CA2131FA25CA2133FA291C7FC497EB61280A3 +1D3877B72A>III<16E0ED01F01503A3150716E0A315 +0F16C0A2151F1680A2ED3F00A3157EA2157C15FC5D14015D14035D14075D140F5D141F92 +C7FC143EA25CECF81C153E903801F07EEB03E014C090380780FE130F49485A133EEB7C01 +137801F05BEA01E03803C003EA0FFE391FFFC3F04813FB267C01FF13403AF0003FFFE000 +601307C71400EC0FE05DA3141F5DA3143F92C7FCA4143E141C24487DB72A>I<157F9138 +03FFC0020F13E0EC3F8191387E00F002F81370903903F003F0903807E007EB0FC0EB1F80 +020013E04914C0017E90C7FC13FE5B485AA21203485AA2380FE07E9038E1FF809038E783 +E0391FCE01F09038DC00F813F84848137C5B157E5B485AA390C712FE5A5AA214015D5AA2 +14035DA348495A5D140F5D4A5A6C49C7FC127C147C6C485A6C485A6CB45A6C1380D801FC +C8FC243A76B72A>54 D +III<133C13 +7E13FF5AA313FE13FCEA00701300B2120EEA3F80127F12FFA31300127E123C102477A319 +>I65 D<0107B612FCEFFF8018C0903B00 +0FF0001FF04BEB07F81703021F15FC17014B14FEA2023F1400A24B1301A2147F18FC92C7 +120318F84A140718F04AEC0FE0EF1FC00101ED3F80EF7F004AEB01FEEE07F849B612E05F +9139F80007F0EE01FC01076E7E177F4AEC3F80A2010F16C0171F5CA2131F173F5CA2133F +EF7F805C1800017F5D4C5A91C7485A5F49140FEE1FE0494A5A00014AB45AB748C7FC16F8 +16C037397BB83A>II<0103B612FEEFFFC018F0903B0007F8000FF84BEB03FCEF00FE020F157F +F03F804B141F19C0021F150F19E05D1807143F19F05DA2147FA292C8FCA25C180F5CA213 +0119E04A151FA2130319C04A153FA201071780187F4A1600A2010F16FEA24A4A5A60011F +15034D5A4A5D4D5A013F4B5A173F4A4AC7FC17FC017FEC03F84C5A91C7EA1FC04949B45A +007F90B548C8FCB712F016803C397CB83F>I<0107B8FCA3903A000FF000034BEB007F18 +3E141F181E5DA2143FA25D181C147FA29238000380A24A130718004A91C7FC5E13015E4A +133E167E49B512FEA25EECF8000107147C163C4A1338A2010F147818E04A13701701011F +16C016004A14031880013F150718004A5CA2017F151E173E91C8123C177C4915FC4C5A49 +14070001ED7FF0B8FCA25F38397BB838>I<0107B712FEA3903A000FF000074B1300187C +021F153CA25DA2143FA25D1838147FA292C8FCEE03804A130718004A91C7FCA201015CA2 +4A131E163E010314FE91B5FC5EA2903807F800167C4A1378A2130FA24A1370A2011F14F0 +A24A90C8FCA2133FA25CA2137FA291CAFCA25BA25B487EB6FCA337397BB836>I<0103B5 +D8F80FB512E0A390260007F8C7381FE0004B5DA2020F153F615DA2021F157F96C7FC5DA2 +023F5D605DA2027F14016092C7FCA24A1403605CA249B7FC60A202FCC712070103150F60 +5CA20107151F605CA2010F153F605CA2011F157F95C8FC5CA2013F5D5F5CA2017F14015F +91C7FC491403007FD9FE01B512F8B55BA243397CB83E>72 D<0103B512F8A390390007F8 +005DA2140FA25DA2141FA25DA2143FA25DA2147FA292C7FCA25CA25CA21301A25CA21303 +A25CA21307A25CA2130FA25CA2131FA25CA2133FA25CA2137FA291C8FC497EB6FCA25C25 +397CB820>I<0207B512F0A391390007FC006F5AA215075EA3150F5EA3151F5EA3153F5E +A3157F93C7FCA35D5DA314015DA314035DA31407A25DA2140FA2003F5C5A141F485CA24A +5A12FC00E049C8FC14FE00705B495A6C485A381E0FC06CB4C9FCEA01F82C3B78B82C>I< +0107B512FCA25E9026000FF8C7FC5D5D141FA25DA2143FA25DA2147FA292C8FCA25CA25C +A21301A25CA21303A25CA21307A25CA2130F170C4A141CA2011F153C17384A1478A2013F +157017F04A14E01601017F140317C091C71207160F49EC1F80163F4914FF000102071300 +B8FCA25E2E397BB834>76 D<902607FFF8923807FFF0614F13E0D9000FEFF0004F5AA202 +1F167FF1EFC0141DDA1CFCEC01CF023C16DF9538039F800238ED071FA20278ED0E3F97C7 +FC0270151CA202F04B5AF0707E14E0037E14E0010117FE4D485A02C0EC0380A20103ED07 +01610280140EA20107ED1C0305385B14006F137049160705E05B010EEC01C0A2011E9138 +03800F61011CEC0700A2013C020E131F4C5C1338ED1FB80178163F04F091C8FC01705CA2 +01F04A5B187E00015DD807F816FEB500C09039007FFFFC151E150E4C397AB84A>I<9026 +03FFF891B512E0A281D90007923807F8006F6E5A61020F5E81DA0E7F5DA2021E6D130703 +3F92C7FC141C82DA3C1F5C70130EEC380FA202786D131E0307141C147082DAF003143C70 +133814E0150101016E1378030014705C8201036E13F0604A1480163F010715C1041F5B91 +C7FC17E149EC0FE360010E15F31607011E15FF95C8FC011C80A2013C805F133816001378 +5F01F8157CEA03FC267FFFE0143CB51538A243397CB83E>II<0107B612F817FF1880903B000F +F0003FE04BEB0FF0EF03F8141FEF01FC5DA2023F15FEA25DA2147FEF03FC92C7FCA24A15 +F817074A15F0EF0FE01301EF1FC04AEC3F80EFFE0001034A5AEE0FF091B612C04CC7FCD9 +07F8C9FCA25CA2130FA25CA2131FA25CA2133FA25CA2137FA291CAFCA25BA25B1201B512 +FCA337397BB838>I<0103B612F017FEEFFF80903B0007F8003FC04BEB0FF01707020FEC +03F8EF01FC5DA2021F15FEA25DA2143FEF03FC5DA2027FEC07F818F092C7120F18E04AEC +1FC0EF3F004A14FEEE01F80101EC0FE091B6128004FCC7FC9138FC003F0103EC0F80834A +6D7E8301071403A25C83010F14075F5CA2011F140FA25CA2133F161F4AECE007A2017F16 +0F180E91C7FC49020F131C007F01FE153CB5913807F078040313F0CAEAFFE0EF3F80383B +7CB83D>82 D<92383FC00E913901FFF01C020713FC91391FC07E3C91393F001F7C027CEB +0FF84A130749481303495A4948EB01F0A2495AA2011F15E091C7FCA34915C0A36E90C7FC +A2806D7E14FCECFF806D13F015FE6D6D7E6D14E0010080023F7F14079138007FFC150F15 +031501A21500A2167C120EA3001E15FC5EA3003E4A5AA24B5AA2007F4A5A4B5A6D49C7FC +6D133ED8F9F013FC39F8FC03F839F07FFFE0D8E01F138026C003FCC8FC2F3D7ABA2F>I< +0007B812E0A25AD9F800EB001F01C049EB07C0485AD900011403121E001C5C003C178014 +03123800785C00701607140700F01700485CA2140FC792C7FC5DA2141FA25DA2143FA25D +A2147FA292C9FCA25CA25CA21301A25CA21303A25CA21307A25CA2130FA25CEB3FF0007F +B512F8B6FCA2333971B83B>I<003FB539800FFFFEA326007F80C7EA7F8091C8EA3F0017 +3E49153CA2491538A20001167817705BA2000316F05F5BA2000715015F5BA2000F15035F +5BA2001F150794C7FC5BA2003F5D160E5BA2007F151E161C90C8FCA2163C4815385A1678 +1670A216F04B5A5E1503007E4A5A4BC8FC150E6C143E6C6C5B15F0390FC003E03907F01F +C00001B5C9FC38007FFCEB1FE0373B70B83E>I87 D91 +D +93 D<14F8EB07FE90381F871C90383E03FE137CEBF801120148486C5A485A120FEBC001 +001F5CA2EA3F801403007F5C1300A21407485C5AA2140F5D48ECC1C0A2141F1583168014 +3F1587007C017F1300ECFF076C485B9038038F8E391F0F079E3907FE03FC3901F000F022 +2677A42A>97 D<133FEA1FFFA3C67E137EA313FE5BA312015BA312035BA31207EBE0F8EB +E7FE9038EF0F80390FFC07C013F89038F003E013E0D81FC013F0A21380A2123F1300A214 +075A127EA2140F12FE4814E0A2141F15C05AEC3F80A215005C147E5C387801F8007C5B38 +3C03E0383E07C0381E1F80D80FFEC7FCEA01F01C3B77B926>I<147F903803FFC090380F +C1E090381F0070017E13784913383901F801F83803F003120713E0120FD81FC013F091C7 +FC485AA2127F90C8FCA35A5AA45AA3153015381578007C14F0007EEB01E0003EEB03C0EC +0F806CEB3E00380F81F83803FFE0C690C7FC1D2677A426>II<147F903803FFC090 +380FC1E090383F00F0017E13785B485A485A485A120F4913F8001F14F0383F8001EC07E0 +EC1F80397F81FF00EBFFF891C7FC90C8FC5A5AA55AA21530007C14381578007E14F0003E +EB01E0EC03C06CEB0F806CEB3E00380781F83803FFE0C690C7FC1D2677A426>IIIII<150E153F157FA3157E151C1500ABEC1F80EC7FC0ECF1F0 +EB01C090380380F813071401130F130E131EEB1C03133C013813F0A2EB0007A215E0A214 +0FA215C0A2141FA21580A2143FA21500A25CA2147EA214FEA25CA21301A25CA213035C12 +1C387E07E0A238FE0FC05C49C7FCEAF83EEA787CEA3FF0EA0FC0204883B619>IIIII<147F903803FFC090380FC1 +F090381F00F8017E137C5B4848137E4848133E0007143F5B120F485AA2485A157F127F90 +C7FCA215FF5A4814FEA2140115FC5AEC03F8A2EC07F015E0140F007C14C0007EEB1F8000 +3EEB3F00147E6C13F8380F83F03803FFC0C648C7FC202677A42A>I<9039078007C09039 +1FE03FF090393CF0787C903938F8E03E9038787FC00170497EECFF00D9F0FE148013E05C +EA01E113C15CA2D80003143FA25CA20107147FA24A1400A2010F5C5E5C4B5A131F5EEC80 +035E013F495A6E485A5E6E48C7FC017F133EEC70FC90387E3FF0EC0F8001FEC9FCA25BA2 +1201A25BA21203A25B1207B512C0A3293580A42A>II<3903C003F0390FF01FFC391E783C0F381C7C703A3C3EE03F8038383FC0EB7F +800078150000701300151CD8F07E90C7FCEAE0FE5BA2120012015BA312035BA312075BA3 +120F5BA3121F5BA3123F90C9FC120E212679A423>I<14FE903807FF8090380F83C09038 +3E00E04913F00178137001F813F00001130313F0A215E00003EB01C06DC7FC7FEBFFC06C +13F814FE6C7F6D13807F010F13C01300143F141F140F123E127E00FE1480A348EB1F0012 +E06C133E00705B6C5B381E03E06CB45AD801FEC7FC1C267AA422>II<13F8D803FEEB01C0D8078FEB03E0390E0F80 +07121E121C0038140F131F007815C01270013F131F00F0130000E015805BD8007E133FA2 +01FE14005B5D120149137EA215FE120349EBFC0EA20201131E161C15F813E0163CD9F003 +133814070001ECF07091381EF8F03A00F83C78E090393FF03FC090390FC00F00272679A4 +2D>I<01F0130ED803FC133FD8071EEB7F80EA0E1F121C123C0038143F49131F0070140F +A25BD8F07E140000E08013FEC6485B150E12015B151E0003141C5BA2153C000714385B5D +A35DA24A5A140300035C6D48C7FC0001130E3800F83CEB7FF8EB0FC0212679A426>I<01 +F01507D803FC903903801F80D8071E903907C03FC0D80E1F130F121C123C0038021F131F +49EC800F00701607A249133FD8F07E168000E0ED000313FEC64849130718000001147E5B +03FE5B0003160E495BA2171E00070101141C01E05B173C1738A217781770020314F05F00 +03010713016D486C485A000190391E7C07802800FC3C3E0FC7FC90393FF81FFE90390FE0 +03F0322679A437>I<903907E007C090391FF81FF89039787C383C9038F03E703A01E01E +E0FE3803C01F018013C0D8070014FC481480000E1570023F1300001E91C7FC121CA2C75A +A2147EA214FEA25CA21301A24A1370A2010314F016E0001C5B007E1401010714C000FEEC +0380010F1307010EEB0F0039781CF81E9038387C3C393FF03FF03907C00FC027267CA427 +>I<13F0D803FCEB01C0D8071EEB03E0D80E1F1307121C123C0038140F4914C01270A249 +131FD8F07E148012E013FEC648133F160012015B5D0003147E5BA215FE00075C5BA21401 +5DA314035D14070003130FEBF01F3901F87FE038007FF7EB1FC7EB000F5DA2141F003F5C +48133F92C7FC147E147C007E13FC387001F8EB03E06C485A383C1F80D80FFEC8FCEA03F0 +233679A428>I<903903C0038090380FF007D91FF81300496C5A017F130E9038FFFE1E90 +38F83FFC3901F007F849C65A495B1401C7485A4A5A4AC7FC141E5C5C5C495A495A495A49 +C8FC131E5B49131C5B4848133C48481338491378000714F8390FF801F0391FFF07E0383E +1FFFD83C0F5B00785CD8700790C7FC38F003FC38E000F021267BA422>I +E +%EndDVIPSBitmapFont +%DVIPSBitmapFont: Fn cmcsc10 10 25 +/Fn 25 122 df<121C127FEAFF80A5EA7F00121C090977881B>46 +D67 +DII76 D80 D82 D<003FB812FCA3D9C001EB800390C790C7FC007C173E0078171E0070 +170EA300601706A400E01707481703A4C81500B3B0020313C0010FB612F0A338397CB841 +>84 D<1407A24A7EA34A7EA3EC37E0A2EC77F01463A2ECC1F8A201017F1480A290380300 +7EA301067FA2010E80010C131FA2496D7EA2013FB57EA29038300007496D7EA3496D7EA2 +00018149130012036D801207D81FE0903801FF80D8FFF8010F13F8A22D2C7DAB33>97 +D101 DI104 DI107 DIIIII114 D<017F13603901FFE0E0380780F9380E001F481307481303127800 +70130100F01300A315607EA26C14007E127F13C0EA3FFEEBFFE06C13F8000713FE6C7FC6 +1480010F13C01300EC0FE01407EC03F01401A212C01400A37E15E06C1301A26CEB03C06C +EB0780B4EB0F0038F3E01E38E0FFF838C01FE01C2D7BAB26>I<007FB712C0A23A7E003F +C00F007890381F8003007015011600126000E016E0A2481660A5C71500B3A8EC7FE0011F +B57EA22B2B7DAA31>I118 D<3B7FFF800FFFC0A2000790390003FE006C48 +EB01F800015D000015C0017F13036D5C6E48C7FC90381FC0066D6C5A151C6D6C5A903803 +F83001015BECFCE06D6C5AEC7F80A2143F6E7E140F4A7E4A7E1433EC63F8ECE1FCECC0FE +903801807E0103137F49486C7E0106131F4980011C6D7E496D7E0130130301708001F06D +7E000181000781D81FF8491380B46C4913F8A22D2B7DAA33>120 +DI +E +%EndDVIPSBitmapFont +%DVIPSBitmapFont: Fo cmbx10 10.95 41 +/Fo 41 122 df12 +D<130FEB1FC0EB3FE0137FEBFFF05A5AA24813E05A481380481300EA7FFC13F0EAFFC06C +C7FC123C123814126BBF34>19 D44 DII<140F143F5C495A130F48 +B5FCB6FCA313F7EAFE071200B3B3A8007FB612F0A5243C78BB34>49 +D<903803FF80013F13F890B512FE00036E7E4881260FF80F7F261FC0037F4848C67F486C +6D7E6D6D7E487E6D6D7EA26F1380A46C5A6C5A6C5A0007C7FCC8FC4B1300A25E153F5E4B +5AA24B5A5E4A5B4A5B4A48C7FC5D4A5AEC1FE04A5A4A5A9139FF000F80EB01FC495A4948 +EB1F00495AEB1F8049C7FC017E5C5B48B7FC485D5A5A5A5A5AB7FC5EA4293C7BBB34>I< +903801FFE0010F13FE013F6D7E90B612E04801817F3A03FC007FF8D807F06D7E82D80FFC +131F6D80121F7FA56C5A5E6C48133FD801F05CC8FC4B5A5E4B5A4A5B020F5B902607FFFE +C7FC15F815FEEDFFC0D9000113F06E6C7E6F7E6F7E6F7E1780A26F13C0A217E0EA0FC048 +7E487E487E487EA317C0A25D491580127F49491300D83FC0495A6C6C495A3A0FFE01FFF8 +6CB65A6C5DC61580013F49C7FC010313E02B3D7CBB34>II<00071538D80FE0EB01F801FE133F90B6FC5E5E5E5E93 +C7FC5D15F85D15C04AC8FC0180C9FCA9ECFFC0018713FC019F13FF90B67E020113E09039 +F8007FF0496D7E01C06D7E5B6CC77FC8120F82A31780A21207EA1FC0487E487E12FF7FA2 +1700A25B4B5A6C5A01805C6CC7123F6D495AD81FE0495A260FFC075B6CB65A6C92C7FCC6 +14FC013F13F0010790C8FC293D7BBB34>I<16FCA24B7EA24B7EA34B7FA24B7FA34B7FA2 +4B7FA34B7F157C03FC7FEDF87FA2020180EDF03F0203804B7E02078115C082020F814B7E +021F811500824A81023E7F027E81027C7FA202FC814A147F49B77EA34982A2D907E0C700 +1F7F4A80010F835C83011F8391C87E4983133E83017E83017C81B500FC91B612FCA5463F +7CBE4F>65 DI<922607FFC0130E92B500FC131E020702FF133E023FEDC07E91B7EAE1FE01039138 +803FFB499039F80003FF4901C01300013F90C8127F4948151FD9FFF8150F48491507485B +4A1503481701485B18004890CAFC197E5A5B193E127FA349170012FFAC127F7F193EA212 +3FA27F6C187E197C6C7F19FC6C6D16F86C6D150119F06C6D15036C6DED07E0D97FFEED0F +C06D6CED3F80010F01C0ECFF006D01F8EB03FE6D9039FF801FFC010091B55A023F15E002 +071580020002FCC7FC030713C03F407ABE4C>II78 D80 D<003FB912FCA5903BFE003FFE00 +3FD87FF0EE0FFE01C0160349160190C71500197E127EA2007C183EA400FC183F48181FA5 +C81600B3AF010FB712F8A5403D7CBC49>84 D86 D<903807FFC0013F13F8 +48B6FC48812607FE037F260FF8007F6DEB3FF0486C806F7EA36F7EA26C5A6C5AEA01E0C8 +FC153F91B5FC130F137F3901FFFE0F4813E0000F1380381FFE00485A5B485A12FF5BA415 +1F7F007F143F6D90387BFF806C6C01FB13FE391FFF07F36CEBFFE100031480C6EC003FD9 +1FF890C7FC2F2B7DA933>97 D<13FFB5FCA512077EAFEDFFE0020713FC021FEBFF80027F +80DAFF8113F09139FC003FF802F06D7E4A6D7E4A13074A80701380A218C082A318E0AA18 +C0A25E1880A218005E6E5C6E495A6E495A02FCEB7FF0903AFCFF01FFE0496CB55AD9F01F +91C7FCD9E00713FCC7000113C033407DBE3A>I +IIII<903A03FF8007F0013F9038F83FF8499038FCFFFC48B712FE48018313F93A07 +FC007FC34848EB3FE1001FEDF1FC4990381FF0F81700003F81A7001F5DA26D133F000F5D +6C6C495A3A03FF83FF8091B5C7FC4814FC01BF5BD80F03138090CAFCA2487EA27F13F06C +B6FC16F016FC6C15FF17806C16C06C16E01207001F16F0393FE000034848EB003F49EC1F +F800FF150F90C81207A56C6CEC0FF06D141F003F16E001F0147FD81FFC903801FFC02707 +FF800F13006C90B55AC615F8013F14E0010101FCC7FC2F3D7DA834>I<13FFB5FCA51207 +7EAFED1FF8EDFFFE02036D7E4A80DA0FE07F91381F007F023C805C4A6D7E5CA25CA35CB3 +A4B5D8FE0FB512E0A5333F7CBE3A>II<13FFB5FCA512077EB3B3 +AFB512FCA5163F7CBE1D>108 D<01FFD91FF8ECFFC0B590B5010713F80203DAC01F13FE +4A6E487FDA0FE09026F07F077F91261F003FEBF8010007013EDAF9F0806C0178ECFBC04A +6DB4486C7FA24A92C7FC4A5CA34A5CB3A4B5D8FE07B5D8F03FEBFF80A551297CA858>I< +01FFEB1FF8B5EBFFFE02036D7E4A80DA0FE07F91381F007F0007013C806C5B4A6D7E5CA2 +5CA35CB3A4B5D8FE0FB512E0A533297CA83A>II<01FFEBFFE0B5000713FC021FEBFF80027F80DAFF8113F09139FC007FF800 +0701F06D7E6C496D7E4A130F4A6D7E1880A27013C0A38218E0AA4C13C0A318805E18005E +6E5C6E495A6E495A02FCEBFFF0DAFF035B92B55A029F91C7FC028713FC028113C00280C9 +FCACB512FEA5333B7DA83A>II<3901 +FE01FE00FF903807FF804A13E04A13F0EC3F1F91387C3FF8000713F8000313F0EBFFE0A2 +9138C01FF0ED0FE091388007C092C7FCA391C8FCB3A2B6FCA525297DA82B>I<90383FFC +1E48B512BE000714FE5A381FF00F383F800148C7FC007E147EA200FE143EA27E7F6D90C7 +FC13F8EBFFE06C13FF15C06C14F06C806C806C806C80C61580131F1300020713C0140000 +78147F00F8143F151F7EA27E16806C143F6D140001E013FF9038F803FE90B55A15F0D8F8 +7F13C026E00FFEC7FC222B7DA929>IIII +III E +%EndDVIPSBitmapFont +%DVIPSBitmapFont: Fp cmr7 7 22 +/Fp 22 127 df<903803FF80011F13F090387E00FCD801F8133FD807E0EB0FC04848EB07 +E04848EB03F048C7EA01F8A2007EEC00FCA248157EA7007E15FCA36CEC01F8A26C6CEB03 +F0000F15E0A26C6CEB07C0000315806C6CEB0F00A26C6C131ED8C070EB1C060178133CD8 +6038EB380C01181330011C13700070151CD87FFCEB7FFC003F15F8A327297DA82F>10 +D<1306130C13181330136013E0EA01C0EA0380A2EA07005A120E121EA2121C123CA35AA5 +12F85AAB7E1278A57EA3121C121EA2120E120F7EEA0380A2EA01C0EA00E0136013301318 +130C13060F3B7AAB1A>40 D<12C012607E7E7E120E7EEA0380A2EA01C013E0120013F0A2 +13701378A3133CA5133E131EAB133E133CA51378A3137013F0A213E0120113C0EA0380A2 +EA0700120E120C5A5A5A5A0F3B7DAB1A>I<140EB3A2B812E0A3C7000EC8FCB3A22B2B7D +A333>43 D48 D<13381378EA01F8121F12FE12E01200B3AB487EB512F8A215 +267BA521>I<13FF000313E0380E03F0381800F848137C48137E00787F12FC6CEB1F80A4 +127CC7FC15005C143E147E147C5C495A495A5C495A010EC7FC5B5B903870018013E0EA01 +80390300030012065A001FB5FC5A485BB5FCA219267DA521>I<13FF000313E0380F01F8 +381C007C0030137E003C133E007E133FA4123CC7123E147E147C5C495AEB07E03801FF80 +91C7FC380001E06D7E147C80143F801580A21238127C12FEA21500485B0078133E00705B +6C5B381F01F03807FFC0C690C7FC19277DA521>I<0018130C001F137CEBFFF85C5C1480 +D819FCC7FC0018C8FCA7137F3819FFE0381F81F0381E0078001C7F0018133EC7FC80A215 +80A21230127C12FCA3150012F00060133E127000305B001C5B380F03E03803FFC0C648C7 +FC19277DA521>53 D<1238127C12FEA3127C12381200AB1238127C12FC12FEA2127E123E +1206A3120CA31218A212301270122007247B9813>59 D61 D91 +D93 D<5AEA0380EA07C0EA0FE0EA1EF0EA3C +78EA701CEAE00EEAC0060F0978A721>I99 D<120EEA3F80A5EA0E00C7FCA7EA078012FF +A2121F120FB3121FEAFFF8A20D287EA713>105 D108 D<260F81FC137F3BFF8FFF03FFC0903A9C0F8703E03B1FB0 +07CC01F0D80FE013D8903AC003F000F8A301805BAF486C486C487E3CFFF83FFE0FFF80A2 +311A7E9937>I<380F81FC38FF8FFF90389C0F80391FB007C0EA0FE09038C003E0A31380 +AF391FC007F039FFF83FFEA21F1A7E9925>I<380F07C038FF1FF0EB38F8EA1F71EA0F61 +13C1EBC0F014005BAF487EEAFFFCA2151A7E991A>114 D<390F8003E000FF133FA2001F +1307000F1303B01407A20007130F9038C01BF03903E073FE3801FFE339007F83E01F1B7E +9925>117 D<380F8010381FF038383FFFF04813E038E07FC038400F8015067BA621>126 +D E +%EndDVIPSBitmapFont +%DVIPSBitmapFont: Fq cmmi7 7 27 +/Fq 27 123 df<1238127C12FE12FFA2127F123B1203A31206A3120C1218123812701220 +08127A8614>59 D<12E012F812FEEA3F80EA0FE0EA03F8EA00FEEB3F80EB0FE0EB03F8EB +00FEEC3F80EC0FE0EC03F8EC00FEED3F80ED0FE0ED03F8ED00FE163E16FEED03F8ED0FE0 +ED3F80EDFE00EC03F8EC0FE0EC3F8002FEC7FCEB03F8EB0FE0EB3F8001FEC8FCEA03F8EA +0FE0EA3F8000FEC9FC12F812E027277AA134>62 D64 D<4AB41308020FEBE01891397F80F038903A01F8001870D903E0EB0CF0D90F +80130749C71203013E15E05B491401485A484815C0485A120F5B001F168090C8FC4892C7 +FCA2127EA4127C12FCA21606007C5DA35E007E5D123E5E6C5D6C6C495A00074AC7FCD803 +E0130E6C6C13383900FE01F090383FFFC0D907FCC8FC2D2A7DA830>67 +D<903B3FFFF01FFFF8A2D901FCC7EAFE004A5CA2010314015F5CA2010714035F5CA2010F +14075F5CA2011F140F91B65AA2913880000F013F141F5F91C7FCA249143F94C7FC137EA2 +01FE5C167E5BA2000115FE5E5BA200031401B539C07FFFE0A235287DA736>72 +D<90263FFFF0EB7FF8A2D901FCC7EA1FC04AEC1E005F010315704C5A4AEB03804CC7FC01 +07141C5E4A13E04B5A010FEB0780030EC8FC4A5A157C011F13FE14C3EC877F149E90393F +B83F8014F09138C01FC0148049486C7EA2017E6D7EA201FE6D7EA2496D7EA200016E7EA2 +49147FA2000382B539C007FFF8A235287DA738>75 D<90383FFFF8A2D901FCC7FC5CA213 +03A25CA21307A25CA2130FA25CA2131FA25CA2133FA291C8FCA249141C1618137E163801 +FE1430167049146016E000011401ED03C0491307ED0F800003147FB7FC160026287DA72E +>I78 +D<000FB712E05A9039800FE007D81E009038C001C05A0038011F1300123000705C006015 +01023F148012E0481400A2C74890C7FCA2147EA214FEA25CA21301A25CA21303A25CA213 +07A25CA2130FA25CA2131F001FB57EA22B287DA727>84 D +86 D<15F8141FA2EC01F0A21403A215E0A21407A215C0A2140FEB1F8F90387FCF80EBF0 +EF3803C03FEA0780390F001F00A2001E5B123E003C133E127C147E5A147CA214FC5AECF8 +30A3903801F060A2EA7803010E13C0393C1CF980381FF07F3907C01E001D297CA723> +100 DII<133EEA07FEA2 +EA007CA213FCA25BA21201A25BA2120314FCEBE3FF9038EF0780D807FC13C0EBF00313E0 +A2EA0FC014071380A2121FEC0F801300A248EB1F00A2003E1406143E127EEC7C0C127C15 +1800FCEB3C30157048EB1FE00070EB0F801F297CA727>104 D<130E131F5BA2133E131C +90C7FCA7EA03E0487EEA0C78EA187C1230A212605B12C0A2EA01F0A3485AA2485AA2EBC1 +80EA0F81A2381F0300A213066C5A131CEA07F06C5A11287DA617>I<1407EC0F80141FA2 +1500140E91C7FCA7EB03E0EB07F8EB0C3C1318EB303E136013C0A248485AA2C7FCA25CA4 +495AA4495AA4495AA4495AA21238D87C1FC7FC12FC133E485AEA70F8EA7FE0EA1F801933 +80A61B>I<133EEA07FEA2EA007CA213FCA25BA21201A25BA21203EC07809038E01FC0EC +38600007EB61E014C3EBC187EBC307D80FC613C09038CC038001B8C7FC13E0487E13FEEB +3F80EB0FC0486C7E1303003E1460A2127EECC0C0127CECC18012FC903801E30038F800FE +0070137C1B297CA723>I<137CEA0FFCA2EA00F8A21201A213F0A21203A213E0A21207A2 +13C0A2120FA21380A2121FA21300A25AA2123EA2127EA2EA7C18A3EAF830A21320EA7860 +13C0EA3F80EA0F000E297EA715>I<3B07801FC007E03B0FE07FF01FF83B18F0E0F8783C +3B30F1807CE03E903AFB007D801ED860FEEB3F005B49133E00C14A133E5B1201A2484849 +5BA35F4848485A1830EE01F0A23C0F8003E003E060A218C0933801E180271F0007C013E3 +933800FF00000E6D48137C341B7D993B>I<3907801FC0390FE07FF03918F0E0F83930F1 +807CEBFB00D860FE133C5B5B00C1147C5B1201A248485BA34A5AEA07C01660EC03E0A23A +0F8007C0C0A2EDC180913803C300D81F0013C7EC01FE000EEB00F8231B7D9929>I<3807 +803E390FE0FF803818F3C13930F703C0EBFE073860FC0F13F8158039C1F0070091C7FC12 +01A2485AA4485AA4485AA448C8FCA2120E1A1B7D991F>114 DI<3903E001C03907F003E0380C7807EA187C0030130314011260EBF80000C014C0 +A2EA01F0A2EC0180EA03E0A2EC0300EA07C0A21406A25CA200035B6D5A3801F0E06CB45A +013FC7FC1B1B7D9921>118 DI<90387C03C03901FF0FF03907079C30390E03B078000CEB +F0F8001813E1123015F0396007C0E015001200A2495AA449C7FC15301238007C1460EAFC +3E15C0EAF87E39F06F03803970C70700383F83FE381F01F81D1B7D9926>II<013E13C0137F90 +38FF818048EBC3004813FF380701FE3806000C00045BC75A5C5CEB03800106C7FC5B5B5B +5B9038C00180EA038039060003005C380FF81E381FFFFE38383FFC38601FF86D5A38C007 +C01A1B7D9920>I E +%EndDVIPSBitmapFont +%DVIPSBitmapFont: Fr msbm10 10 3 +/Fr 3 83 df<020FB6128091B712C01303010F1680D91FF8C9FCEB7F8001FECAFCEA01F8 +485A485A485A5B48CBFCA2123EA25AA2127812F8A25AA87EA21278127CA27EA27EA26C7E +7F6C7E6C7E6C7EEA00FEEB7F80EB1FF86DB71280010316C01300020F158091CAFCA51630 +16F815014B5A4B5A4B5A4B5A4BC8FC157E001FB812804817C0A26C1780C7D81F80C8FC4A +C9FC147E5C495A495A495A5C6DCAFC324D79B441>40 D<007FB612C0B712FC6C15FF2703 +C01E071380000190393C01C7E00238EBE1F0923800E0F81738EEF03CEE701C171E170EA7 +171E171CEEF03CEEE03817F8923801E1F0EEC7E0923803FF80023FB5120016FC16E00238 +C8FCB3A60003133C007FB512F0B6FC7E2F397EB834>80 D<007FB612E0B712FE6C6F7E27 +03C01E0313E0000190393C00F3F00238EB70F8EE783CEE381E83EE3C07161C18801703A6 +17071800EE3C0FEE380E173EEE78FCEEF7F892380FFFE0023FB5128004FCC7FC16B89138 +38F03CED701CED781EED380EED3C0FED1C07031E7FED0E03030F7FED0701EE81E0ED0380 +707E030113701778EEE0380300133C707EEE700EEE780F9338380780EE3C03041C13C093 +381E01E00003013C90380E00F0007FB539F00FFFFEB67F6C8137397DB836>82 +D E +%EndDVIPSBitmapFont +%DVIPSBitmapFont: Fs cmsy10 10 39 +/Fs 39 115 df<007FB81280B912C0A26C17803204799641>0 D<121C127FEAFF80A5EA +7F00121C0909799917>I<0060150600F8150F6C151F007E153F6C157E6C6C14FC6C6CEB +01F86C6CEB03F06C6CEB07E06C6CEB0FC06C6CEB1F80017EEB3F006D137E6D6C5A90380F +C1F8903807E3F0903803F7E06DB45A6D5B6EC7FCA24A7E497F903803F7E0903807E3F090 +380FC1F890381F80FC90383F007E017E7F49EB1F804848EB0FC04848EB07E04848EB03F0 +4848EB01F84848EB00FC48C8127E007E153F48151F48150F00601506282874A841>I8 D14 D<007FB812F8B912FCA26C17F8CCFCAE007FB812F8B912FCA26C17F8CCFCAE00 +7FB812F8B912FCA26C17F836287BA841>17 D<020FB6128091B712C01303010F1680D91F +F8C9FCEB7F8001FECAFCEA01F8485A485A485A5B48CBFCA2123EA25AA2127812F8A25AA8 +7EA21278127CA27EA27EA26C7E7F6C7E6C7E6C7EEA00FEEB7F80EB1FF86DB71280010316 +C01300020F158091CAFCAE001FB812804817C0A26C1780324479B441>I20 +D<020FB6128091B712C01303010F1680D91FF8C9FCEB7F8001FECAFCEA01F8485A485A48 +5A5B48CBFCA2123EA25AA2127812F8A25AA87EA21278127CA27EA27EA26C7E7F6C7E6C7E +6C7EEA00FEEB7F80EB1FF86DB71280010316C01300020F1580323279AD41>26 +D<05041402051E140F057E143FDC01FE14FF4C48EB01FEDC0FF0EB07F8DC3FC0EB1FE04C +C7EA3F80DB01FEECFF00DB07F8EB03FCDB0FE0EB07F0DB3FC0EB1FE003FFC7EA7F80DA01 +FC02FEC7FCDA07F8EB03FCDA1FE0EB0FF0DA3F80EB1FC002FFC7EA7F80D903FCD901FEC8 +FCD90FF0EB07F84948495AD97F80EB3FC0D801FEC7B4C9FCD803F8EB01FCD80FF0EB07F8 +D83FC0EB1FE048C7EA3F8000FE4ACAFCA2007F6E7ED83FC0EB1FE0D80FF0EB07F8D803F8 +EB01FCD801FE6DB4FC26007F80EB3FC0D91FE0EB0FF06D6C6D7ED903FCEB01FED900FF90 +38007F80DA3F80EB1FC0DA1FE0EB0FF0DA07F8EB03FCDA01FCEB00FE6EB4EC7F80DB3FC0 +EB1FE0DB0FE0EB07F0DB07F8EB03FCDB01FEEB00FFDB007FEC3F80DC3FC0EB1FE0DC0FF0 +EB07F8DC03FCEB01FE706CEB00FFDC007E143F051E140F48377BB053>28 +D<181EA4181F84A285180785727EA2727E727E85197E85F11F80F10FC0F107F0007FBA12 +FCBCFCA26C19FCCCEA07F0F10FC0F11F80F13F00197E61614E5A4E5AA24E5A61180F96C7 +FCA260181EA4482C7BAA53>33 D<173CA2173E171E171F8384717E170384717E717E187C +007FB812FEBAFC856C84CBEA03F0727EF000FEF13F80F11FE0F107F8F101FFA2F107F8F1 +1FE0F13F80F1FE00F001F84E5A007FB912C0BA5A96C7FC6C5FCB127C604D5A4D5A601707 +4D5A95C8FC5F171E173E173CA248307BAC53>41 D49 D<91381FFFFE91B6FC1303010F14FED91FF0C7FCEB7F8001FEC8FCEA01F8 +485A485A485A5B48C9FCA2123EA25AA2127812F8A25AA2B712FE16FFA216FE00F0C9FCA2 +7EA21278127CA27EA27EA26C7E7F6C7E6C7E6C7EEA00FEEB7F80EB1FF06DB512FE010314 +FF1300021F13FE283279AD37>I<387FFFF8B6FC15C06C14F0C7EA0FF8EC01FEEC007FED +1F80ED0FC0ED07E0ED03F01501ED00F8A2167CA2163EA2161E161FA2160FA2007FB7FCB8 +FCA27EC9120FA2161FA2161E163EA2167CA216F8A2ED01F01503ED07E0ED0FC0ED1F80ED +7F00EC01FEEC0FF8007FB55AB612C092C7FC6C13F8283279AD37>I54 D<126012F0AD12FCA412F0AD126006207BA400>I<0060161800F0 +163C6C167CA200781678007C16F8A2003C16F0003E1501A26CED03E0A26C16C06D1407A2 +000716806D140FA26C6CEC1F00A26CB612FEA36C5D01F8C7127CA2017C5CA2013C5C013E +1301A2011E5C011F1303A26D6C485AA201075CECC00FA2010391C7FC6E5AA2903801F03E +A20100133CECF87CA2EC7878EC7CF8A2EC3FF0A26E5AA36E5AA36E5A6EC8FC2E3C80B92F +>I<156015F0A21401EB07F190383FFFE0EB7C1FEBF00748486C5AD803C07F4848487ED8 +0F007FA248497E001E14BC153C003E143E141FA248EB1E1F143EA2143CA2147C00FC1580 +147814F8A214F0A21301A214E01303A214C0A21307A21480A2130FA214005B007C150013 +1EA2D87E3E5BA2D83E3C133E137CA21378001F5C13F8000F14784913F800075C0003495A +EBE0033901F007802603FC1FC7FCEBFFFEEBC7F0D807C0C8FCA25BA26CC9FC21477CBF2A +>59 D<18F017011707A3170FA2171F60173F1737177F176F17EF17CF04017F178F160317 +0FEE0707160EA2161C161816381630167016E0A2ED01C016801503ED0700A2150E5DA25D +157815705D02018103CFB5FCEC03BF4AB6FCA2020EC71203141E5C143802788100205B38 +6001E0EAF0036C4848140126FE1F8081B5C8FC190C49EEFF3C496F13F06C4817E06C4817 +806C48EE7E00D8078093C7FC3E407DBB42>65 D<0238EB07FC02F890383FFF80010391B5 +12C0010F010314E0011FEB0F81017B90391E003FF09026E3F078131F010349130FECF1E0 +902607F3C0130714F7DAFF8014E092C7FC18C04A140F49481580EF1F004A141E5F4A5CEE +01E0011F4A5A4A010FC7FC163E9138C001F8ED0FFC013F90383FFF804AB57E028114F0DA +83017F91C7EA3FFC496E7E1607017E6E7E8201FE6E1380A249157FA2173F12015BA21800 +485AA2177E4848157CA25F48484A5A01C75D019F4A5A261FBF80495A496C011EC7FC003F +01F0137C9138FC03F0D87E3FB512C0D87C1F91C8FCD8780713F8D8E00113C0343D7EBA37 +>I<0203B512F0027F14FF49B712E0010F16F890273FC3F00713FED978039038007FFF26 +01E007020F1380D803C0030313C0D80780030013E0000F177FD81F00EE3FF048EF1FF800 +3E4A140F5A0078EF07FC00C0010F1503C7FCA24B1401A3141F5DA3023F16F8A292C8FCF0 +03F0A25C027EED07E0A219C04A150F1980F01F00495A183E6049481578604D5A49484A5A +4D5A050EC7FC4948143C5FEE01E04948EB07C0043FC8FC91380001FC49EB3FF049B51280 +48B500FCC9FC4814E04801FCCAFC3E397FB840>68 DI72 D<0370EBFF80912601E00713E0912603C01F13F891260F007F7F021E9038F03F +FE913A7803C00FFF9139F0078003494848486C1380902603C01E7F902607803EEC7FC049 +485A011E49143F013E17E0494848141FEBF8035D2601F007150F00035CEBE00F00075CD9 +C01EC8FC000F131C49C9FC121FA248CA13C0A348171F1980127EA2183F00FE1800A2183E +187E187C18FC6017016C5F4D5A6017076C6C4B5A4DC7FC171E6D5D6C6C5D5F6D4A5A6C6C +EC03806C6C020FC8FC01FF143E6C01C013F86C9038F807E06C90B512806C6C49C9FC011F +13F0010313803B3D7BBA42>79 D<0203B512F8027FECFF8049B712F0010F8290273FC3F0 +0313FED978039038003FFF2601E00702071380D803C06F13C0D807801500000F177FD81F +00EE3FE0484A141F123E5A0078010F150F12C0C7FC4B15C0A3021FED1F80A24B1500183E +A2023F5D6092C85A4D5A4D5A4A4A5A027E020EC7FC173C17F84AEB03E0EE3F80DB1FFEC8 +FC0101EB7FF89138F8FFC0DAF9FCC9FC02F8CAFC495AA3495AA3495AA3495AA291CBFC5B +A2137EA35B13F013C03B3D7FB83A>I<923801FFC0031F13F8037F13FE0203B6FC91260F +E01F138091261E000313C00278010013E04A147FD903C0EC3FF04948141F49C8EA0FF813 +1E491507137C49ED03FC485AA2485A48481501A2120F485AA290C9FC5AA24817F8127EA2 +170312FE18F0A3EF07E0A26C17C0170F18806DED1F00127F6D153E6D5D6C6C130F01FC01 +3E5B3B1FFF01F801F06CD9FFE05B6C91388003C000014948485A26007FE049C7FC90C812 +1E163816F0ED03E0ED0780033EC8FCEC0FFC0003B500E0140E000F0280143E4801FCC812 +7C48D9FF8014FC000102F014F8D8000F01FEEB01F00101D9FFC013E0D9003F9038FC03C0 +020790B5120002005C031F13F8030113C0374577BA44>I<0203B512FE027FECFFF049B7 +12FC010F16FF90273FC3F00080D9780302077F2601E0071401D803C06F6C7ED80780163F +000F171FEA1F00484A140F123E5A0078010F5E12C0C7FC4B4A5AA296C7FC021F5D183E4B +5C187860023F4A5A4D5A92C7000FC8FC173EEE03F84AEBFFE0DA7E0313804B48C9FC4B7E +ECFC036F7F6F7F0101147F4A80163F707E495A707EA249481307830403151049486E14F0 +F101E04A6D6CEB03C0011F933880078070EC0F0049C8EBC01E716C5A013E92383FF0F001 +7EEEFFE0017C6F1380496F48C7FC01E0ED07F0443B7FB846>II<1A801907F10F00023FB712FE49B85A010F17F0013F17C0494CC7FC2801E0 +0003F0C9FC48481307485A120F48C7485A5A5AA200FE4A5A5A12F01280C8485AA44BCAFC +A415FEA44A5AA44A5AA44A5AA4140F5DA35D141FA25D143FA292CBFC5CA2147E14FE5CA2 +495A5C495A5C0102CCFC41427DBB2D>I<0060161800F0163CB3B26C167CA2007C16F8A2 +6CED01F0003F15036C6CEC07E06C6CEC0FC0D807F0EC3F80D803FE903801FF003A00FFC0 +0FFC6DB55A011F14E0010391C7FC9038007FF82E347CB137>91 DI<14 +034A7E4A7EA24A7EA34A7EA2EC7CF8A2ECF87CA2ECF03C0101133EA249487EA249486C7E +A249486C7EA2EC00034980A2013E6D7EA2496D7EA20178147801F8147CA2484880A24848 +80A24848EC0F80A2491407000F16C0A248C8EA03E0A2003EED01F0A2003C1500007C16F8 +A248167CA248163C006016182E347CB137>94 D102 +D<12FCEAFFC0EA07F0EA01FCEA007E7F80131F80130FB3A7801307806D7E6D7EEB007EEC +1FF0EC07F8EC1FF0EC7E00495A495A495A5C130F5CB3A7131F5C133F91C7FC137E485AEA +07F0EAFFC000FCC8FC1D537ABD2A>I<126012F0B3B3B3B3A91260045377BD17>106 +D<0070131C00F0131EB3B3B3B3A80070131C175277BD2A>I112 D114 +D E +%EndDVIPSBitmapFont +%DVIPSBitmapFont: Ft cmr12 12 8 +/Ft 8 118 df10 D<140C141C1438147014E0EB01C01303EB0780EB0F00A2131E5BA25B13F85B12015B +1203A2485AA3485AA348C7FCA35AA2123EA2127EA4127CA312FCB3A2127CA3127EA4123E +A2123FA27EA36C7EA36C7EA36C7EA212017F12007F13787FA27F7FA2EB0780EB03C01301 +EB00E014701438141C140C166476CA26>40 D<12C07E12707E7E7E120F6C7E6C7EA26C7E +6C7EA21378137C133C133E131E131FA2EB0F80A3EB07C0A3EB03E0A314F0A21301A214F8 +A41300A314FCB3A214F8A31301A414F0A21303A214E0A3EB07C0A3EB0F80A3EB1F00A213 +1E133E133C137C13785BA2485A485AA2485A48C7FC120E5A5A5A5A5A16647BCA26>I<12 +1EEA7F80A2EAFFC0A4EA7F80A2EA1E00C7FCB3A5121E127FEAFF80A213C0A4127F121E12 +00A512011380A3120313005A1206120E120C121C5A5A12600A3E78AA1B>59 +D99 D108 D<3903F803F000FFEB1FFCEC3C3EEC707F0007EBE0FF38 +03F9C000015B13FBEC007E153C01FF13005BA45BB3A748B4FCB512FEA3202C7DAB26> +114 D117 D E +%EndDVIPSBitmapFont +%DVIPSBitmapFont: Fu cmmi12 12 1 +/Fu 1 73 df<91B6D8E003B61280A3020001E0C70003EB8000DB7F806E48C7FC03FF1503 +A293C85BA219075C4B5EA2190F14034B5EA2191F14074B5EA2193F140F4B5EA2197F141F +4B5EA219FF143F92B8C8FCA3DA7FC0C712014B5DA2180314FF92C85BA218075B4A5EA218 +0F13034A5EA2181F13074A5EA2183F130F4A5EA2187F131F4A5EA2013F16FFA24A93C9FC +D9FFE002037FB6D8E003B67EA351447CC351>72 D E +%EndDVIPSBitmapFont +%DVIPSBitmapFont: Fv cmbx12 12 38 +/Fv 38 122 df12 D14 D19 D39 +D45 DI49 DII< +163FA25E5E5D5DA25D5D5D5DA25D92B5FCEC01F7EC03E7140715C7EC0F87EC1F07143E14 +7E147C14F8EB01F0EB03E0130714C0EB0F80EB1F00133E5BA25B485A485A485A120F5B48 +C7FC123E5A12FCB91280A5C8000F90C7FCAC027FB61280A531417DC038>I<0007150301 +E0143F01FFEB07FF91B6FC5E5E5E5E5E16804BC7FC5D15E092C8FC01C0C9FCAAEC3FF001 +C1B5FC01C714C001DF14F09039FFE03FFC9138000FFE01FC6D7E01F06D13804915C0497F +6C4815E0C8FC6F13F0A317F8A4EA0F80EA3FE0487E12FF7FA317F05B5D6C4815E05B007E +C74813C0123E003F4A1380D81FC0491300D80FF0495AD807FEEBFFFC6CB612F0C65D013F +1480010F01FCC7FC010113C02D427BC038>I67 D69 D77 DI<003FBA12E0A59026FE000FEB8003D87FE09338003FF049171F90C71607A2007E1803 +007C1801A300781800A400F819F8481978A5C81700B3B3A20107B8FCA545437CC24E>84 +D<903801FFE0011F13FE017F6D7E48B612E03A03FE007FF84848EB1FFC6D6D7E486C6D7E +A26F7FA36F7F6C5A6C5AEA00F090C7FCA40203B5FC91B6FC1307013F13F19038FFFC0100 +0313E0000F1380381FFE00485A5B127F5B12FF5BA35DA26D5B6C6C5B4B13F0D83FFE013E +EBFFC03A1FFF80FC7F0007EBFFF86CECE01FC66CEB8007D90FFCC9FC322F7DAD36>97 +DIIIIIII<137C48 +B4FC4813804813C0A24813E0A56C13C0A26C13806C1300EA007C90C7FCAAEB7FC0EA7FFF +A512037EB3AFB6FCA518467CC520>I108 D<90277F8007FEEC0FFCB590263FFFC090387FFF8092B5D8F001B512E00281 +6E4880913D87F01FFC0FE03FF8913D8FC00FFE1F801FFC0003D99F009026FF3E007F6C01 +9E6D013C130F02BC5D02F86D496D7EA24A5D4A5DA34A5DB3A7B60081B60003B512FEA557 +2D7CAC5E>I<90397F8007FEB590383FFF8092B512E0028114F8913987F03FFC91388F80 +1F000390399F000FFE6C139E14BC02F86D7E5CA25CA35CB3A7B60083B512FEA5372D7CAC +3E>II<90397FC00FF8B590 +B57E02C314E002CF14F89139DFC03FFC9139FF001FFE000301FCEB07FF6C496D13804A15 +C04A6D13E05C7013F0A2EF7FF8A4EF3FFCACEF7FF8A318F017FFA24C13E06E15C06E5B6E +4913806E4913006E495A9139DFC07FFC02CFB512F002C314C002C091C7FCED1FF092C9FC +ADB67EA536407DAC3E>II<90387F807FB53881FFE0028313F0028F13F8ED8FFC91389F1FFE000313BE6C13 +BC14F8A214F0ED0FFC9138E007F8ED01E092C7FCA35CB3A5B612E0A5272D7DAC2E>I<90 +391FFC038090B51287000314FF120F381FF003383FC00049133F48C7121F127E00FE140F +A215077EA27F01E090C7FC13FE387FFFF014FF6C14C015F06C14FC6C800003806C15806C +7E010F14C0EB003F020313E0140000F0143FA26C141F150FA27EA26C15C06C141FA26DEB +3F8001E0EB7F009038F803FE90B55A00FC5CD8F03F13E026E007FEC7FC232F7CAD2C>I< +EB01E0A51303A41307A2130FA2131FA2133F137F13FF1203000F90B51280B7FCA4C601E0 +C7FCB3A3ED01E0A9150302F013C0137F150790393FF80F8090391FFC1F006DB5FC6D13FC +01015B9038003FE023407EBE2C>II119 +DII E +%EndDVIPSBitmapFont +%DVIPSBitmapFont: Fw cmbx12 14.4 11 +/Fw 11 116 df<157815FC14031407141F14FF130F0007B5FCB6FCA2147F13F0EAF800C7 +FCB3B3B3A6007FB712FEA52F4E76CD43>49 DI<9138 +0FFFC091B512FC0107ECFF80011F15E090263FF8077F9026FF800113FC4848C76C7ED803 +F86E7E491680D807FC8048B416C080486D15E0A4805CA36C17C06C5B6C90C75AD801FC16 +80C9FC4C13005FA24C5A4B5B4B5B4B13C04B5BDBFFFEC7FC91B512F816E016FCEEFF80DA +000713E0030113F89238007FFE707E7013807013C018E07013F0A218F8A27013FCA218FE +A2EA03E0EA0FF8487E487E487EB57EA318FCA25E18F891C7FC6C17F0495C6C4816E001F0 +4A13C06C484A1380D80FF84A13006CB44A5A6CD9F0075BC690B612F06D5D011F15800103 +02FCC7FCD9001F1380374F7ACD43>I<171F4D7E4D7EA24D7EA34C7FA24C7FA34C7FA34C +7FA24C7FA34C8083047F80167E8304FE804C7E03018116F8830303814C7E03078116E083 +030F814C7E031F81168083033F8293C77E4B82157E8403FE824B800201835D840203834B +800207835D844AB87EA24A83A3DA3F80C88092C97E4A84A2027E8202FE844A82010185A2 +4A820103854A82010785A24A82010F855C011F717FEBFFFCB600F8020FB712E0A55B547B +D366>65 D82 +D<913801FFF8021FEBFF8091B612F0010315FC010F9038C00FFE903A1FFE0001FFD97FFC +491380D9FFF05B4817C048495B5C5A485BA2486F138091C7FC486F1300705A4892C8FC5B +A312FFAD127F7FA27EA2EF03E06C7F17076C6D15C07E6E140F6CEE1F806C6DEC3F006C6D +147ED97FFE5C6D6CEB03F8010F9038E01FF0010390B55A01001580023F49C7FC020113E0 +33387CB63C>99 D<913803FFC0023F13FC49B6FC010715C04901817F903A3FFC007FF849 +486D7E49486D7E4849130F48496D7E48178048497F18C0488191C7FC4817E0A248815B18 +F0A212FFA490B8FCA318E049CAFCA6127FA27F7EA218E06CEE01F06E14037E6C6DEC07E0 +A26C6DEC0FC06C6D141F6C6DEC3F806D6CECFF00D91FFEEB03FE903A0FFFC03FF8010390 +B55A010015C0021F49C7FC020113F034387CB63D>101 DI110 D<90397FE003FEB590380FFF80033F13E04B13F09238FE1FF89139E1 +F83FFC0003D9E3E013FEC6ECC07FECE78014EF150014EE02FEEB3FFC5CEE1FF8EE0FF04A +90C7FCA55CB3AAB612FCA52F367CB537>114 D<903903FFF00F013FEBFE1F90B7FC1203 +48EB003FD80FF81307D81FE0130148487F4980127F90C87EA24881A27FA27F01F091C7FC +13FCEBFFC06C13FF15F86C14FF16C06C15F06C816C816C81C681013F1580010F15C01300 +020714E0EC003F030713F015010078EC007F00F8153F161F7E160FA27E17E07E6D141F17 +C07F6DEC3F8001F8EC7F0001FEEB01FE9039FFC00FFC6DB55AD8FC1F14E0D8F807148048 +C601F8C7FC2C387CB635>I E +%EndDVIPSBitmapFont +%DVIPSBitmapFont: Fx cmmi10 10 50 +/Fx 50 123 df11 D13 +D<1403EC3FF891387FFF80D901E313C014800103133F9138001F80ED070092C7FC80A280 +A2808013018080130080147F81143F8149B47E130790380F8FF0EB3E0F496C7E13F83801 +F003D803E07F1207380FC0011380121FEA3F0014005A127EA212FE5D481301A35DA24813 +035D6C13075D127C4A5A6C91C7FC5C6C133E6C6C5A3807C0F03801FFE0D8003FC8FC223D +7DBB25>I<133F14C0EB07F06D7E801301A26D7EA3147FA36E7EA36E7EA36E7EA36E7EA3 +6E7EA36E7EA26E7EA214014A7E5C4A7E91381E3F80143C14784A6C7E1301EB03E049486C +7EEB0F80EB1F00496D7E137E5B48486D7E485A485A000F6E7E485A485A48C87E12FE167F +4816800070151F293B7CB930>21 DI<013FB612E090B712F05A120717E0270F8070 +06C7FC391E00600E48140C003813E04813C048141CEAC0011200148001035BA213071400 +A25B1578011E137CA3133E133C137C157E13FC5B1201157F1203497FA3D801C0131C2C25 +7EA32F>25 D<027FB512C00103B612E0130F5B017F15C09026FF81FEC7FC3901FC007E48 +487F485A497F484880485AA248C7FCA2127EA2153F00FE92C7FC5AA25D157E5A5DA24A5A +A24A5A007C495A5D003C495A003E013FC8FC6C137C380F81F83803FFE0C66CC9FC2B257D +A32F>27 D<0140151E01E0153F00015E484816805B120790C9123F000E161F170F5A1707 +481700A2003014C014010070010314061260A2170E00E04948130C5A171C92C7FC5FA26C +495C4A14F04A7E6C017F495A4A6C485A3AF801F7E00F3BFE0FF3F83F80267FFFE3B5FC02 +C191C7FC6C01815B02005BD80FFCEB7FF0D803F0EB0FC031267FA434>33 +DI39 D<121C127FEAFF80A5EA7F00121C +0909798817>58 D<121C127FEAFF80A213C0A3127F121C1200A412011380A2120313005A +1206120E5A5A5A12600A19798817>II<126012FCB4FCEA7FC0EA1FF0EA07FCEA01FF38007FC0EB1FF0EB07FC +EB01FF9038007FC0EC1FF0EC07FCEC01FF9138007FC0ED1FF0ED07FCED01FF9238007FC0 +EE1FF0EE07FCEE01FF9338007F80EF1FC0A2EF7F80933801FF00EE07FCEE1FF0EE7FC04B +48C7FCED07FCED1FF0ED7FC04A48C8FCEC07FCEC1FF0EC7FC04948C9FCEB07FCEB1FF0EB +7FC04848CAFCEA07FCEA3FF0EA7FC048CBFC12FC1270323279AD41>62 +D64 D<1760177017F01601A21603A21607160FA24C7EA2163316731663 +16C3A2ED0183A2ED0303150683150C160115181530A21560A215C014011580DA03007FA2 +02061300140E140C5C021FB5FC5CA20260C7FC5C83495A8349C8FC1306A25BA25B13385B +01F01680487E000716FFB56C013F13FF5EA2383C7DBB3E>I<0103B77E4916F018FC903B +0007F80003FE4BEB00FFF07F80020FED3FC0181F4B15E0A2141FA25DA2143F19C04B143F +1980027F157F190092C812FE4D5A4A4A5AEF0FF04AEC1FC005FFC7FC49B612FC5F02FCC7 +B4FCEF3FC00103ED0FE0717E5C717E1307844A1401A2130F17035CA2131F4D5A5C4D5A13 +3F4D5A4A4A5A4D5A017F4BC7FC4C5A91C7EA07FC49EC3FF0B812C094C8FC16F83B397DB8 +3F>I<9339FF8001C0030F13E0037F9038F80380913A01FF807E07913A07F8000F0FDA1F +E0EB079FDA3F80903803BF0002FFC76CB4FCD901FC80495A4948157E495A495A4948153E +017F163C49C9FC5B1201484816385B1207485A1830121F4993C7FCA2485AA3127F5BA312 +FF90CCFCA41703A25F1706A26C160E170C171C5F6C7E5F001F5E6D4A5A6C6C4A5A16076C +6C020EC8FC6C6C143C6C6C5C6CB4495A90393FE00FC0010FB5C9FC010313FC9038007FC0 +3A3D7CBA3B>I<0103B7FC4916E018F8903B0007F80007FE4BEB00FFF03F80020FED1FC0 +180F4B15E0F007F0021F1503A24B15F81801143F19FC5DA2147FA292C8FCA25C18035CA2 +130119F84A1507A2130319F04A150FA2010717E0181F4A16C0A2010FEE3F80A24AED7F00 +187E011F16FE4D5A4A5D4D5A013F4B5A4D5A4A4A5A057FC7FC017F15FEEE03FC91C7EA0F +F049EC7FC0B8C8FC16FC16C03E397DB845>I<0103B812F05BA290260007F8C7123F4B14 +07F003E0020F150118005DA2141FA25D19C0143FA24B1330A2027F1470190092C7126017 +E05C16014A495A160F49B6FCA25F9138FC000F01031407A24A6DC8FCA201075C18034A13 +0660010F160693C7FC4A150E180C011F161C18184A1538A2013F5E18F04A4A5AA2017F15 +074D5A91C8123F49913803FF80B9FCA295C7FC3C397DB83D>I<0103B812E05BA2902600 +07F8C7123F4B140FF003C0140F18015DA2141FA25D1980143FA25D1760027F14E095C7FC +92C75AA24A1301A24A495A16070101141F91B6FC94C8FCA2903903FC001F824A130EA213 +07A24A130CA2010F141CA24A90C9FCA2131FA25CA2133FA25CA2137FA291CBFC497EB612 +C0A33B397DB835>I<0103B5D8F803B512F8495DA290260007F8C73807F8004B5DA2020F +150F615DA2021F151F615DA2023F153F615DA2027F157F96C7FC92C8FCA24A5D605CA249 +B7FC60A202FCC7120101031503605CA201071507605CA2010F150F605CA2011F151F605C +A2013F153F605CA2017F157F95C8FC91C8FC496C4A7EB690B6FCA345397DB845>72 +D<0103B500F8903807FFFC5BA290260007F8C813804BEDFC0019F0020F4B5AF003804B4A +C7FC180E021F1538604B5CEF0380023F4AC8FC170E4B133C1770027F5C4C5ADB0007C9FC +160E4A5B167E4A13FE4B7E01015B92380E7F80ECFC1CED383F010301E07FECFDC04A486C +7EECFF00D907FC6D7E5C4A130783130F707E5C1601011F81A24A6D7EA2013F6F7EA24A14 +3F84137F717E91C8123F496C81B60107B512C0A26146397DB847>75 +D<0103B6FC5B5E90260007FCC8FC5D5D140FA25DA2141FA25DA2143FA25DA2147FA292C9 +FCA25CA25CA21301A25CA21303A25CA2130718404A15C0A2010F150118804A1403A2011F +16005F4A1406170E013F151E171C4A143C177C017F5D160391C7120F49EC7FF0B8FCA25F +32397DB839>I<902603FFF891381FFFF8496D5CA2D90007030113006FEC007C02061678 +DA0EFF157081020C6D1460A2DA1C3F15E0705CEC181F82023815016F6C5C143015070270 +6D1303030392C7FC02607FA2DAE0015C701306ECC0008201016E130EEF800C5C163F0103 +EDC01C041F131891C713E0160F49EDF03818300106140717F8010E02031370EFFC60130C +EE01FE011C16E004005B011815FF177F1338600130153FA20170151F95C8FC01F081EA07 +FCB512E01706A245397DB843>78 D<0103B612F849EDFF8018E0903B0007F8001FF84BEB +03FCEF00FE020F157FA24BEC3F80A2021F16C0A25DA2143FF07F805DA2027FEDFF006092 +C7485A4D5A4A4A5A4D5A4AEC1F80057FC7FC0101EC07F891B612E094C8FC9139FC000FC0 +0103EC03F0707E4A6D7E831307177E5C177F010F5D5F5CA2011F1401A25CA2133F16034A +4A1360A2017F17E019C091C71401496C01011480B61503933900FE0700EF7E0ECAEA1FFC +EF07F03B3B7DB83F>82 D<267FFFFC91383FFFC0B55DA2000390C83807FC006C48ED03E0 +6060000094C7FC5F17065FA25F6D5DA26D5D17E05F4C5AA24CC8FC6E1306A2013F5C161C +16185EA25E6E5BA2011F495A150393C9FC1506A25D6E5AA2010F5B157015605DA2ECE180 +02E3CAFC14F3EB07F614FE5C5CA25C5CA26D5AA25C91CBFC3A3B7CB830>86 +D<147E903803FF8090390FC1C38090391F00EFC0017E137F49133F485A4848EB1F801207 +5B000F143F48481400A2485A5D007F147E90C7FCA215FE485C5AA214015D48150CA21403 +EDF01C16181407007C1538007E010F1330003E131F027B13706C01E113E03A0F83C0F9C0 +3A03FF007F80D800FCEB1F0026267DA42C>97 D<133FEA1FFFA3C67E137EA313FE5BA312 +015BA312035BA31207EBE0FCEBE3FF9038E707C0390FFE03E09038F801F001F013F8EBE0 +00485A15FC5BA2123F90C7FCA214015A127EA2140312FE4814F8A2140715F05AEC0FE0A2 +15C0EC1F80143F00781400007C137E5C383C01F86C485A380F07C06CB4C7FCEA01FC1E3B +7CB924>II<163FED1FFFA3ED007F167EA216FEA216FCA21501A216F8A21503A216F0A2 +1507A2027E13E0903803FF8790380FC1CF90381F00EF017EEB7FC049133F485A4848131F +000715805B000F143F485A1600485A5D127F90C7127EA215FE5A485CA21401A248ECF80C +A21403161CEDF0181407007C1538007E010F1330003E131F027B13706C01E113E03A0F83 +C0F9C03A03FF007F80D800FCEB1F00283B7DB92B>II<16F8ED03FEED0F879238 +1F0F80ED3E3F167F157CA215FC1700161C4A48C7FCA414035DA414075DA20107B512F0A3 +9026000FE0C7FC5DA4141F5DA4143F92C8FCA45C147EA514FE5CA413015CA4495AA45C13 +07A25C121E123F387F8F80A200FF90C9FC131E12FEEA7C3CEA7878EA1FF0EA07C0294C7C +BA29>I104 D<14E0EB03F8A21307A314F0EB01C090C7FCAB13F8EA03FEEA070F000E1380121C +121812381230EA701F1260133F00E0130012C05BEA007EA213FE5B1201A25B12035BA200 +07131813E01438000F133013C01470EB806014E014C01381EB838038078700EA03FEEA00 +F815397EB71D>I<150FED3F80A2157FA31600151C92C7FCABEC0F80EC3FE0ECF0F09038 +01C0F849487E14005B130E130C131CEB1801133801305BA2EB0003A25DA21407A25DA214 +0FA25DA2141FA25DA2143FA292C7FCA25CA2147EA214FEA25CA21301001E5B123F387F83 +F0A238FF87E0495A00FE5BD87C1FC8FCEA707EEA3FF8EA0FC0214981B722>IIIII<90390F +8003F090391FE00FFC903939F03C1F903A70F8700F80903AE0FDE007C09038C0FF800300 +13E00001491303018015F05CEA038113015CA2D800031407A25CA20107140FA24A14E0A2 +010F141F17C05CEE3F80131FEE7F004A137E16FE013F5C6E485A4B5A6E485A90397F700F +80DA383FC7FC90387E1FFCEC07E001FEC9FCA25BA21201A25BA21203A25B1207B512C0A3 +2C3583A42A>112 D<3903E001F83907F807FE390E3C1E07391C3E381F3A183F703F8000 +38EBE07F0030EBC0FF00705B00601500EC007E153CD8E07F90C7FCEAC07EA2120013FE5B +A312015BA312035BA312075BA3120F5BA3121F5B0007C9FC21267EA425>114 +D<14FF010313C090380F80F090383E00380178131C153C4913FC0001130113E0A33903F0 +00F06D13007F3801FFE014FC14FF6C14806D13C0011F13E013039038003FF01407140300 +1E1301127FA24814E0A348EB03C012F800E0EB07800070EB0F006C133E001E13F83807FF +E0000190C7FC1E267CA427>II<13F8D803FE1438D8070F147C000E6D13FC121C1218003814011230D8701F5C1260 +1503EAE03F00C001005B5BD8007E1307A201FE5C5B150F1201495CA2151F120349EC80C0 +A2153F1681EE0180A2ED7F0303FF130012014A5B3A00F8079F0E90397C0E0F1C90393FFC +07F8903907F001F02A267EA430>I<01F8EB03C0D803FEEB07E0D8070F130F000E018013 +F0121C12180038140700301403D8701F130112601500D8E03F14E000C090C7FC5BEA007E +16C013FE5B1501000115805B150316001203495B1506150E150C151C151815385D00015C +6D485A6C6C485AD97E0FC7FCEB1FFEEB07F024267EA428>I<01F816F0D803FE9138E001 +F8D8070F903801F003000ED9800314FC121C12180038020713010030EDE000D8701F167C +1260030F143CD8E03F163800C001005B5BD8007E131F183001FE5C5B033F147000011760 +4991C7FCA218E000034A14C049137E17011880170318005F03FE1306170E000101015C01 +F801BF5B3B00FC039F8070903A7E0F0FC0E0903A1FFC03FFC0902703F0007FC7FC36267E +A43B>I<903907E001F090391FF807FC9039783E0E0F9039E01F1C1FD801C09038383F80 +3A03800FF07F0100EBE0FF5A000E4A1300000C157E021F133C001C4AC7FC1218A2C7123F +A292C8FCA25CA2147EA214FEA24A130CA20101141C001E1518003F5BD87F81143801835C +00FF1560010714E03AFE0E7C01C0D87C1C495A2778383E0FC7FC391FF00FFC3907C003F0 +29267EA42F>I<13F8D803FE1470D8070F14F8000EEB8001121C121800381403003015F0 +EA701F1260013F130700E0010013E012C05BD8007E130F16C013FE5B151F000115805BA2 +153F000315005BA25D157EA315FE5D1401000113033800F80790387C1FF8EB3FF9EB0FE1 +EB00035DA2000E1307D83F805B007F495AA24A5A92C7FCEB003E007C5B00705B6C485A38 +1E07C06CB4C8FCEA01FC25367EA429>II E +%EndDVIPSBitmapFont +%DVIPSBitmapFont: Fy cmbx10 10 20 +/Fy 20 122 df58 +D65 D97 +D<13FFB5FCA412077EAF4AB47E020F13F0023F13FC9138FE03FFDAF00013804AEB7FC002 +80EB3FE091C713F0EE1FF8A217FC160FA217FEAA17FCA3EE1FF8A217F06E133F6EEB7FE0 +6E14C0903AFDF001FF80903AF8FC07FE009039F03FFFF8D9E00F13E0D9C00390C7FC2F3A +7EB935>I<903801FFC0010F13FC017F13FFD9FF8013802603FE0013C048485AEA0FF812 +1F13F0123F6E13804848EB7F00151C92C7FC12FFA9127FA27F123FED01E06C7E15036C6C +EB07C06C6C14806C6C131FC69038C07E006DB45A010F13F00101138023257DA42A>II<903803FF8001 +1F13F0017F13FC3901FF83FE3A03FE007F804848133F484814C0001FEC1FE05B003FEC0F +F0A2485A16F8150712FFA290B6FCA301E0C8FCA4127FA36C7E1678121F6C6C14F86D14F0 +00071403D801FFEB0FE06C9038C07FC06DB51200010F13FC010113E025257DA42C>II<161FD907FE +EBFFC090387FFFE348B6EAEFE02607FE07138F260FF801131F48486C138F003F15CF4990 +387FC7C0EEC000007F81A6003F5DA26D13FF001F5D6C6C4890C7FC3907FE07FE48B512F8 +6D13E0261E07FEC8FC90CAFCA2123E123F7F6C7E90B512F8EDFF8016E06C15F86C816C81 +5A001F81393FC0000F48C8138048157F5A163FA36C157F6C16006D5C6C6C495AD81FF0EB +07FCD807FEEB3FF00001B612C06C6C91C7FC010713F02B377DA530>I<13FFB5FCA41207 +7EAFED7FC0913803FFF8020F13FE91381F03FFDA3C01138014784A7E4A14C05CA25CA291 +C7FCB3A3B5D8FC3F13FFA4303A7DB935>II<01FED97FE0EB0FFC00FF +902601FFFC90383FFF80020701FF90B512E0DA1F81903983F03FF0DA3C00903887801F00 +0749DACF007F00034914DE6D48D97FFC6D7E4A5CA24A5CA291C75BB3A3B5D8FC1FB50083 +B512F0A44C257DA451>109 D<01FEEB7FC000FF903803FFF8020F13FE91381F03FFDA3C +011380000713780003497E6D4814C05CA25CA291C7FCB3A3B5D8FC3F13FFA430257DA435 +>I<903801FFC0010F13F8017F13FFD9FF807F3A03FE003FE048486D7E48486D7E48486D +7EA2003F81491303007F81A300FF1680A9007F1600A3003F5D6D1307001F5DA26C6C495A +6C6C495A6C6C495A6C6C6CB45A6C6CB5C7FC011F13FC010113C029257DA430>I<9039FF +01FF80B5000F13F0023F13FC9138FE07FFDAF00113800007496C13C06C0180EB7FE091C7 +13F0EE3FF8A2EE1FFCA3EE0FFEAA17FC161FA217F8163F17F06E137F6E14E06EEBFFC0DA +F00313809139FC07FE0091383FFFF8020F13E0020390C7FC91C9FCACB512FCA42F357EA4 +35>I<9038FE03F000FFEB0FFEEC3FFF91387C7F809138F8FFC000075B6C6C5A5CA29138 +807F80ED3F00150C92C7FC91C8FCB3A2B512FEA422257EA427>114 +D<90383FF0383903FFFEF8000F13FF381FC00F383F0003007E1301007C130012FC15787E +7E6D130013FCEBFFE06C13FCECFF806C14C06C14F06C14F81203C614FC131F9038007FFE +140700F0130114007E157E7E157C6C14FC6C14F8EB80019038F007F090B512C000F81400 +38E01FF81F257DA426>I<130FA55BA45BA25B5BA25A1207001FEBFFE0B6FCA3000390C7 +FCB21578A815F86CEB80F014816CEBC3E090383FFFC06D1380903803FE001D357EB425> +I<01FFEC3FC0B5EB3FFFA4000714016C80B3A35DA25DA26C5C6E4813E06CD9C03E13FF90 +387FFFFC011F13F00103138030257DA435>I121 D E +%EndDVIPSBitmapFont +%DVIPSBitmapFont: Fz cmr10 10 88 +/Fz 88 128 df<1506150FA24B7EA24B7EA24B7EA2EDDFF0A29138018FF8A291380307FC +A291380603FEA291380E01FF140CDA1C007F141802386D7E143002706D7E146002E06D7E +5C01016E7E5C01036E7E91C7FC496E7E1306010E6E7E130C011C6E7F131801386F7E1330 +01706F7E136001E06F7E5B170F484882170748C97F17030006831701488383481880001F +B9FC4818C0A24818E0A2BA12F0A23C3C7CBB45>1 D5 DI<011FB512FEA39026001FFEC8FCEC07F8A8EC3FFE01 +03B512E0D91FF713FC90397F07F87F01FCEC1F80D803F8EC0FE0D807F06E7ED80FE06E7E +001F82D83FC06E7EA2007F8201808000FF1780A7007F170001C05C003F5EA2D81FE04A5A +000F5ED807F04A5AD803F84A5AD800FCEC1F80017F027FC7FC90391FF7FFFC0103B512E0 +9026003FFEC8FCEC07F8A8EC1FFE011FB512FEA331397BB83C>8 +D10 D +II14 D<133C137EA213FE1201EA03FC13F0EA07E0EA +0FC0EA1F80EA1E005A5A5A12C00F0F6FB92A>19 D<001C131C007F137F39FF80FF80A26D +13C0A3007F137F001C131C00001300A40001130101801380A20003130301001300485B00 +061306000E130E485B485B485B006013601A197DB92A>34 D<141FEC7FC0903801F0E090 +3803C0600107137090380F803090381F00381518A25BA2133E133F15381530A215705D5D +140190381F838092CAFC1487148E02DC49B51280EB0FF85C4A9039003FF8000107ED0FC0 +6E5D71C7FC6E140E010F150CD91DFC141C01391518D970FE143801E015302601C07F1470 +D803805D00076D6C5BD80F00EBC00148011F5C4890380FE003003E6E48C8FC007E903807 +F8060203130E00FE6E5A6E6C5A1400ED7F706C4B13036F5A6F7E6C6C6D6C5B7013066C6C +496C130E6DD979FE5B281FF001F07F133C3C07F80FE03FC0F86CB539800FFFF0C69026FE +000313C0D91FF0D9007FC7FC393E7DBB41>38 D<121C127FEAFF80A213C0A3127F121C12 +00A412011380A2120313005A1206120E5A5A5A12600A1979B917>I<146014E0EB01C0EB +0380EB0700130E131E5B5BA25B485AA2485AA212075B120F90C7FCA25A121EA2123EA35A +A65AB2127CA67EA3121EA2121F7EA27F12077F1203A26C7EA26C7E1378A27F7F130E7FEB +0380EB01C0EB00E01460135278BD20>I<12C07E12707E7E7E120F6C7E6C7EA26C7E6C7E +A21378A2137C133C133E131EA2131F7FA21480A3EB07C0A6EB03E0B2EB07C0A6EB0F80A3 +1400A25B131EA2133E133C137C1378A25BA2485A485AA2485A48C7FC120E5A5A5A5A5A13 +527CBD20>I<15301578B3A6007FB812F8B912FCA26C17F8C80078C8FCB3A6153036367B +AF41>43 D<121C127FEAFF80A213C0A3127F121C1200A412011380A2120313005A120612 +0E5A5A5A12600A19798817>II<121C127FEAFF80A5EA7F00121C +0909798817>I<150C151E153EA2153C157CA2157815F8A215F01401A215E01403A215C0 +1407A21580140FA215005CA2141E143EA2143C147CA2147814F8A25C1301A25C1303A249 +5AA25C130FA291C7FC5BA2131E133EA2133C137CA2137813F8A25B1201A25B1203A25B12 +07A25B120FA290C8FC5AA2121E123EA2123C127CA2127812F8A25A12601F537BBD2A>I< +EB03F8EB1FFF90387E0FC09038F803E03901E000F0484813780007147C48487FA248C77E +A2481580A3007EEC0FC0A600FE15E0B3007E15C0A4007F141F6C1580A36C15006D5B000F +143EA26C6C5B6C6C5B6C6C485A6C6C485A90387E0FC0D91FFFC7FCEB03F8233A7DB72A> +I +III<1538A2157815F8 +A2140114031407A2140F141F141B14331473146314C313011483EB030313071306130C13 +1C131813301370136013C01201EA038013005A120E120C5A123812305A12E0B712F8A3C7 +3803F800AB4A7E0103B512F8A325397EB82A>I<0006140CD80780133C9038F003F890B5 +FC5D5D158092C7FC14FC38067FE090C9FCABEB07F8EB3FFE9038780F803907E007E09038 +8003F0496C7E12066E7EC87EA28181A21680A4123E127F487EA490C71300485C12E00060 +5C12700030495A00385C6C1303001E495A6C6C485A3907E03F800001B5C7FC38007FFCEB +1FE0213A7CB72A>II<12301238123E003FB612E0A3 +16C05A168016000070C712060060140E5D151800E01438485C5D5DC712014A5A92C7FC5C +140E140C141C5CA25CA214F0495AA21303A25C1307A2130FA3495AA3133FA5137FA96DC8 +FC131E233B7BB82A>III<121C12 +7FEAFF80A5EA7F00121CC7FCB2121C127FEAFF80A5EA7F00121C092479A317>I<121C12 +7FEAFF80A5EA7F00121CC7FCB2121C127F5A1380A4127F121D1201A412031300A25A1206 +A2120E5A121812385A1260093479A317>I<007FB812F8B912FCA26C17F8CCFCAE007FB8 +12F8B912FCA26C17F836167B9F41>61 D<1538A3157CA315FEA34A7EA34A6C7EA202077F +EC063FA2020E7FEC0C1FA2021C7FEC180FA202387FEC3007A202707FEC6003A202C07F15 +01A2D901807F81A249C77F167FA20106810107B6FCA24981010CC7121FA2496E7EA3496E +7EA3496E7EA213E0707E1201486C81D80FFC02071380B56C90B512FEA3373C7DBB3E>65 +DI<913A01FF800180020FEBE003027F13F8903A01FF807E07903A03 +FC000F0FD90FF0EB039F4948EB01DFD93F80EB00FF49C8127F01FE153F12014848151F48 +48150FA248481507A2485A1703123F5B007F1601A35B00FF93C7FCAD127F6DED0180A312 +3F7F001F160318006C7E5F6C7E17066C6C150E6C6C5D00001618017F15386D6C5CD91FE0 +5C6D6CEB03C0D903FCEB0F80902701FF803FC7FC9039007FFFFC020F13F002011380313D +7BBA3C>III< +B812F8A30001903880001F6C90C71201EE00FC177C173C171CA2170CA4170E1706A2ED01 +80A21700A41503A21507151F91B5FCA3EC001F15071503A21501A692C8FCAD4813C0B612 +C0A32F397DB836>III +I<013FB512E0A39039001FFC00EC07F8B3B3A3123FEA7F80EAFFC0A44A5A1380D87F005B +0070131F6C5C6C495A6C49C7FC380781FC3801FFF038007F80233B7DB82B>III< +B5933807FFF86E5DA20001F0FC002600DFC0ED1BF8A2D9CFE01533A3D9C7F01563A3D9C3 +F815C3A2D9C1FCEC0183A3D9C0FEEC0303A2027F1406A36E6C130CA36E6C1318A26E6C13 +30A36E6C1360A26E6C13C0A3913901FC0180A3913900FE0300A2ED7F06A3ED3F8CA2ED1F +D8A3ED0FF0A3486C6D5A487ED80FFC6D48497EB500C00203B512F8A2ED018045397DB84C +>I +III82 +D +I<003FB812E0A3D9C003EB001F273E0001FE130348EE01F00078160000701770A3006017 +30A400E01738481718A4C71600B3B0913807FF80011FB612E0A335397DB83C>IIII89 D91 D +93 D<13101338137C13FE487E3803C780380783C0380F01E0381E00F04813780070131C +48130E00401304170D77B92A>I96 +DIIIII<147E903803FF8090380FC1E0EB1F879038 +3F0FF0137EA213FCA23901F803C091C7FCADB512FCA3D801F8C7FCB3AB487E387FFFF8A3 +1C3B7FBA19>I +IIIIII<2703F00FF0EB1FE000FFD93FFCEB7FF8913AF03F01E07E +903BF1C01F83803F3D0FF3800FC7001F802603F70013CE01FE14DC49D907F8EB0FC0A249 +5CA3495CB3A3486C496CEB1FE0B500C1B50083B5FCA340257EA445>I<3903F00FF000FF +EB3FFCECF03F9039F1C01F803A0FF3800FC03803F70013FE496D7EA25BA35BB3A3486C49 +7EB500C1B51280A329257EA42E>II<3903F01FE000FFEB7FF89038F1 +E07E9039F3801F803A0FF7000FC0D803FEEB07E049EB03F04914F849130116FC150016FE +A3167FAA16FEA3ED01FCA26DEB03F816F06D13076DEB0FE001F614C09039F7803F009038 +F1E07E9038F0FFF8EC1FC091C8FCAB487EB512C0A328357EA42E>II<3807E01F00FF +EB7FC09038E1E3E09038E387F0380FE707EA03E613EE9038EC03E09038FC0080491300A4 +5BB3A2487EB512F0A31C257EA421>II<1318A51338A31378A313F8120112031207001FB5FCB6FCA2 +D801F8C7FCB215C0A93800FC011580EB7C03017E13006D5AEB0FFEEB01F81A347FB220> +IIIIII<003FB512FCA2EB8003D83E0013F8003CEB07F00038EB0FE012300070EB1FC0EC +3F800060137F150014FE495AA2C6485A495AA2495A495A495AA290387F000613FEA2485A +485A0007140E5B4848130C4848131CA24848133C48C7127C48EB03FC90B5FCA21F247EA3 +25>II126 D<001C131C007F137F39FF80FF80 +A5397F007F00001C131C190978B72A>I E +%EndDVIPSBitmapFont +%DVIPSBitmapFont: FA cmmi12 14.4 1 +/FA 1 73 df<020FB600E090B612FEA4DA00070180C8387FF8006F90C96C5A4C5F030717 +7F645EA2030F17FF645EA2031F5E99C7FC5EA2033F5E635EA2037F1607635EA203FF160F +635EA24A171F6393C9FCA24A173F6393B8FCA25C6303FCC9127FA2020F17FF635DA2021F +5E98C8FC5DA2023F5E625DA2027F1607625DA202FF160F625DA249171F6292C9FCA24917 +3F625CA20107177F625CA2010F17FFA2D93FFE03037F007FB60107B612F0B75BA24B5F5F +527AD161>72 D E +%EndDVIPSBitmapFont +%DVIPSBitmapFont: FB cmr12 14.4 30 +/FB 30 122 df<923803FFF0033F13FF4AB612E0020F9038003FFCDA3FF0EB03FFDAFFC0 +010013C0010390C8EA3FF0D907FCED0FF849486F7ED93FF06FB4FC49486F7F49486F7F48 +49707EA24890CA6C7E4848717EA24848717E001F85A2491707003F85A34848711380AB6C +6C4D1300A4001F616D170FA2000F61A26C6C4D5AA20003616D173F6C616E167F6C61017F +606E16FF013F95C7FC6D6C4B5AA2010F5F6D6C4B5AA26D6C4B5AA201015F6D6C4B5AA200 +E0017C93388001C06EED1F000070F10380021E151E021F153E6E153CA26C6E027CEB0700 +02071578A2003C010303705B003E616CB56C91B512FEA56C61A34A547BD355>10 +D12 +D19 D<120FEA3FC0EA7FE0EAFFF013F8A313 +FCA2127FEA3FDCEA0F1C1200A5133C1338A31378137013F0A2EA01E0A2EA03C0EA0780A2 +EA0F00121E5A5A12300E2376D221>39 D<15E01401EC03C0EC0780EC0F00141E5C147C5C +495A13035C495A130F5C131F91C7FC133E137EA25BA2485AA25B1203A2485AA3120F5BA2 +121FA25BA2123FA290C8FCA35AA5127EA312FEB3A3127EA3127FA57EA37FA2121FA27FA2 +120FA27F1207A36C7EA212017FA26C7EA2137EA2133E7F80130F8013076D7E8013016D7E +147C143C8080EC0780EC03C0EC01E014001B7974D92E>I<12E07E12787E7E7E6C7E7F6C +7E6C7E7F1200137C137E133E133F7F6D7E80A26D7EA26D7EA2130180A26D7EA380147EA2 +147FA280A21580A2141FA315C0A5140FA315E0B3A315C0A3141FA51580A3143FA21500A2 +5CA2147EA214FE5CA3495AA25C1303A2495AA2495AA25C49C7FC5B133E137E137C5B1201 +5B485A485A5B48C8FC121E5A5A5A5A1B797AD92E>I45 +D<120FEA3FC0EA7FE0EAFFF0A6EA7FE0EA3FC0EA0F00C7FCB3A9120FEA3FC0EA7FE0EAFF +F0A6EA7FE0EA3FC0EA0F000C3376B221>58 D<120FEA3FC0EA7FE0EAFFF0A6EA7FE0EA3F +C0EA0F00C7FCB3A9120FEA3FC0127FEAFFE0A213F0A4127F123FEA0F701200A513F0A213 +E0A3120113C01203A213801207EA0F00A2121E5AA25A12300C4A76B221>I65 +D69 +DI77 +DI99 D<17FF4BB5FCA4ED0007160182B3A6EC0FF8EC7FFF49B512E0903907FC03F090391F +E0007C49487F49C7120F01FE80484880485A000781484880A2485AA2485AA2127FA35B12 +FFAB127FA27FA2123FA27F121FA26C6C5C00075D7F6C6C5C6C6C5C6C6C021E7F6D6C017C +13E0D91FC049EBFF8090390FF807E00103B512800100495ADA1FF091C7FC39547CD241> +II<157F913803FFE0020F13F091383FC0F891387F01 +FC903901FE03FE903803FC0714F81307EB0FF0A290391FE003FCED01F892C7FC495AB3B6 +12FEA426003FC0C7FCB3B3A580EBFFF0007FEBFFF8A427547DD324>II<1378EA01FE487E487FA66C90C7FC6C5AEA007890C8FCB0EB7F80B5FCA41203C6 +FC137FB3B3A43801FFE0B61280A419507CCF21>105 D108 D<01FFD907FEEC03FFB590261FFFC0010F +13E0037F01F0013F13F8912701F80FFC9038FC07FE913D03C003FE01E001FF0003902607 +00019038038000C6010E6D6C48C76C7E6D48DA7F8E6E7E4A159CA24ADA3FF86E7E02605D +14E04A5DA34A5DB3AD2601FFE0DAFFF0EC7FF8B6D8C07F9026FFE03FB512F0A45C347CB3 +63>I<01FFEB07FCB590383FFF8092B512E0913901F00FF8913903C007FC000349C66C7E +C6010E13016D486D7E5C143002706E7E146014E05CA35CB3AD2601FFE0903801FFE0B600 +C0B612C0A43A347CB341>II<90397F8007FCB590387FFF +800281B512E0913987F00FF891398F8003FC000390399E0001FFC601BC6D7FD97FF86E7E +4A6E7E4A6E7E4A140F844A6E7EA2717EA3717EA4711380AB4D1300A44D5AA24D5AA2606E +140F4D5A6E5D6E4A5A6E4A5A02BC4AC7FC029E495A028FEB07FC913987E01FF00281B512 +C0DA807F90C8FCED0FF892CAFCB13801FFE0B612C0A4394B7DB341>I<01FFEB1F80B5EB +7FF0913801FFF8913803E1FC91380783FE0003EB0F07C6131EEB7F1C1438143091387003 +FC91386000F0160014E05CA45CB3AA8048487EB612F0A427347DB32E>114 +DIII121 +D E +%EndDVIPSBitmapFont +end +%%EndProlog +%%BeginSetup +%%Feature: *Resolution 600dpi +TeXDict begin +%%PaperSize: A4 + +%%EndSetup +%%Page: 1 1 +1 0 bop 1162 531 a FB(An)39 b FA(H)9 b FB(\(curl)o(;)20 +b(\012\)-conforming)34 b(FEM:)1200 680 y(N)m(\023)-55 +b(ed)m(\023)g(elec's)36 b(elemen)m(ts)h(of)h(\014rst)g(t)m(yp)s(e)1411 +933 y Fz(Anna)28 b(Sc)n(hneeb)r(eli,)f(April)h(30,)f(2003)28 +1223 y Fy(Abstract:)35 b Fz(The)23 b(aim)f(of)h(this)g(rep)r(ort)e(is)i +(to)f(giv)n(e)g(an)h(in)n(tro)r(duction)f(to)g(N)n(\023)-39 +b(ed)n(\023)g(elec's)21 b Fx(H)7 b Fz(\(curl;)14 b(\012\)-conforming)21 +b(\014nite)i(elemen)n(t)28 1322 y(metho)r(d)j(of)g(\014rst)f(t)n(yp)r +(e.)36 b(As)26 b(the)g(name)g(suggests,)f(this)h(metho)r(d)g(has)f(b)r +(een)h(in)n(tro)r(duced)g(in)g(1980)e(b)n(y)h(J.)h(C.)g(N)n(\023)-39 +b(ed)n(\023)g(elec)24 b(in)i([8)o(].)28 1422 y(In)c(the)g(\014rst)g +(section,)g(w)n(e)g(presen)n(t)f(the)h(mo)r(del)g(problem)g(and)g(in)n +(tro)r(duce)f(the)h(framew)n(ork)e(for)i(its)g(v)-5 b(ariational)20 +b(form)n(ulation.)28 1522 y(In)26 b(the)h(second)f(section,)h(w)n(e)f +(presen)n(t)g(N)n(\023)-39 b(ed)n(\023)g(elec's)24 b(elemen)n(ts)j(of)f +(\014rst)g(t)n(yp)r(e)h(for)f Fx(H)7 b Fz(\(curl;)14 +b(\012\).)37 b(W)-7 b(e)26 b(start)g(b)n(y)h(considering)e(the)28 +1621 y(case)d(of)i(a\016ne)f(grids)g(in)h(t)n(w)n(o)f(and)g(three)h +(space)f(dimensions.)35 b(W)-7 b(e)24 b(in)n(tro)r(duce)f(the)h(Piola)f +(transformation)f(for)h(v)n(ector)f(\014elds)28 1721 +y(and)33 b(discuss)f(the)i(c)n(hoice)e(of)h(function)h(spaces)e(and)h +(degrees)f(of)h(freedom.)53 b(These)33 b(results)f(are)g(then)i +(extendend)f(to)g(bi-)28 1821 y(and)26 b(trilinear)f(grids.)36 +b(W)-7 b(e)26 b(explain)g(the)h(practical)e(construction)h(of)g(global) +f(shap)r(e)h(functions)h(and)f(conclude)g(this)h(section)28 +1920 y(with)h(some)f(remarks)f(on)h(appro)n(ximation)f(results.)28 +2020 y(Numerical)e(results,)g(whic)n(h)h(serv)n(e)e(to)i(illustrate)f +(the)h(con)n(v)n(ergence)d(of)j(the)g(metho)r(d,)g(are)f(presen)n(ted)g +(in)h(the)g(third)g(section.)28 2119 y(In)35 b(App)r(endix)i(A,)f(w)n +(e)f(demonstrate)g(ho)n(w)g(solutions)f(of)i(the)g(t)n(w)n +(o-dimensional)e(mo)r(del)i(problem)f(can)g(b)r(e)h(constructed)28 +2219 y(from)27 b(solutions)g(of)g(the)h(scalar)e(Laplace)h(equation.)28 +2319 y(In)40 b(App)r(endix)g(B)g(w)n(e)f(motiv)-5 b(ate)40 +b(the)g(mo)r(del)g(problem)g(studied)g(in)g(the)g(rep)r(ort)f(b)n(y)h +(considering)e(the)i(time-harmonic)28 2418 y(Maxw)n(ell's)26 +b(equations)h(in)h(the)g(lo)n(w-frequency)e(case.)28 +2653 y Fw(1)134 b Fv(The)38 b(mo)s(del)e(problem)h(and)h(the)g(space)g +Fu(H)8 b Ft(\(curl)o(;)17 b(\012\))28 2835 y Fz(Consider)26 +b(the)i(v)n(ector-v)-5 b(alued)26 b(mo)r(del)i(problem)f(in)h(a)f +(Lipsc)n(hitz)g(domain)h(\012)23 b Fs(2)g Fr(R)2628 2805 +y Fq(d)2673 2835 y Fz(,)k Fx(d)d Fz(=)e(2)p Fx(;)14 b +Fz(3:)1424 2980 y(curl)f(curl)g Fx(u)p 1728 2993 48 4 +v 18 w Fz(+)18 b Fx(c)p Fz(\()p Fx(x)p Fz(\))p Fx(u)p +2024 2993 V 24 w Fz(=)23 b Fx(f)p 2184 3009 50 4 v 91 +w Fz(in)83 b(\012)14 b Fx(;)1290 b Fz(\(1\))28 3136 y(with)28 +b(righ)n(t)f(hand)g(side)h Fx(f)p 792 3166 V 31 w Fs(2)c +Fx(L)1000 3106 y Fp(2)1036 3136 y Fz(\(\012\))1160 3106 +y Fq(d)1200 3136 y Fz(.)28 3236 y(W)-7 b(e)28 b(assume)e(a)i +(homogeneous)d(Diric)n(hlet)j(b)r(oundary)f(condition)g(on)h(the)g +(tangen)n(tial)e(trace)1824 3381 y Fx(u)p 1824 3394 48 +4 v 17 w Fs(^)19 b Fx(n)p 1963 3394 50 4 v 23 w Fz(=)k(0)1689 +b(\(2\))28 3526 y(on)27 b(the)h(b)r(oundary)f Fx(@)5 +b Fz(\012)27 b(of)h(\012.)28 3625 y(The)f(co)r(e\016cien)n(t)h +Fx(c)p Fz(\()p Fx(x)p Fz(\))g(is)g(assumed)f(to)g(b)r(e)h(b)r(ounded)g +(and)g(uniform)f(p)r(ositiv)n(e)g(de\014nite.)28 3725 +y(This)i(t)n(yp)r(e)g(of)g(problem)f(t)n(ypically)h(arises)e(in)j +(particular)d(settings)i(of)g(Maxw)n(ell`s)f(equations.)40 +b(The)29 b(b)r(oundary)g(condition)28 3825 y(\(2\))36 +b(then)g(applies)f(to)h(a)f(p)r(erfectly)h(conducting)g(b)r(oundary)-7 +b(.)61 b(F)-7 b(or)35 b(a)g(deriv)-5 b(ation)35 b(of)h(the)g(mo)r(del)g +(problem)f(\(1\),)j(refer)d(to)28 3924 y(App)r(endix)28 +b(A.)28 4123 y(The)f(sub)5 b(ject)28 b(of)g(this)f(section)h(is)f(to)h +(giv)n(e)e(an)i(appropriate)d(setting)j(for)f(a)g(v)-5 +b(ariational)26 b(form)n(ulation)h(of)g(\(1\).)28 4223 +y(A)h(more)e(detailed)i(treatmen)n(t)f(of)h(the)g(follo)n(wing)e +(notions)h(and)h(pro)r(ofs)f(can)g(b)r(e)h(found)g(in)g([4)o(].)28 +4446 y Fv(1.1)112 b Fo(De\014nitions)28 4599 y Fn(Convention)27 +b Fz(1)45 b Fm(In)26 b(the)h(fol)t(lowing,)j(the)d(ve)l(ctor)g +Fx(t)p 1629 4612 30 4 v 27 w Fm(wil)t(l)h(denote)f(the)g(unit)e +(tangent)h(ve)l(ctor)h(w.)h(r.)f(t.)37 b(an)27 b(e)l(dge)g(of)g(a)g +(triangle)28 4699 y(or)38 b(quadrilater)l(al,)44 b(oriente)l(d)39 +b(c)l(ounter)l(clo)l(ckwise)g(with)g(r)l(esp)l(e)l(ct)g(to)f(the)h(c)l +(orr)l(esp)l(onding)h(triangle)f(or)g(quadrilater)l(al.)67 +b(\(In)28 4798 y(3d,)36 b(the)f(c)l(onsider)l(e)l(d)g(triangles)g(or)g +(quadrilater)l(als)h(wil)t(l)g(always)g(b)l(e)e(fac)l(es)h(of)h(a)e(p)l +(olyhe)l(dr)l(on,)k(and)d(the)f(c)l(ounter)l(clo)l(ckwise)28 +4898 y(orientation)c(has)h(to)e(b)l(e)h(understo)l(o)l(d)g(as)g(induc)l +(e)l(d)g(by)h("outwar)l(d)e(unit)g(normal)i(of)f(the)g(fac)l(e,)h(plus) +f(right)h(hand)f(rule")g(\).)28 5101 y Fz(Let)f(us)h(\014rst)f +(consider)f(the)i(case)f(of)g Fx(d)d Fz(=)g(2.)42 b(F)-7 +b(or)29 b Fx(v)p 1622 5114 44 4 v 29 w Fz(=)1782 4984 +y Fl(\022)1885 5051 y Fx(v)1925 5063 y Fp(1)1962 5051 +y Fz(\()p Fx(x;)14 b(y)s Fz(\))1885 5150 y Fx(v)1925 +5162 y Fp(2)1962 5150 y Fz(\()p Fx(x;)g(y)s Fz(\))2196 +4984 y Fl(\023)2284 5101 y Fs(2)26 b Fz([)p Fs(D)r Fz(\()p +2486 5035 60 4 v(\012)q(\)])2602 5071 y Fp(2)2669 5101 +y Fz(and)j Fx(')e Fs(2)f(D)r Fz(\()p 3092 5035 V(\012)q(\))k(w)n(e)f +(de\014ne)g(the)h(scalar-)28 5246 y(and)d(the)h(v)n(ector-v)-5 +b(alued)26 b(curl-op)r(erators:)1059 5436 y(curl)14 b +Fx(v)p 1212 5449 44 4 v 26 w Fz(:=)23 b Fx(@)1433 5448 +y Fq(x)1474 5436 y Fx(v)1514 5448 y Fp(2)1570 5436 y +Fs(\000)18 b Fx(@)1697 5448 y Fq(y)1737 5436 y Fx(v)1777 +5448 y Fp(1)1898 5436 y Fz(and)96 b(curl)p 2128 5449 +139 4 v 14 w Fx(')23 b Fz(:=)2469 5319 y Fl(\022)2605 +5386 y Fx(@)2649 5398 y Fq(y)2689 5386 y Fx(')2572 5485 +y Fs(\000)p Fx(@)2681 5497 y Fq(x)2722 5485 y Fx(')2818 +5319 y Fl(\023)2907 5436 y Fx(:)1972 5719 y Fk(1)p eop +%%Page: 2 2 +2 1 bop 28 207 a Fz(W)-7 b(e)28 b(note)f(that)h(the)g(curl)13 +b(curl-op)r(erator)25 b(in)j(t)n(w)n(o)f(dimensions)g(has)g(to)h(b)r(e) +g(understo)r(o)r(d)f(as)g(curl)p 2909 220 139 4 v 14 +w(curl)o(.)28 462 y Fn(Remark)h Fz(1)45 b Fm(In)38 b(the)h(two)f +(dimensional)j(c)l(ase,)g(the)e Fz(curl)f Fm(op)l(er)l(ator)i(is)f +(simply)g(the)g(diver)l(genc)l(e)h(of)f(the)g(r)l(otate)l(d)g(\014eld)g +Fx(v)p 3893 475 44 4 v 3 w Fm(.)28 561 y(Similarly,)31 +b(the)f Fz(curl)p 546 574 139 4 v 30 w Fm(op)l(er)l(ator)g(is)g(the)g +(r)l(otate)l(d)g(gr)l(adient)h(\014eld)f(of)g Fx(')p +Fm(.)39 b(Setting)1659 770 y Fj(R)24 b Fz(=)1843 653 +y Fl(\022)1978 720 y Fz(0)115 b(1)1945 819 y Fs(\000)p +Fz(1)83 b(0)2218 653 y Fl(\023)2306 770 y Fx(;)28 979 +y Fm(we)30 b(have)1687 1079 y Fz(curl)13 b Fx(v)p 1839 +1092 44 4 v 27 w Fz(=)22 b(div)15 b(\()q Fj(R)p Fx(v)p +2226 1092 V 4 w Fz(\))28 1216 y Fm(and)1719 1316 y Fz(curl)p +1719 1329 139 4 v 14 w Fx(')23 b Fz(=)g Fj(R)p Fs(r)p +Fx(')14 b(:)28 1454 y Fm(We)26 b(further)g(note)g(that)h(the)f +(tangential)h(ve)l(ctor)f Fx(t)p 1555 1467 30 4 v 27 +w Fm(is)g(just)g(the)g(r)l(otate)l(d)h(outwar)l(d)f(unit)g(normal)h(ve) +l(ctor)f Fx(t)p 3268 1467 V 23 w Fz(=)d Fj(R)3482 1417 +y Fq(T)3534 1454 y Fx(n)p 3534 1467 50 4 v Fm(.)37 b(This)28 +b(wil)t(l)28 1554 y(enable)35 b(us)f(to)g(derive)i(statements)d(for)j +(the)e Fz(curl)p Fm(-op)l(er)l(ators)h(in)g(two)f(dimensions)i(fr)l(om) +f(statements)e(for)i(the)g(diver)l(genc)l(e)28 1653 y(and)30 +b(gr)l(adient)g(op)l(er)l(ators)h(in)f(two)g(dimensions.)28 +1808 y Fz(F)-7 b(or)27 b(the)h(case)e(of)i Fx(d)23 b +Fz(=)g(3)k(and)g(a)h(v)n(ector)e(\014eld)i Fx(v)p 1473 +1821 44 4 v 26 w Fs(2)23 b Fz([)p Fs(D)r Fz(\()p 1738 +1742 60 4 v(\012)q(\)])1854 1778 y Fp(3)1919 1808 y Fz(w)n(e)28 +b(write)1333 2071 y(curl)14 b Fx(v)p 1486 2084 44 4 v +26 w Fz(:=)23 b Fs(r)18 b(^)h Fx(v)p 1824 2084 V 26 w +Fz(:=)2001 1904 y Fl(0)2001 2054 y(@)2117 1971 y Fx(@)2161 +1983 y Fq(y)2201 1971 y Fx(v)2241 1983 y Fp(3)2297 1971 +y Fs(\000)f Fx(@)2424 1983 y Fq(z)2462 1971 y Fx(v)2502 +1983 y Fp(2)2116 2070 y Fx(@)2160 2082 y Fq(z)2198 2070 +y Fx(v)2238 2082 y Fp(1)2294 2070 y Fs(\000)g Fx(@)2421 +2082 y Fq(x)2463 2070 y Fx(v)2503 2082 y Fp(3)2115 2170 +y Fx(@)2159 2182 y Fq(x)2201 2170 y Fx(v)2241 2182 y +Fp(2)2297 2170 y Fs(\000)g Fx(@)2424 2182 y Fq(y)2464 +2170 y Fx(v)2504 2182 y Fp(1)2583 1904 y Fl(1)2583 2054 +y(A)28 2349 y Fn(Definition)28 b Fz(1)45 b Fm(F)-6 b(or)30 +b Fx(d)23 b Fz(=)g(2)p Fx(;)14 b Fz(3)28 b Fm(we)i(write)1388 +2327 y Fz(~)1373 2349 y Fx(d)24 b Fz(=)e(1)30 b Fm(if)g +Fx(d)23 b Fz(=)g(2)29 b Fm(and)2080 2327 y Fz(~)2066 +2349 y Fx(d)23 b Fz(=)f(3)30 b Fm(if)g Fx(d)24 b Fz(=)e(3)p +Fm(,)30 b(and)g(we)g(de\014ne)1140 2526 y Fx(H)7 b Fz(\(curl)o(;)14 +b(\012\))23 b(:=)g Fs(f)p Fx(v)p 1691 2539 V 26 w Fs(2)g +Fz([)p Fx(L)1915 2492 y Fp(2)1952 2526 y Fz(\(\012\)])2099 +2492 y Fq(d)2161 2526 y Fz(:)h(curl)13 b Fx(v)p 2360 +2539 V 26 w Fs(2)24 b Fz([)p Fx(L)2585 2492 y Fp(2)2621 +2526 y Fz(\(\012\)])2779 2476 y Fp(~)2768 2492 y Fq(d)2808 +2526 y Fs(g)28 2689 y Fx(H)7 b Fz(\(curl)o(;)14 b(\012\))28 +b(endo)n(w)n(ed)f(with)h(the)g(inner)f(pro)r(duct)1109 +2853 y(\()p Fx(v)p 1141 2866 V 3 w(;)14 b(u)p 1221 2866 +48 4 v Fz(\))1301 2868 y Fq(H)t Fp(\(curl;\012\))1616 +2853 y Fz(:=)23 b(\()p Fx(v)p 1759 2866 44 4 v 3 w(;)14 +b(u)p 1839 2866 48 4 v Fz(\))1919 2868 y Fq(L)1965 2851 +y Fi(2)1997 2868 y Fp(\(\012\))2119 2853 y Fz(+)k(\(curl)13 +b Fx(v)p 2386 2866 44 4 v 4 w(;)h Fz(curl)f Fx(u)p 2619 +2866 48 4 v -1 w Fz(\))2698 2868 y Fq(L)2744 2851 y Fi(2)2777 +2868 y Fp(\(\012\))28 3016 y Fz(is)27 b(a)g(Hilb)r(ert)h(space.)28 +3342 y Fv(1.2)112 b Fo(T)-9 b(race)35 b(theorem,)f(in)m(tegration)h(b)m +(y)g(parts)28 3495 y Fz(The)e(space)g Fx(H)7 b Fz(\(curl)o(;)14 +b(\012\))34 b(will)f(b)r(e)h(the)g(appropriate)d(Sob)r(olev)i(space)g +(for)g(a)g(w)n(eak)f(form)n(ulation)g(of)i(the)f(mo)r(del)h(problem.)28 +3594 y(In)g(this)g(section)g(w)n(e)f(pro)n(vide)g(a)h(notion)f(of)h +(trace)g(of)f(a)h Fx(H)7 b Fz(\(curl;)14 b(\012\)-function)34 +b(on)n(to)f(the)i(b)r(oundary)e Fx(@)5 b Fz(\012)34 b(and)f(w)n(e)h +(de\014ne)28 3694 y(in)n(tergation)26 b(b)n(y)h(parts)g(on)g(the)h +(space)f Fx(H)7 b Fz(\(curl;)14 b(\012\).)28 3870 y Fn(Theorem)28 +b Fz(1)f(\(Appro)n(ximation)g(Prop)r(ert)n(y\))44 b Fm(F)-6 +b(or)30 b Fx(d)23 b Fz(=)g(2)p Fx(;)14 b Fz(3)p Fm(,)29 +b Fz([)p Fs(D)r Fz(\()p 2110 3803 60 4 v(\012\)])2225 +3840 y Fq(d)2294 3870 y Fm(is)h(dense)g(in)g Fx(H)7 b +Fz(\(curl;)14 b(\012\))p Fm(.)28 4046 y Fz(See)27 b([4)o(])h(p.13,)e +(p.20)h(for)f(the)i(pro)r(of)f(in)g(the)h(2d-case)d(and)i(p.20)g(for)f +(a)h(reference)f(to)h(the)h(pro)r(of)f(in)g(3d)g(prop)r(osed)f(in)i +(Duv)-5 b(aut)28 4146 y(&)27 b(Lions,)g(1971.)28 4345 +y(Equipp)r(ed)g(with)h(this)g(appro)n(ximation)e(prop)r(ert)n(y)h(of)g +(smo)r(oth)g(functions)h(to)g(elemen)n(ts)f(of)h Fx(H)7 +b Fz(\(curl)o(;)14 b(\012\),)28 b(w)n(e)g(can)f(state)28 +4521 y Fn(Theorem)h Fz(2)f(\(Green's)g(F)-7 b(orm)n(ula\))45 +b Fm(F)-6 b(or)29 b(the)g(2d)h(c)l(ase,)g(let)f Fx(u)p +1932 4534 48 4 v 29 w Fm(b)l(e)g(in)g Fz([)p Fx(H)7 b +Fz(\(curl)o(;)14 b(\012\)])2632 4491 y Fp(2)2699 4521 +y Fm(and)29 b Fx(')h Fm(b)l(e)f(a)g(test)f(function)h(in)g +Fx(H)3774 4491 y Fp(1)3811 4521 y Fz(\(\012\))p Fm(.)28 +4621 y(We)g(have)1102 4629 y Fl(Z)1148 4818 y Fp(\012)1214 +4742 y Fz(curl)13 b Fx(u)p 1366 4755 V 27 w(')h(dx)24 +b Fz(=)1711 4629 y Fl(Z)1757 4818 y Fp(\012)1822 4742 +y Fx(u)p 1822 4755 V 18 w Fs(\001)19 b Fz(curl)p 1930 +4755 139 4 v 13 w Fx(')14 b(dx)19 b Fz(+)2342 4629 y +Fl(Z)2389 4818 y Fq(@)t Fp(\012)2479 4742 y Fz(\()p Fx(u)p +2511 4755 48 4 v 18 w Fs(\001)g Fx(t)p 2619 4755 30 4 +v Fz(\))14 b Fx(')g(ds)19 b(;)28 4932 y Fm(F)-6 b(or)30 +b(the)f(3d)i(c)l(ase,)g(let)e Fx(u)p 755 4945 48 4 v +30 w Fm(b)l(e)g(in)h Fz([)p Fx(H)7 b Fz(\(curl;)14 b(\012\)])1458 +4902 y Fp(3)1525 4932 y Fm(and)30 b Fx(v)p 1686 4945 +44 4 v 33 w Fm(b)l(e)g(a)g(test)f(function)h(in)g Fz([)p +Fx(H)2618 4902 y Fp(1)2655 4932 y Fz(\(\012\)])2802 4902 +y Fp(3)2840 4932 y Fm(.)38 b(We)30 b(then)g(have)1053 +5025 y Fl(Z)1100 5213 y Fp(\012)1165 5138 y Fx(v)p 1165 +5151 V 22 w Fs(\001)18 b Fz(curl)c Fx(u)p 1421 5151 48 +4 v 13 w(dx)24 b Fz(=)1683 5025 y Fl(Z)1729 5213 y Fp(\012)1795 +5138 y Fx(u)p 1795 5151 V 18 w Fs(\001)18 b Fz(curl)c +Fx(v)p 2055 5151 44 4 v 17 w(dx)19 b Fz(+)2304 5025 y +Fl(Z)2350 5213 y Fq(@)t Fp(\012)2441 5138 y Fz(\()p Fx(v)p +2473 5151 V 22 w Fs(^)f Fx(n)p 2608 5151 50 4 v Fz(\))h +Fs(\001)f Fx(u)p 2750 5151 48 4 v 14 w(ds)g(;)28 5370 +y Fm(The)30 b(b)l(oundary)h(inte)l(gr)l(als)f(ar)l(e)g(understo)l(o)l +(d)g(as)g(duality)g(p)l(airings)i(in)d Fz([)p Fx(H)2338 +5340 y Fh(\000)2400 5317 y Fi(1)p 2400 5326 29 3 v 2400 +5360 a(2)2442 5370 y Fz(\()p Fx(@)5 b Fz(\012\)])2649 +5324 y Fp(~)2638 5340 y Fq(d)2696 5370 y Fs(\002)18 b +Fx(H)2865 5317 y Fi(1)p 2865 5326 V 2865 5360 a(2)2907 +5370 y Fz(\()p Fx(@)5 b Fz(\012\))30 b Fm(.)1972 5719 +y Fk(2)p eop +%%Page: 3 3 +3 2 bop 28 207 a Fn(Pr)n(oof.)55 b Fz(F)-7 b(or)32 b(smo)r(oth)g +(functions,)i(it)f(is)f(easy)g(to)g(see)g(that)h(the)g(ab)r(o)n(v)n(e)e +(Green's)g(form)n(ula)h(holds.)51 b(In)33 b(the)f(2d)g(case)g(this)28 +307 y(follo)n(ws)26 b(just)i(from)g(Gauss')f(div)n(ergence)f(theorem)h +(and)g(remark)f(1.)28 406 y(F)-7 b(or)27 b(the)h(3d)f(case)g(w)n(e)g +(use)g(the)h(iden)n(tit)n(y)1397 563 y(div)15 b(\()p +Fx(u)p 1557 576 48 4 v 19 w Fs(^)j Fx(v)p 1697 576 44 +4 v 4 w Fz(\))23 b(=)g Fx(v)p 1884 576 V 21 w Fs(\001)c +Fz(curl)13 b Fx(u)p 2139 576 48 4 v 18 w Fs(\000)18 b +Fx(u)p 2288 576 V 18 w Fs(\001)h Fz(curl)13 b Fx(v)p +2548 576 44 4 v 28 719 a Fz(together)26 b(with)i(Gauss')f(Div)n +(ergence)g(Theorem)g(and)g(the)h(prop)r(erties)f(of)g(the)h(mixed)g +(pro)r(duct)g(\()p Fx(a)p 3111 732 V 18 w Fs(^)19 b Fx(b)p +3247 732 36 4 v Fz(\))f Fs(\001)h Fx(c)p 3375 732 V 27 +w Fz(to)28 b(obtain)455 805 y Fl(Z)501 994 y Fp(\012)567 +918 y Fx(v)p 567 931 44 4 v 21 w Fs(\001)19 b Fz(curl)13 +b Fx(u)p 822 931 48 4 v 18 w Fs(\000)18 b Fx(u)p 971 +931 V 18 w Fs(\001)h Fz(curl)13 b Fx(v)p 1231 931 44 +4 v 17 w(dx)24 b Fz(=)1490 805 y Fl(Z)1536 994 y Fp(\012)1601 +918 y Fz(div)15 b(\()p Fx(u)p 1761 931 48 4 v 19 w Fs(^)j +Fx(v)p 1901 931 44 4 v 4 w Fz(\))c Fx(dx)23 b Fz(=)2192 +805 y Fl(Z)2238 994 y Fq(@)t Fp(\012)2329 918 y Fz(\()p +Fx(u)p 2361 931 48 4 v 18 w Fs(^)c Fx(v)p 2501 931 44 +4 v 3 w Fz(\))g Fs(\001)f Fx(n)p 2636 931 50 4 v 14 w(ds)23 +b Fz(=)2893 805 y Fl(Z)2939 994 y Fq(@)t Fp(\012)3029 +918 y Fz(\()p Fx(v)p 3061 931 44 4 v 22 w Fs(^)c Fx(n)p +3197 931 50 4 v Fz(\))g Fs(\001)f Fx(u)p 3339 931 48 +4 v 14 w(ds)27 b(:)28 1127 y Fz(The)k(exten)n(tion)g(to)g(a)g(pairing)g +(of)g Fx(H)7 b Fz(\(curl\))31 b(and)h Fx(H)1684 1097 +y Fp(1)1721 1127 y Fz(\(\012\))g(functions)f(follo)n(ws)g(with)h +(Theorem)e(1)h(b)n(y)g(a)g(densit)n(y)g(argumen)n(t)28 +1226 y(and)c(is)g(a)h(result)f(of)h(the)g(pro)r(of)f(of)g(the)h(T)-7 +b(race)27 b(Theorem.)36 b(See)27 b([4])h(p.21)e(for)i(details.)3897 +1375 y Fg(\003)28 1543 y Fn(Theorem)g Fz(3)f(\(T)-7 b(race)27 +b(Theorem\))45 b Fm(F)-6 b(or)36 b Fx(d)g Fz(=)f(3)p +Fm(,)k(let)d Fx(n)p 1729 1556 50 4 v 36 w Fm(denote)i(the)e(outwar)l(d) +h(unit)f(normal)h(to)g(the)g(b)l(oundary)g Fx(@)5 b Fz(\012)p +Fm(.)59 b(F)-6 b(or)28 1642 y Fx(d)23 b Fz(=)f(2)p Fm(,)30 +b(let)g Fx(t)p 395 1655 30 4 v 30 w Fm(b)l(e)f(as)h(in)g(c)l(onvention) +g(1)28 1742 y(F)-6 b(or)30 b Fx(d)23 b Fz(=)f(2)30 b +Fm(the)g(mapping)1685 1841 y Fx(\015)d Fz(:)108 b Fx(v)p +1886 1854 44 4 v 27 w Fs(7!)23 b Fx(\015)5 b Fz(\()p +Fx(v)p 2139 1854 V 3 w Fz(\))19 b Fs(\001)f Fx(t)p 2274 +1854 30 4 v 28 1975 a Fm(and)30 b(for)g Fx(d)24 b Fz(=)e(3)30 +b Fm(the)f(mapping)1659 2075 y Fx(\015)e Fz(:)108 b Fx(v)p +1860 2088 44 4 v 27 w Fs(7!)23 b Fx(\015)5 b Fz(\()p +Fx(v)p 2113 2088 V 3 w Fz(\))19 b Fs(^)f Fx(n)p 2280 +2088 50 4 v 28 2223 a Fm(is)30 b(c)l(ontiuous)f(and)h(line)l(ar)h(fr)l +(om)f Fx(H)7 b Fz(\(curl;)14 b(\012\))29 b Fm(to)h Fz([)p +Fx(H)1684 2193 y Fh(\000)1746 2170 y Fi(1)p 1746 2179 +29 3 v 1746 2213 a(2)1788 2223 y Fz(\()p Fx(@)5 b Fz(\012\)])1995 +2177 y Fp(~)1984 2193 y Fq(d)2023 2223 y Fm(.)28 2391 +y Fz(Note,)31 b(that)g(the)g(trace)e(of)i(a)f Fx(H)7 +b Fz(\(curl;)14 b(\012\)-function)31 b(is)f(only)g(de\014ned)h(in)g +(tangen)n(tial)f(direction.)45 b(Its)31 b(trace)e(is)i(in)f(the)h(dual) +28 2504 y(space)c(of)h(traces)f(of)h([)p Fx(H)780 2474 +y Fp(1)817 2504 y Fz(\(\012\)])975 2459 y Fp(~)964 2474 +y Fq(d)1032 2504 y Fz(functions.)39 b(Recall)28 b(that)g(traces)f(of)h +(suc)n(h)g(functions)h(are)e(de\014ned)h(in)h(ev)n(ery)e(direction)g +(and)28 2618 y(are)f(functions)i(in)g([)p Fx(H)730 2565 +y Fi(1)p 730 2574 V 730 2608 a(2)772 2618 y Fz(\()p Fx(@)5 +b Fz(\012\)])979 2572 y Fp(~)968 2588 y Fq(d)1007 2618 +y Fz(.)28 2817 y Fn(Pr)n(oof.)39 b Fz(The)27 b(pro)r(of)f(of)g(the)h +(trace)e(theorem)h(follo)n(ws)f(from)h(Green's)g(form)n(ula)f(stated)i +(in)f(theorem)g(2)g(applied)g(to)h(smo)r(oth)28 2917 +y(functions)g(and)h(then)g(b)n(y)f(densit)n(y)h(argumen)n(ts.)35 +b(See)28 b([4)o(])g(p.21)f(for)g(details.)3897 3065 y +Fg(\003)28 3213 y Fz(Due)33 b(to)f(the)h(T)-7 b(race)32 +b(Theorem)g(it)h(mak)n(es)e(sense)h(to)h(de\014ne)g(a)f(space)g(of)g +Fx(H)7 b Fz(\(curl\)-functions)33 b(with)g(v)-5 b(anishing)32 +b(tangen)n(tial)28 3313 y(comp)r(onen)n(ts)27 b(on)g(the)h(b)r(oundary) +-7 b(.)28 3461 y Fn(Definition)28 b Fz(2)1042 3561 y +Fx(H)1111 3573 y Fp(0)1148 3561 y Fz(\(curl;)14 b(\012\))23 +b(:=)g Fs(f)o Fx(v)p 1623 3574 44 4 v 27 w Fs(2)g Fx(H)7 +b Fz(\(curl;)14 b(\012\))23 b(:)108 b Fx(v)p 2298 3574 +V 22 w Fs(^)18 b Fx(n)p 2433 3574 50 4 v 23 w Fz(=)23 +b(0)36 b(on)h Fx(@)5 b Fz(\012)p Fs(g)28 3729 y Fn(Remark)28 +b Fz(2)45 b Fm(F)-6 b(or)30 b Fx(d)23 b Fz(=)f(2)p Fx(;)14 +b Fz(3)p Fm(,)30 b Fz([)p Fs(D)r Fz(\(\012\)])1191 3698 +y Fq(d)1260 3729 y Fm(is)g(dense)g(in)g Fx(H)1749 3741 +y Fp(0)1786 3729 y Fz(\(curl;)14 b(\012\))p Fm(.)28 3896 +y Fz(A)28 b(consequence)e(of)i(Green's)f(form)n(ula)f(is)i(the)g(follo) +n(wing)e(imp)r(ortan)n(t)i(regularit)n(y)d(prop)r(ert)n(y)i(of)g +Fx(H)7 b Fz(\(curl;)14 b(\012\)-functions:)28 4064 y +Fn(Pr)n(oposition)27 b Fz(1)45 b Fm(L)l(et)24 b Fx(K)854 +4076 y Fh(\000)934 4064 y Fm(and)h Fx(K)1161 4076 y Fp(+)1240 +4064 y Fm(b)l(e)g(two)g(p)l(olygonal)h(\(r)l(esp.)38 +b(p)l(olyhe)l(dr)l(al\))26 b(Lipschitz)h(domains)e(in)g +Fr(R)3322 4034 y Fq(d)3367 4064 y Fm(,)h(with)f(a)g(c)l(ommon)28 +4164 y(e)l(dge)f(\(r)l(esp.)37 b(c)l(ommon)25 b(e)l(dge)f(or)h(fac)l +(e\))g Fx(e)d Fz(=)h Fx(@)5 b(K)1516 4176 y Fh(\000)1577 +4164 y Fs(\\)h Fx(@)f(K)1758 4176 y Fp(+)1836 4164 y +Fs(6)p Fz(=)23 b Fs(;)g Fm(and)i(denote)f(by)h Fz(\012)e(=)f +Fx(@)5 b(K)2797 4176 y Fh(\000)2859 4164 y Fs([)h Fx(@)f(K)3040 +4176 y Fp(+)3118 4164 y Fm(their)25 b(union.)37 b(A)23 +b(function)28 4264 y Fx(v)32 b Fm(is)d(in)g Fx(H)7 b +Fz(\(curl)o(;)14 b(\012\))29 b Fm(if)h(and)f(only)g(if)h(the)f(r)l +(estricion)g Fx(v)1741 4276 y Fh(\000)1826 4264 y Fm(of)h +Fx(v)i Fm(to)d Fx(K)2165 4276 y Fh(\000)2249 4264 y Fm(is)g(in)g +Fx(H)7 b Fz(\(curl;)14 b Fx(K)2793 4276 y Fh(\000)2848 +4264 y Fz(\))p Fm(,)30 b(the)f(r)l(estricion)g Fx(v)3484 +4276 y Fp(+)3568 4264 y Fm(of)h Fx(v)i Fm(to)d Fx(K)3907 +4276 y Fp(+)28 4363 y Fm(is)h(in)g Fx(H)7 b Fz(\(curl)o(;)14 +b Fx(K)573 4375 y Fp(+)628 4363 y Fz(\))30 b(and)f Fm(the)36 +b Fz(tangen)n(tial)29 b Fm(jump)h(over)h Fx(e)e Fm(vanishes:)40 +b Fx(v)2256 4375 y Fh(\000)2331 4363 y Fs(^)18 b Fx(n)2454 +4375 y Fh(\000)2529 4363 y Fz(+)g Fx(v)2652 4375 y Fp(+)2726 +4363 y Fs(^)g Fx(n)2849 4375 y Fp(+)2927 4363 y Fz(=)23 +b(0)29 b Fm(on)h Fx(e)p Fm(.)28 4531 y Fn(Pr)n(oof.)39 +b Fz(The)27 b(prop)r(osition)e(follo)n(ws)g(from)h(c)n(ho)r(osing)f(an) +h(appropriate)e(test)j(function)g(and)f(in)n(tegrating)f(b)n(y)h(parts) +f(\(global)28 4631 y(and)e(lo)r(cal\).)36 b(In)24 b(order)e(to)i +Fm(lo)l(c)l(alise)32 b Fz(the)24 b(result)g(of)g(the)g(T)-7 +b(race)23 b(Theorem,)h(w)n(e)f(m)n(ust)h(c)n(ho)r(ose)f(a)g +(testfunction)i(from)f(the)g(space)28 4758 y Fx(H)113 +4687 y Fi(1)p 113 4696 29 3 v 113 4729 a(2)97 4780 y +Fp(00)167 4758 y Fz(\()p Fx(e)p Fz(\).)48 b(These)31 +b(functions)h(v)-5 b(anish)31 b(at)g(the)h(endp)r(oin)n(ts)f(of)g +Fx(e)g Fz(and)h(can)e(therefore)h(b)r(e)g(extended)h(b)n(y)f(zero)f(to) +h(a)g Fx(H)3718 4705 y Fi(1)p 3718 4714 V 3718 4747 a(2)3760 +4758 y Fz(\()p Fx(@)5 b Fz(\012\)-)28 4857 y(function.)44 +b(F)-7 b(rom)30 b(the)g(comparison)e(of)i(lo)r(cal)g(\(on)g +Fx(K)1716 4869 y Fh(\000)1801 4857 y Fz(and)g Fx(K)2036 +4869 y Fp(+)2121 4857 y Fz(separately\))f(and)h(global)e(\(on)i(\012\)) +h(in)n(tegration)d(b)n(y)i(parts)28 4984 y(it)36 b(follo)n(w)n(as)e +(then)i(that)g(the)g(tangen)n(tial)f(jump)h(v)-5 b(anishes)35 +b(in)h(the)g(dual)g(space)f(of)h Fx(H)2796 4913 y Fi(1)p +2796 4922 V 2796 4955 a(2)2780 5006 y Fp(00)2850 4984 +y Fz(\()p Fx(e)p Fz(\).)61 b(By)36 b(densitiy)g(prop)r(erties)e(of)28 +5112 y Fx(H)113 5041 y Fi(1)p 113 5050 V 113 5083 a(2)97 +5134 y Fp(00)167 5112 y Fz(\()p Fx(e)p Fz(\))28 b(it)h(follo)n(ws)d +(that)j(the)f(tangen)n(tial)f(traces)g(v)-5 b(anish)28 +b(in)g(the)g("correct)e(space")h(as)g(w)n(ell.)38 b(The)28 +b("correct)e(space")h(w)n(ould)28 5222 y(b)r(e)32 b Fx(H)221 +5192 y Fh(\000)282 5169 y Fi(1)p 282 5178 V 282 5212 +a(2)325 5222 y Fz(\()p Fx(e)p Fz(\))g(if)g(w)n(e)f(ha)n(v)n(e)g(no)h +(further)f(regularit)n(y)f(of)i Fx(v)p 1747 5235 44 4 +v 1790 5242 a Fh(\000)1878 5222 y Fz(and)g Fx(v)p 2044 +5235 V 2087 5242 a Fp(+)2142 5222 y Fz(,)h(and)e(it)i(w)n(ould)e(b)r(e) +h Fx(L)2871 5192 y Fp(2)2908 5222 y Fz(\()p Fx(e)p Fz(\))g(if)g +Fx(v)p 3123 5235 V 35 w Fz(is)g(elemen)n(t)n(wise)f(in)h +Fx(H)3924 5192 y Fp(1)28 5321 y Fz(\(e.)27 b(g.)65 b(for)27 +b(piecewise)g(p)r(olynomial)g Fx(v)p 1193 5334 V 3 w +Fz(\).)3897 5469 y Fg(\003)1972 5719 y Fk(3)p eop +%%Page: 4 4 +4 3 bop 28 214 a Fv(1.3)112 b Fo(V)-9 b(ariational)35 +b(form)m(ulation)f(of)h(the)g(mo)s(del)f(problem)28 367 +y Fz(In)28 b(the)h(previous)e(sections)h(w)n(e)g(in)n(tro)r(duced)g +(the)h(space)f Fx(H)7 b Fz(\(curl;)14 b(\012\),)29 b(an)f(in)n +(tegration-b)n(y-parts)d(form)n(ula)j(and)g(the)h(notion)28 +467 y(of)f(trace)f(for)h(an)g Fx(H)7 b Fz(\(curl;)14 +b(\012\)-function.)40 b(In)28 b(this)h(framew)n(ork,)e(the)h(v)-5 +b(ariational)27 b(form)n(ulation)h(of)g(the)h(mo)r(del)f(problem)g +(\(1\))28 566 y(reads:)255 716 y(Find)g Fx(u)p 452 729 +48 4 v 23 w Fs(2)23 b Fx(H)670 728 y Fp(0)707 716 y Fz(\(curl;)14 +b(\012\))28 b(suc)n(h)f(that)h(for)f(all)h(test)f(functions)h +Fx(v)p 2164 729 44 4 v 27 w Fs(2)23 b Fx(H)2378 728 y +Fp(0)2415 716 y Fz(\(curl;)14 b(\012\))28 b(holds)1220 +828 y Fl(Z)1266 1016 y Fp(\012)1331 941 y Fz(curl)14 +b Fx(u)p 1484 954 48 4 v 27 w Fz(curl)f Fx(v)p 1711 954 +44 4 v 17 w(dx)20 b Fz(+)1961 828 y Fl(Z)2007 1016 y +Fp(\012)2072 941 y Fx(c)p Fz(\()p Fx(x)p Fz(\))14 b Fx(u)p +2233 954 48 4 v 33 w Fs(\001)k Fx(v)p 2355 954 44 4 v +17 w(dx)24 b Fz(=)2614 828 y Fl(Z)2660 1016 y Fp(\012)2725 +941 y Fx(f)p 2725 970 50 4 v 41 w Fs(\001)19 b Fx(v)p +2849 954 44 4 v 17 w(dx)859 b Fz(\(3\))28 1190 y(With)28 +b(our)f(assumptions)g(on)g(the)h(data,)f(the)h(forms)1168 +1411 y Fx(a)p Fz(\()p Fx(u)p 1244 1424 48 4 v(;)14 b(v)p +1329 1424 44 4 v 3 w Fz(\))23 b(:=)1538 1298 y Fl(Z)1584 +1486 y Fp(\012)1649 1411 y Fz(curl)14 b Fx(u)p 1802 1424 +48 4 v 27 w Fz(curl)f Fx(v)p 2029 1424 44 4 v 17 w(dx)20 +b Fz(+)2279 1298 y Fl(Z)2325 1486 y Fp(\012)2390 1411 +y Fx(c)p Fz(\()p Fx(x)p Fz(\))14 b Fx(u)p 2551 1424 48 +4 v 33 w Fs(\001)k Fx(v)p 2673 1424 44 4 v 17 w(dx)1270 +1633 y(l)r Fz(\()p Fx(v)p 1329 1646 V 3 w Fz(\))23 b(:=)1538 +1520 y Fl(Z)1584 1708 y Fp(\012)1649 1633 y Fx(f)p 1649 +1662 50 4 v 41 w Fs(\001)c Fx(v)p 1773 1646 44 4 v 17 +w(dx)28 1862 y Fz(are)34 b(con)n(tin)n(uous)g(and)h(the)h(bilinear)f +(form)g Fx(a)p Fz(\()p Fs(\001)p Fx(;)14 b Fs(\001)p +Fz(\))35 b(is)h(co)r(erciv)n(e)d(on)i Fx(H)2262 1874 +y Fp(0)2300 1862 y Fz(\(curl;)14 b(\012\))23 b Fs(\002)g +Fx(H)2780 1874 y Fp(0)2818 1862 y Fz(\(curl;)14 b(\012\).)60 +b(By)35 b(the)g(Lax-Milgram)28 1961 y(lemma)27 b(it)h(follo)n(ws,)f +(that)h(there)f(exists)g(a)g(unique)h(solution)f Fx(u)p +1948 1974 48 4 v 23 w Fs(2)c Fx(H)2166 1973 y Fp(0)2204 +1961 y Fz(\(curl;)14 b(\012\))27 b(of)h(\(3\).)28 2203 +y Fw(2)134 b Fv(N)n(\023)-54 b(ed)n(\023)g(elec's)37 +b(elemen)m(ts)g(of)g(\014rst)g(t)m(yp)s(e)h(for)f Fu(H)8 +b Ft(\(curl)o(;)17 b(\012\))28 2385 y Fz(In)30 b(this)h(section)g(w)n +(e)f(will)h(presen)n(t)f(presen)n(t)g Fx(H)7 b Fz(\(curl)o(;)14 +b(\012\)-conforming)30 b(v)n(ector-v)-5 b(alued)28 b(\014nite)k(elemen) +n(ts,)f(the)g(N)n(\023)-39 b(ed)n(\023)g(elec)29 b(ele-)28 +2484 y(men)n(ts)e(of)h(\014rst)f(t)n(yp)r(e)h(\(cf.)g([8]\),)g(whic)n +(h)f(can)h(b)r(e)g(used)f(to)h(discretize)f(the)h(v)-5 +b(ariational)26 b(problem)h(\(3\).)28 2683 y(In)g(order)g(to)g +(de\014ne)h(a)f(\014nite)h(elemen)n(t)g(w)n(e)f(m)n(ust)h(sp)r(ecify)28 +2833 y Fy(the)j(geometry)44 b Fz(W)-7 b(e)26 b(c)n(ho)r(ose)e(a)g +(reference)g(elemen)n(t)1769 2812 y(^)1747 2833 y Fx(K)30 +b Fz(and)25 b(a)g(c)n(hange)f(of)h(v)-5 b(ariables)24 +b Fx(F)2833 2845 y Fq(K)2897 2833 y Fz(\()5 b(^)-47 b +Fx(x)q Fz(\),)26 b(the)g(elemen)n(t)f(map.)36 b(W)-7 +b(e)25 b(set)255 2933 y Fx(K)j Fz(=)23 b Fx(F)495 2945 +y Fq(K)559 2933 y Fz(\()614 2912 y(^)591 2933 y Fx(K)6 +b Fz(\).)28 3082 y Fy(a)32 b(function)g(space)46 b Fz(W)-7 +b(e)29 b(need)g(a)g Fm(\014nite)i(dimensional)39 b Fz(function)30 +b(space)2413 3061 y(^)2395 3082 y Fx(R)q Fz(,)g(t)n(ypically)e(a)h +(space)f(of)h(p)r(olynomials,)g(on)g(the)255 3182 y(reference)e(cell,)g +(plus)h(a)f(transformation)f(of)1698 3161 y(^)1680 3182 +y Fx(R)i Fz(to)f(a)h(function)g(space)f Fx(R)2552 3194 +y Fq(K)2643 3182 y Fz(on)h(a)f(general)f(cell)i Fx(K)6 +b Fz(.)28 3331 y Fy(dofs)45 b Fz(W)-7 b(e)31 b(ha)n(v)n(e)e(to)i +(de\014ne)g(a)f(set)h(of)f(dofs)h Fs(A)d Fz(=)g Fs(f)p +Fx(\013)1690 3343 y Fq(i)1717 3331 y Fz(\()p Fs(\001)p +Fz(\))p Fs(g)1846 3301 y Fq(N)1846 3353 y(i)p Fp(=1)1958 +3331 y Fz(.)46 b(These)31 b(are)e(linear)h(functionals)h(on)3208 +3310 y(^)3190 3331 y Fx(R)g Fz(and)g Fx(N)37 b(<)28 b +Fs(1)i Fz(is)h(the)255 3440 y(dimension)c(of)760 3419 +y(^)742 3440 y Fx(R)q Fz(.)37 b Fs(A)28 b Fz(should)f(b)r(e)h +Fm(unisolvent)p Fz(,)g(that)f(is,)h(the)g(dofs)f Fx(\013)2407 +3452 y Fq(i)2435 3440 y Fz(\()p Fs(\001)p Fz(\))h(are)f(linearly)g +(indep)r(enden)n(t.)28 3589 y(First,)e(w)n(e)f(observ)n(e)f(that)i(for) +f(a)g(conforming)g(discretization)g(of)g(\(3\))h(w)n(e)f(cannot)g(tak)n +(e)g(v)n(ector-v)-5 b(alued)23 b(\014nite)j(elemen)n(ts)e(that)28 +3689 y(are)j(build)h(b)n(y)g(taking)f(the)h(standard)f(no)r(dal)h +(\014nite)g(elemen)n(t)g(spaces)f(of)h(globally)f(con)n(tin)n(uous)g +(functions)h(for)f(eac)n(h)h(v)n(ector)28 3788 y(comp)r(onen)n(t.)35 +b(F)-7 b(or)23 b Fx(H)7 b Fz(\(curl)o(;)14 b(\012\)-functions,)25 +b(the)f(only)f(con)n(tin)n(uit)n(y)g(condition)g(is)h(the)g(con)n(tin)n +(uit)n(y)f(of)g(the)h(tangen)n(tial)f(comp)r(o-)28 3888 +y(nen)n(t)29 b(o)n(v)n(er)d(cell)j(b)r(oundaries.)40 +b(This)28 b(fact)h(will)g(motiv)-5 b(ate)29 b(the)g(c)n(hoice)f(of)h +(appropriate)e(degrees)g(of)i(freedom)f(\(abbreviated)28 +3988 y(b)n(y)f(dofs)g(in)h(the)g(follo)n(wing\).)28 4087 +y(W)-7 b(e)27 b(will)h(giv)n(e)e(an)h(outline)g(of)g(the)h +(construction)e(of)h(the)h(\014nite)f(elemen)n(t)h(spaces)e(describ)r +(ed)h(b)n(y)g(N)n(\023)-39 b(ed)n(\023)g(elec)25 b(in)i([8].)37 +b(In)27 b(litera-)28 4187 y(ture,)g(they)h(are)f(also)f(referred)g(to)i +(as)f Fm(N)n(\023)-40 b(ed)n(\023)g(ele)l(c's)31 b(elements)e(of)i +(\014rst)e(typ)l(e)p Fz(.)28 4515 y Fv(2.1)112 b Fo(Construction)35 +b(of)g(N)n(\023)-50 b(ed)n(\023)g(elec)35 b(elemen)m(ts)f(on)h +(tetrahedral)f(grids)28 4669 y Fz(In)27 b(this)h(section,)g(w)n(e)f +(denote)g(b)n(y)1121 4648 y(^)1099 4669 y Fx(K)33 b Fz(the)28 +b(standard)e(triangular)g(or)h(tetrahedral)f(reference)h(elemen)n(t.)28 +4898 y Fo(2.1.1)105 b(P)m(olynomial)35 b(spaces)h(on)f(the)g(reference) +g(elemen)m(t)28 5051 y Fz(In)22 b([8],)i(N)n(\023)-39 +b(ed)n(\023)g(elec)21 b(in)n(tro)r(duces)h(the)h(function)g(spaces)1686 +5030 y(^)1668 5051 y Fx(R)h Fz(=)e Fs(R)1912 5021 y Fq(k)1953 +5051 y Fz(,)i(on)f(whic)n(h)f(his)h(\014nite)g(elemen)n(t)g(will)g(b)r +(e)g(based.)35 b(These)22 b(spaces)28 5151 y(are)k(sub)5 +b(ject)28 b(to)f(this)h(section.)37 b(F)-7 b(or)27 b(more)g(details,)g +(consult)g([8].)28 5250 y(W)-7 b(e)26 b(denote)f(b)n(y)g +Fr(P)599 5262 y Fq(k)639 5250 y Fz(\()680 5229 y(^)671 +5250 y(\006\))h(the)g(space)f(of)g(p)r(olynomials)g(of)g(degree)g +Fx(k)j Fz(on)2245 5229 y(^)2236 5250 y(\006,)e(where)2592 +5229 y(^)2583 5250 y(\006)f(is)h(an)f(edge,)h(a)f(face)g(of)h(or)e(the) +i(reference)28 5350 y(elemen)n(t)c(itself..)36 b(The)23 +b(space)971 5328 y(~)967 5350 y Fr(P)1019 5362 y Fq(k)1081 +5350 y Fz(of)f(homogeneous)f(p)r(olynomials)h(of)h(degree)e +Fx(k)26 b Fz(is)c(the)h(span)f(of)h(monomials)e(of)i(total)f(degree)28 +5450 y Fx(k)30 b Fz(in)e Fx(d)g Fz(v)-5 b(ariables)26 +b(on)751 5429 y(^)728 5450 y Fx(K)6 b Fz(.)1972 5719 +y Fk(4)p eop +%%Page: 5 5 +5 4 bop 28 207 a Fn(Definition)28 b Fz(3)45 b Fm(We)30 +b(de\014ne)f(the)h(auxiliary)h(sp)l(ac)l(e)1249 461 y +Fs(S)1305 427 y Fq(k)1370 461 y Fz(:=)22 b Fs(f)14 b +Fx(p)p 1536 491 42 4 v 23 w Fs(2)23 b Fz(\()1716 440 +y(~)1711 461 y Fr(P)1763 473 y Fq(k)1803 461 y Fz(\))1835 +427 y Fq(d)1897 461 y Fz(:)g Fx(p)p 1943 491 V 18 w Fs(\001)f +Fz(^)-45 b Fx(x)p 2045 474 48 4 v 23 w Fz(=)2246 357 +y Fq(d)2203 382 y Fl(X)2209 559 y Fq(i)p Fp(=1)2337 461 +y Fx(p)2379 473 y Fq(i)2425 461 y Fz(^)e Fx(x)2467 473 +y Fq(i)2518 461 y Fs(\021)23 b Fz(0)14 b Fs(g)g Fx(;)1114 +b Fz(\(4\))28 731 y Fm(with)35 b Fz(^)-47 b Fx(x)23 b +Fs(2)379 710 y Fz(^)357 731 y Fx(K)5 b Fm(.)28 831 y(The)30 +b(dimension)h(of)g(this)f(sp)l(ac)l(e)g(is)g Fx(k)j Fm(in)d(the)g(c)l +(ase)g Fx(d)23 b Fz(=)g(2)29 b Fm(and)h Fx(k)s Fz(\()p +Fx(k)22 b Fz(+)c(2\))29 b Fm(for)i Fx(d)23 b Fz(=)g(3)p +Fm(.)28 1023 y Fz(N)n(\023)-39 b(ed)n(\023)g(elec's)25 +b(\014rst)i(family)h(of)g Fx(H)7 b Fz(\(curl)o(;)14 b +(\012\)-conforming)27 b(\014nite)h(elemen)n(ts)f(is)h(based)f(on)g(the) +h(p)r(olynomial)f(spaces)28 1192 y Fn(Definition)h Fz(4)1538 +1315 y Fs(R)1608 1281 y Fq(k)1672 1315 y Fz(=)1760 1223 +y Fl(\020)1809 1315 y Fr(P)1861 1327 y Fq(k)q Fh(\000)p +Fp(1)1986 1315 y Fz(\()2040 1294 y(^)2018 1315 y Fx(K)6 +b Fz(\))2127 1223 y Fl(\021)2177 1240 y Fq(d)2234 1315 +y Fs(\010)18 b(S)2373 1281 y Fq(k)2428 1315 y Fx(:)1404 +b Fz(\(5\))28 1481 y Fm(These)30 b(sp)l(ac)l(es)h(have)g(dimension)1201 +1658 y Fz(dim\()p Fs(R)1441 1623 y Fq(k)1483 1658 y Fz(\))23 +b(=)g Fx(k)s Fz(\()p Fx(k)e Fz(+)d(2\))170 b Fm(for)85 +b Fx(d)24 b Fz(=)e(2)14 b Fx(;)1201 1839 y Fz(dim\()p +Fs(R)1441 1805 y Fq(k)1483 1839 y Fz(\))23 b(=)1636 1783 +y(\()p Fx(k)e Fz(+)d(3\)\()p Fx(k)k Fz(+)c(2\))p Fx(k)p +1636 1820 553 4 v 1891 1896 a Fz(2)2368 1839 y Fm(for)86 +b Fx(d)23 b Fz(=)g(3)14 b Fx(:)28 2052 y Fz(In)27 b(the)h(t)n(w)n +(o-dimensional)e(case,)h(an)g(equiv)-5 b(alen)n(t)28 +b(c)n(haracterization)d(of)i(the)h(space)f Fs(R)2733 +2022 y Fq(k)2802 2052 y Fz(is)1301 2280 y Fs(R)1371 2246 +y Fq(k)1435 2280 y Fz(=)1523 2188 y Fl(\020)1572 2280 +y Fr(P)1624 2292 y Fq(k)q Fh(\000)p Fp(1)1749 2280 y +Fz(\()1803 2259 y(^)1781 2280 y Fx(K)6 b Fz(\))1890 2188 +y Fl(\021)1940 2205 y Fp(2)1995 2280 y Fs(\010)2083 2259 +y Fz(~)2078 2280 y Fr(P)2130 2292 y Fq(k)q Fh(\000)p +Fp(1)2283 2163 y Fl(\022)2423 2230 y Fz(^)-48 b Fx(x)2464 +2242 y Fp(2)2385 2329 y Fs(\000)5 b Fz(^)-47 b Fx(x)2497 +2341 y Fp(1)2576 2163 y Fl(\023)2665 2280 y Fx(:)1167 +b Fz(\(6\))28 2471 y(This)27 b(can)g(b)r(e)h(seen)g(b)n(y)f(noting)g +(that)h(for)f Fx(d)d Fz(=)e(2)1616 2672 y(~)1611 2693 +y Fr(P)1663 2705 y Fq(k)q Fh(\000)p Fp(1)1815 2576 y +Fl(\022)1955 2643 y Fz(^)-47 b Fx(x)1997 2655 y Fp(2)1918 +2742 y Fs(\000)5 b Fz(^)-47 b Fx(x)2030 2754 y Fp(1)2109 +2576 y Fl(\023)2193 2693 y Fs(\022)22 b(S)2336 2659 y +Fq(k)28 2934 y Fz(ob)n(viously)27 b(holds.)41 b(Moreo)n(v)n(er,)27 +b(the)i(dimension)g(of)g(the)h(space)2047 2913 y(~)2042 +2934 y Fr(P)2094 2946 y Fq(k)q Fh(\000)p Fp(1)2248 2934 +y Fz(of)f(homogeneous)e(p)r(olynomials)h(of)h(degree)f +Fx(k)22 b Fs(\000)d Fz(1)29 b(in)28 3034 y(t)n(w)n(o)f(v)-5 +b(ariables)27 b(is)i Fx(k)i Fz(and)e(this)g(is)g(also)e(the)j +(dimension)e Fs(S)1862 3004 y Fq(k)1904 3034 y Fz(.)40 +b(This)29 b(pro)n(v)n(es)e(the)i(stated)g(equiv)-5 b(alen)n(t)28 +b(represen)n(tation)f(of)i(the)28 3134 y(space)d Fs(S)305 +3104 y Fq(k)347 3134 y Fz(.)28 3333 y(W)-7 b(e)28 b(illustrate)g(these) +g(de\014nitions)h(with)g(some)e(examples.)39 b(W)-7 b(e)28 +b(start)g(with)h(the)g(case)e Fx(d)d Fz(=)g(2)k(and)g(consider)f(the)i +(spaces)e(of)28 3433 y(p)r(olynomials)f(of)i(degree)e +Fx(k)g Fz(=)d(1)k(and)g Fx(k)f Fz(=)d(2:)28 3625 y Fn(Example)k +Fz(1)1334 3753 y Fs(R)1404 3719 y Fp(1)1464 3753 y Fz(=)1552 +3636 y Fl(\034\022)1717 3703 y Fz(1)1717 3802 y(0)1800 +3636 y Fl(\023)1889 3765 y Fq(;)1926 3636 y Fl(\022)2029 +3703 y Fz(0)2029 3802 y(1)2112 3636 y Fl(\023)2201 3765 +y Fq(;)2238 3636 y Fl(\022)2379 3703 y Fz(^)-48 b Fx(x)2420 +3715 y Fp(2)2341 3802 y Fs(\000)5 b Fz(^)-47 b Fx(x)2453 +3814 y Fp(1)2532 3636 y Fl(\023\035)3855 3753 y Fz(\(7\))1136 +4028 y Fs(R)1206 3994 y Fp(2)1267 4028 y Fz(=)1354 3936 +y Fl(\020)1404 4028 y Fr(P)1456 4040 y Fp(1)1492 4028 +y Fz(\()1546 4007 y(^)1524 4028 y Fx(K)6 b Fz(\))1633 +3936 y Fl(\021)1683 3953 y Fp(2)1738 4028 y Fs(\010)1821 +3911 y Fl(\034)q(\022)1991 3977 y Fz(^)-47 b Fx(x)2033 +3989 y Fp(1)2090 3977 y Fz(^)g Fx(x)2132 3989 y Fp(2)2003 +4077 y Fs(\000)5 b Fz(^)-47 b Fx(x)2115 4047 y Fp(2)2115 +4098 y(1)2211 3911 y Fl(\023)2300 4040 y Fq(;)2337 3911 +y Fl(\022)2527 3977 y Fz(^)g Fx(x)2569 3947 y Fp(2)2569 +3998 y(2)2440 4077 y Fs(\000)5 b Fz(^)-47 b Fx(x)2552 +4089 y Fp(1)2608 4077 y Fz(^)g Fx(x)2650 4089 y Fp(2)2729 +3911 y Fl(\023\035)28 4265 y Fz(T)-7 b(o)27 b(illustrate)g(a)g(case)g +(for)g Fx(d)c Fz(=)g(3,)k(w)n(e)g(consider)g(the)h(lo)n(w)n(est)e(p)r +(olynomial)h(degree)g Fx(k)f Fz(=)c(1:)28 4434 y Fn(Example)27 +b Fz(2)45 b Fm(We)30 b(have)h(to)e(sp)l(e)l(cify)j(a)e(b)l(asis)g(for)h +Fs(S)1670 4404 y Fp(1)1707 4434 y Fm(:)28 4533 y(L)l(et)e +Fx(p)p 171 4563 42 4 v 29 w Fm(b)l(e)h(a)g(p)l(olynomial)i(in)e +Fz(\()p Fr(P)1020 4545 y Fp(1)1056 4533 y Fz(\()1111 +4512 y(^)1088 4533 y Fx(K)6 b Fz(\)\))1229 4503 y Fp(3)1297 +4533 y Fm(with)30 b(c)l(omp)l(onentwise)g(r)l(epr)l(esentation)1448 +4801 y Fx(p)1490 4813 y Fq(i)1540 4801 y Fz(=)1671 4697 +y Fp(3)1628 4722 y Fl(X)1630 4899 y Fq(j)s Fp(=1)1761 +4801 y Fx(a)1805 4813 y Fq(ij)1869 4801 y Fz(^)-47 b +Fx(x)1911 4813 y Fq(j)1960 4801 y Fx(;)184 b(i)22 b Fz(=)h(1)p +Fx(;)14 b Fz(2)p Fx(;)g Fz(3)g Fx(:)28 5072 y Fm(The)30 +b(c)l(ondition)h(for)g Fx(p)p 693 5101 V 29 w Fm(b)l(eing)f(in)g +Fs(S)1134 5042 y Fp(1)1202 5072 y Fm(is)1219 5339 y Fx(p)p +1219 5369 V 18 w Fs(\001)22 b Fz(^)-45 b Fx(x)p 1321 +5352 48 4 v 24 w Fz(=)1523 5236 y Fp(3)1479 5261 y Fl(X)1485 +5437 y Fq(i)p Fp(=1)1613 5339 y Fx(a)1657 5351 y Fq(ii)1713 +5339 y Fz(^)e Fx(x)1755 5305 y Fp(2)1755 5360 y Fq(i)1811 +5339 y Fz(+)1957 5236 y Fp(3)1913 5261 y Fl(X)1894 5437 +y Fq(i;j)s Fp(=1)1920 5496 y Fq(j)s(>i)2052 5339 y Fz(\()p +Fx(a)2128 5351 y Fq(ij)2205 5339 y Fz(+)18 b Fx(a)2332 +5351 y Fq(j)s(i)2391 5339 y Fz(\))5 b(^)-47 b Fx(x)2470 +5351 y Fq(i)2503 5339 y Fz(^)g Fx(x)2545 5351 y Fq(j)2604 +5339 y Fs(\021)22 b Fz(0)14 b Fx(:)1972 5719 y Fk(5)p +eop +%%Page: 6 6 +6 5 bop 28 217 a Fm(This)31 b(le)l(ads)f(to)g(the)g(c)l(ondition)h(on)e +(the)h(c)l(o)l(e\016cients)h(of)f(a)g(p)l(olynomial)i(in)e +Fs(S)2448 187 y Fp(1)2486 217 y Fm(:)1235 385 y Fx(a)1279 +397 y Fp(11)1372 385 y Fz(=)23 b Fx(a)1504 397 y Fp(22)1597 +385 y Fz(=)g Fx(a)1729 397 y Fp(33)1822 385 y Fz(=)g(0)1235 +509 y Fx(a)1279 521 y Fp(12)1372 509 y Fz(=)g Fs(\000)p +Fx(a)1569 521 y Fp(21)1652 509 y Fx(;)99 b(a)1818 521 +y Fp(13)1911 509 y Fz(=)23 b Fs(\000)p Fx(a)2108 521 +y Fp(31)2192 509 y Fx(;)98 b(a)2357 521 y Fp(23)2451 +509 y Fz(=)22 b Fs(\000)p Fx(a)2647 521 y Fp(32)2731 +509 y Fx(:)28 688 y Fm(With)40 b(the)g(b)l(asis)h(of)g +Fs(S)768 658 y Fp(1)845 688 y Fm(which)h(is)e(obtaine)l(d)h(by)g(cho)l +(osing)g Fx(a)2035 700 y Fq(ij)2135 688 y Fz(=)h(1)p +Fm(,)g Fx(i)f Fz(=)h(1)p Fx(;)14 b Fz(2)p Fx(;)g Fz(3)p +Fm(,)41 b Fx(j)46 b(>)c(i)d Fm(and)i(setting)e(al)t(l)i(the)g(other)28 +788 y(c)l(o)l(e\016cients)30 b(to)g(zer)l(o,)g(we)g(get)1036 +1056 y Fs(R)1106 1022 y Fp(1)1167 1056 y Fz(=)1255 964 +y Fl(\020)1304 1056 y Fr(P)1356 1068 y Fp(0)1392 1056 +y Fz(\()1446 1035 y(^)1424 1056 y Fx(K)6 b Fz(\))1533 +964 y Fl(\021)1583 981 y Fp(3)1638 1056 y Fs(\010)1721 +914 y Fl(*)1788 889 y(0)1788 1039 y(@)1924 956 y Fz(0)1908 +1055 y(^)-48 b Fx(x)1949 1067 y Fp(3)1908 1155 y Fz(^)g +Fx(x)1949 1167 y Fp(2)2029 889 y Fl(1)2029 1039 y(A)2129 +1068 y Fq(;)2180 889 y Fl(0)2180 1039 y(@)2300 956 y +Fz(^)h Fx(x)2342 968 y Fp(3)2316 1055 y Fz(0)2300 1155 +y(^)g Fx(x)2342 1167 y Fp(1)2421 889 y Fl(1)2421 1039 +y(A)2521 1068 y Fq(;)2573 889 y Fl(0)2573 1039 y(@)2692 +956 y Fz(^)g Fx(x)2734 968 y Fp(2)2692 1055 y Fz(^)g +Fx(x)2734 1067 y Fp(1)2708 1155 y Fz(0)2813 889 y Fl(1)2813 +1039 y(A)2886 914 y(+)28 1345 y Fz(W)-7 b(e)35 b(remark)f(at)h(this)g +(p)r(oin)n(t)g(that)h(the)f(spaces)g Fs(R)1643 1315 y +Fq(k)1719 1345 y Fz(do)g(not)g(span)g(the)g(whole)g(\()p +Fr(P)2676 1357 y Fq(k)2716 1345 y Fz(\()2770 1324 y(^)2748 +1345 y Fx(K)6 b Fz(\)\))2889 1315 y Fq(d)2928 1345 y +Fz(.)59 b(An)36 b Fx(H)7 b Fz(\(curl;)14 b(\012\)-conforming)28 +1445 y(FEM)27 b(based)g(on)h(full)g(p)r(olynomial)f(spaces,)g(the)h(so) +f(called)h Fm(N)n(\023)-40 b(ed)n(\023)g(ele)l(c)30 b(elements)g(of)h +(se)l(c)l(ond)f(typ)l(e)p Fz(,)e(w)n(as)f(in)n(tro)r(duced)g(in)h(1986) +28 1545 y(b)n(y)f(N)n(\023)-39 b(ed)n(\023)g(elec)26 +b(in)h([10].)28 1732 y Fn(Remark)h Fz(3)45 b Fm(The)38 +b(original,)j(r)l(ather)d(te)l(chnic)l(al,)i(r)l(epr)l(esentation)e(of) +g(the)f(sp)l(ac)l(es)h Fs(R)2746 1702 y Fq(k)2825 1732 +y Fm(is)f(given)h(in)f(De\014nition)g(2)h(in)f([8)q(].)28 +1832 y(N)n(\023)-40 b(ed)n(\023)g(ele)l(c)30 b(uses)f(this)i(r)l(epr)l +(esentation)f(in)f(most)h(of)h(his)f(pr)l(o)l(ofs.)40 +b(We)30 b(wil)t(l)h(not)e(r)l(efer)i(to)e(it)h(her)l(e.)28 +2059 y Fo(2.1.2)105 b(Degrees)35 b(of)g(freedom)g(on)g(the)f(reference) +h(elemen)m(t)28 2213 y Fz(In)27 b(this)h(section)f(w)n(e)h(de\014ne)g +(the)f(set)h Fs(A)g Fz(of)g(dofs,)f(whic)n(h)h(is)f(a)g(set)h(of)f +(linear)g(functionals)h(on)f Fs(R)3043 2182 y Fq(k)3084 +2213 y Fz(.)28 2377 y Fn(Remark)h Fz(4)45 b Fm(R)l(e)l(c)l(al)t(l)30 +b(that)f(the)h(dimension)h(of)g(the)f(sp)l(ac)l(es)g(of)h(p)l +(olynomials)h(of)e(de)l(gr)l(e)l(e)g Fx(k)j Fm(in)d Fx(n)f +Fm(variables)j(is)3491 2310 y Fl(\000)3529 2341 y Fq(n)p +Fp(+)p Fq(k)q Fp(+2)3615 2406 y Fq(n)3742 2310 y Fl(\001)3780 +2377 y Fm(.)28 2582 y Fn(Definition)c Fz(5)45 b Fm(L)l(et)742 +2561 y Fz(^)719 2582 y Fx(K)31 b Fm(b)l(e)25 b(the)h(r)l(efer)l(enc)l +(e)f(triangle)h(and)1848 2566 y Fz(^)1854 2582 y Fx(t)p +1854 2595 30 4 v 25 w Fm(the)f(tangent)g(as)g(de\014ne)l(d)h(in)f(c)l +(onvention)g(1.)38 b(The)26 b(set)f(of)h(de)l(gr)l(e)l(es)28 +2681 y(of)k(fr)l(e)l(e)l(dom)h Fs(A)f Fm(on)g Fs(R)717 +2651 y Fq(k)787 2681 y Fm(in)g(the)g(2d)h(c)l(ase)f(c)l(onsists)g(of)g +(the)g(line)l(ar)h(functionals)28 2827 y Fy(edge)g(dofs)1441 +2964 y Fz(^)-50 b Fx(\013)p Fz(\()s(^)-45 b Fx(u)p 1518 +2977 48 4 v Fz(\))23 b(:=)1732 2851 y Fl(Z)1781 3040 +y Fp(^)-36 b Fq(e)1814 2964 y Fz(\()1840 2949 y(^)1846 +2964 y Fx(t)p 1846 2977 30 4 v 18 w Fs(\001)22 b Fz(^)-45 +b Fx(u)p 1936 2977 48 4 v Fz(\))27 b(^)-55 b Fx(')14 +b(d)s Fz(^)-45 b Fx(s)85 b Fs(8)13 b Fz(^)-55 b Fx(')22 +b Fs(2)i Fr(P)2519 2976 y Fq(k)q Fh(\000)p Fp(1)2643 +2964 y Fz(\()s(^)-45 b Fx(e)p Fz(\))14 b Fx(;)255 3171 +y Fm(for)30 b(every)h(e)l(dge)j Fz(^)-45 b Fx(e)29 b +Fm(of)978 3150 y Fz(^)955 3171 y Fx(K)6 b Fm(.)39 b(We)29 +b(have)i(a)f(total)g(of)h Fz(3)p Fx(k)h Fm(of)f(e)l(dge)f(dofs.)28 +3317 y Fy(inner)h(dofs)1400 3438 y Fz(^)-50 b Fx(\013)p +Fz(\()s(^)-45 b Fx(u)p 1477 3451 V Fz(\))23 b(:=)1691 +3325 y Fl(Z)1754 3499 y Fp(^)1737 3514 y Fq(K)1818 3438 +y Fz(^)-45 b Fx(u)p 1815 3451 V 18 w Fs(\001)25 b Fz(^)-49 +b Fx(')p 1922 3467 55 4 v 15 w(d)5 b Fz(^)-47 b Fx(x)85 +b Fs(8)6 b Fz(^)-48 b Fx(')p 2213 3467 V 23 w Fs(2)23 +b Fz(\()p Fr(P)2452 3450 y Fq(k)q Fh(\000)p Fp(2)2577 +3438 y Fz(\()2631 3417 y(^)2609 3438 y Fx(K)6 b Fz(\)\))2750 +3404 y Fp(2)2801 3438 y Fx(:)255 3628 y Fm(We)30 b(have)h(a)f(total)g +(of)g Fx(k)s Fz(\()p Fx(k)22 b Fs(\000)c Fz(1\))29 b +Fm(of)i(inner)f(dofs.)28 3816 y Fn(Definition)e Fz(6)45 +b Fm(L)l(et)746 3795 y Fz(^)724 3816 y Fx(K)35 b Fm(b)l(e)29 +b(the)h(r)l(efer)l(enc)l(e)g(tetr)l(ahe)l(dr)l(on,)1873 +3801 y Fz(^)1879 3816 y Fx(t)p 1879 3829 30 4 v 30 w +Fm(the)f(tangent)g(to)h(an)f(e)l(dge)h(as)g(de\014ne)l(d)g(in)g(c)l +(onvention)f(1)h(and)35 b Fz(^)-47 b Fx(n)p 3911 3829 +50 4 v 28 3916 a Fm(the)32 b(outwar)l(d)g(unit)f(normal)i(ve)l(ctor)f +(to)g(a)h(fac)l(e.)46 b(The)33 b(set)f(of)h(de)l(gr)l(e)l(es)f(of)h(fr) +l(e)l(e)l(dom)g Fs(A)f Fm(on)h Fs(R)2969 3885 y Fq(k)3042 +3916 y Fm(in)f(the)g(3d)h(c)l(ase)f(c)l(onsists)g(of)28 +4015 y(the)d(line)l(ar)i(functionals)28 4161 y Fy(edge)g(dofs)1441 +4298 y Fz(^)-50 b Fx(\013)p Fz(\()s(^)-45 b Fx(u)p 1518 +4311 48 4 v Fz(\))23 b(:=)1732 4185 y Fl(Z)1781 4374 +y Fp(^)-36 b Fq(e)1814 4298 y Fz(\()1840 4283 y(^)1846 +4298 y Fx(t)p 1846 4311 30 4 v 18 w Fs(\001)22 b Fz(^)-45 +b Fx(u)p 1936 4311 48 4 v Fz(\))27 b(^)-55 b Fx(')14 +b(d)s Fz(^)-45 b Fx(s)85 b Fs(8)13 b Fz(^)-55 b Fx(')22 +b Fs(2)i Fr(P)2519 4310 y Fq(k)q Fh(\000)p Fp(1)2643 +4298 y Fz(\()s(^)-45 b Fx(e)p Fz(\))14 b Fx(;)255 4505 +y Fm(for)30 b(every)h(e)l(dge)j Fz(^)-45 b Fx(e)29 b +Fm(of)h(the)g(tetr)l(ahe)l(dr)l(on)1550 4484 y Fz(^)1528 +4505 y Fx(K)6 b Fm(.)38 b(We)30 b(have)h(a)f(total)g(of)h +Fz(6)p Fx(k)h Fm(of)f(e)l(dge)f(dofs.)28 4651 y Fy(face)i(dofs)1329 +4772 y Fz(^)-50 b Fx(\013)p Fz(\()s(^)-45 b Fx(u)p 1406 +4785 V Fz(\))24 b(:=)1620 4659 y Fl(Z)1680 4832 y Fp(^)1666 +4847 y Fq(f)1709 4772 y Fz(\()s(^)-45 b Fx(u)p 1741 4785 +V 19 w Fs(^)23 b Fz(^)-46 b Fx(n)p 1882 4785 50 4 v -1 +w Fz(\))19 b Fs(\001)25 b Fz(^)-48 b Fx(')p 2024 4801 +55 4 v 14 w(d)q Fz(^)-43 b Fx(a)85 b Fs(8)13 b Fz(^)-55 +b Fx(')22 b Fs(2)i Fz(\()p Fr(P)2550 4784 y Fq(k)q Fh(\000)p +Fp(2)2674 4772 y Fz(\()2725 4750 y(^)2706 4772 y Fx(f)9 +b Fz(\)\))2820 4738 y Fp(2)2872 4772 y Fx(;)255 4991 +y Fm(for)30 b(every)h(fac)l(e)795 4969 y Fz(^)777 4991 +y Fx(f)38 b Fm(of)31 b(the)f(tetr)l(ahe)l(dr)l(on)1549 +4970 y Fz(^)1527 4991 y Fx(K)5 b Fm(.)39 b(We)29 b(have)i(a)g(total)e +(of)i Fz(4)p Fx(k)s Fz(\()p Fx(k)21 b Fs(\000)d Fz(1\))29 +b Fm(of)i(fac)l(e)g(dofs.)28 5136 y Fy(inner)g(dofs)1400 +5258 y Fz(^)-50 b Fx(\013)p Fz(\()s(^)-45 b Fx(u)p 1477 +5271 48 4 v Fz(\))23 b(:=)1691 5145 y Fl(Z)1754 5319 +y Fp(^)1737 5334 y Fq(K)1818 5258 y Fz(^)-45 b Fx(u)p +1815 5271 V 18 w Fs(\001)25 b Fz(^)-49 b Fx(')p 1922 +5287 55 4 v 15 w(d)5 b Fz(^)-47 b Fx(x)85 b Fs(8)6 b +Fz(^)-48 b Fx(')p 2213 5287 V 23 w Fs(2)23 b Fz(\()p +Fr(P)2452 5270 y Fq(k)q Fh(\000)p Fp(3)2577 5258 y Fz(\()2631 +5237 y(^)2609 5258 y Fx(K)6 b Fz(\)\))2750 5223 y Fp(3)2801 +5258 y Fx(:)255 5469 y Fm(We)30 b(have)h(a)f(total)g(of)967 +5429 y Fq(k)q Fp(\()p Fq(k)q Fh(\000)p Fp(1\)\()p Fq(k)q +Fh(\000)p Fp(2\))p 967 5450 384 4 v 1143 5498 a(2)1391 +5469 y Fm(of)g(inner)g(dofs.)1972 5719 y Fk(6)p eop +%%Page: 7 7 +7 6 bop 28 207 a Fz(W)-7 b(e)27 b(note)g(that)h(in)f(the)g(case)g(of)g +(lo)n(w)n(est)f(order)g(elemen)n(ts,)h(i.)g(e.)37 b Fx(k)26 +b Fz(=)c(1,)27 b(only)g(edge)g(dofs)g(o)r(ccur.)36 b(This)27 +b(is)g(not)g(so)f(for)h(higher)28 307 y(order)i(elemen)n(ts.)47 +b(F)-7 b(or)31 b Fx(k)g Fz(=)d(2)j(w)n(e)g(additionally)f(ha)n(v)n(e)g +(inner)h(dofs)f(in)i(the)f(2d)g(case)f(and)h(face)g(dofs)f(in)i(the)f +(3d)g(case.)46 b(F)-7 b(or)28 406 y Fx(k)25 b Fs(\024)e +Fz(3)k(w)n(e)h(ha)n(v)n(e)e(all)h(t)n(yp)r(es)h(of)f(dofs)h(in)g(b)r +(oth)g(cases.)28 506 y(W)-7 b(e)28 b(also)e(note)i(that)f(the)h(total)g +(n)n(um)n(b)r(er)f(of)h(dofs)f(equals)g(the)h(dimension)f(of)h(the)g +(spaces)f Fs(R)2963 476 y Fq(k)3004 506 y Fz(,)g(as)g(it)h(should)g(b)r +(e.)28 606 y(The)d(represen)n(tation)e(of)i(the)g Fm(interfac)l(e)32 +b Fz(dofs,)26 b(that)f(is)g(edge)f(dofs)h(in)h(2d,)f(edge)f(and)h(face) +g(dofs)g(in)g(3d,)g(is)g(motiv)-5 b(ated)25 b(b)n(y)g(the)28 +705 y(con)n(tin)n(uit)n(y)i(condition)g(on)g Fx(H)7 b +Fz(\(curl;)14 b(\012\)-functions)28 b(stated)f(in)h(prop)r(osition)f +(1.)28 893 y Fn(Pr)n(oposition)g Fz(2)45 b Fm(The)38 +b(set)g Fs(A)g Fm(of)g(dofs)h(b)l(e\014ne)l(d)f(ab)l(ove)g(is)g +(unisolvent)g(on)g Fs(R)2560 863 y Fq(k)2601 893 y Fm(.)65 +b Fz(^)-45 b Fx(u)p 2688 906 48 4 v 37 w Fs(2)38 b(R)2936 +863 y Fq(k)3015 893 y Fm(is)g(uniquely)g(de\014ne)l(d)g(by)g(the)28 +993 y(moments)f Fz(^)-50 b Fx(\013)p Fz(\()s(^)-45 b +Fx(u)p 467 1006 V Fz(\))p Fm(.)28 1181 y Fn(Pr)n(oof.)40 +b Fz(See)27 b([8],)h(pro)r(of)f(of)g(theorem)g(1)h(and)f(preceeding)g +(lemmas.)28 1369 y Fn(Example)g Fz(3)g(\(Reference)h(shap)r(e)f +(functions)h(of)f(lo)n(w)n(est)g(order)f(for)h(N)n(\023)-39 +b(ed)n(\023)g(elec)26 b(elemen)n(ts)i(on)f(triangular)f(meshes\))45 +b Fm(L)l(et)21 b(the)g(r)l(ef-)28 1469 y(er)l(enc)l(e)30 +b(element)h(b)l(e)g(the)g(triangle)1163 1448 y Fz(^)1141 +1469 y Fx(K)g Fz(=)1332 1401 y Fl(\010)1381 1469 y Fz(\()5 +b(^)-47 b Fx(x;)20 b Fz(^)-48 b Fx(y)s Fz(\))23 b Fs(2)h +Fr(R)1729 1438 y Fp(2)1795 1469 y Fz(:)108 b(0)23 b Fs(\024)28 +b Fz(^)-48 b Fx(x)24 b Fs(\024)e Fz(1)14 b Fx(;)41 b +Fz(0)23 b Fs(\024)28 b Fz(^)-47 b Fx(y)25 b Fs(\024)e +Fz(1)18 b Fs(\000)23 b Fz(^)-47 b Fx(x)2853 1401 y Fl(\011)2902 +1469 y Fm(.)42 b(L)l(ab)l(el)31 b(the)h(e)l(dges)f(c)l(outer)l(clo)l +(ck-)28 1585 y(wise)f(startung)f(with)k Fz(^)-45 b Fx(e)755 +1597 y Fp(0)815 1585 y Fz(=)p 903 1513 406 4 v 23 w(\(0)p +Fx(;)14 b Fz(0\))p Fx(;)g Fz(\(1)p Fx(;)g Fz(0\))o Fm(.)38 +b(The)31 b(tangential)f(ve)l(ctors)g(to)g(the)g(e)l(dges)g(ar)l(e)g +(\(oriente)l(d)h(c)l(ounter)l(clo)l(ckwise\))1040 1793 +y Fz(^)1046 1808 y Fx(t)p 1046 1821 30 4 v 21 x Fp(0)1136 +1808 y Fz(=)1224 1691 y Fl(\022)1326 1757 y Fz(1)1326 +1857 y(0)1409 1691 y Fl(\023)1498 1808 y Fx(;)1614 1793 +y Fz(^)1620 1808 y Fx(t)p 1620 1821 V 21 x Fp(1)1710 +1808 y Fz(=)1842 1752 y(1)p 1808 1789 111 4 v 1808 1805 +a Fs(p)p 1877 1805 42 4 v 69 x Fz(2)1942 1691 y Fl(\022)2045 +1757 y Fs(\000)p Fz(1)2077 1857 y(1)2192 1691 y Fl(\023)2281 +1808 y Fx(;)2397 1793 y Fz(^)2403 1808 y Fx(t)p 2403 +1821 30 4 v 21 x Fp(2)2493 1808 y Fz(=)2581 1691 y Fl(\022)2716 +1757 y Fz(0)2684 1857 y Fs(\000)p Fz(1)2831 1691 y Fl(\023)2920 +1808 y Fx(:)28 2036 y Fm(The)f(underlying)h(function)e(sp)l(ac)l(e)i +(for)f(lowest)h(or)l(der)f(N)n(\023)-40 b(ed)n(\023)g(ele)l(c)31 +b(elements)e(on)h(a)g(triangular)h(mesh)f(is)g Fs(R)3344 +2006 y Fp(1)3411 2036 y Fm(fr)l(om)g(\(7\).)28 2136 y(In)h(the)h(c)l +(ase)g(of)h Fx(k)d Fz(=)c(1)31 b Fm(only)i(e)l(gde-dofs)g(o)l(c)l(cur.) +45 b(On)1760 2115 y Fz(^)1738 2136 y Fx(K)37 b Fm(we)32 +b(have)h(dofs)h(of)e(the)g(typ)l(e)2756 2069 y Fl(R)2798 +2166 y Fp(^)-36 b Fq(e)2826 2174 y Ff(i)2857 2136 y Fz(\()2883 +2121 y(^)2889 2136 y Fx(t)p 2889 2149 V 21 w Fs(\001)23 +b Fz(^)-45 b Fx(u)p 2983 2149 48 4 v -1 w Fz(\))28 b(^)-56 +b Fx(')14 b(d)s Fz(^)-45 b Fx(s)14 b(;)g Fs(8)f Fz(^)-55 +b Fx(')27 b Fs(2)g Fr(P)3539 2148 y Fp(0)3575 2136 y +Fz(\()s(^)-45 b Fx(e)3646 2148 y Fq(i)3673 2136 y Fz(\))p +Fm(.)45 b(Mor)l(e)28 2244 y(pr)l(e)l(cisely,)31 b(sinc)l(e)f +Fx(')23 b Fs(\021)g Fz(1)29 b Fm(is)h(a)h(b)l(asis)f(for)h +Fr(P)1377 2256 y Fp(0)1413 2244 y Fz(\()s(^)-45 b Fx(e)1484 +2256 y Fq(i)1511 2244 y Fz(\))30 b Fm(we)g(have)h(the)f(thr)l(e)l(e)g +(dofs)1418 2460 y Fz(^)-50 b Fx(\013)1463 2472 y Fq(i)1491 +2460 y Fz(\()s(^)-45 b Fx(u)p 1523 2473 V -1 w Fz(\))24 +b(=)1713 2347 y Fl(Z)1762 2536 y Fp(^)-35 b Fq(e)1791 +2544 y Ff(i)1822 2460 y Fz(\()1848 2445 y(^)1854 2460 +y Fx(t)p 1854 2473 30 4 v 18 w Fs(\001)22 b Fz(^)-45 +b Fx(u)p 1944 2473 48 4 v -1 w Fz(\))14 b Fx(d)s Fz(^)-45 +b Fx(s)85 b(i)23 b Fz(=)g(0)p Fx(;)14 b Fz(1)p Fx(;)g +Fz(2)g Fx(:)28 2705 y Fm(In)28 b(or)l(der)h(to)g(c)l(onstruct)e(a)i +(FE-b)l(asis)1236 2684 y Fz(^)1219 2705 y Fx(N)p 1219 +2718 76 4 v 1294 2725 a Fp(0)1332 2705 y Fx(;)1386 2684 +y Fz(^)1369 2705 y Fx(N)p 1369 2718 V 1444 2725 a Fp(1)1482 +2705 y Fx(;)1536 2684 y Fz(^)1519 2705 y Fx(N)p 1519 +2718 V 1594 2725 a Fp(2)1660 2705 y Fm(for)h Fs(R)1862 +2675 y Fp(1)1928 2705 y Fm(with)f(r)l(esp)l(e)l(ct)f(to)h(these)g +(dofs,)h(we)f(r)l(e)l(quir)l(e)37 b Fz(^)-50 b Fx(\013)3328 +2717 y Fq(i)3355 2705 y Fz(\()3405 2684 y(^)3387 2705 +y Fx(N)p 3387 2718 V 3463 2725 a Fq(j)3498 2705 y Fz(\))24 +b(=)e Fx(\016)3678 2717 y Fq(ij)3737 2705 y Fm(.)38 b(This)28 +2824 y(le)l(ads)d(to)f(a)g(line)l(ar)h(system)f(for)g(the)h(c)l(o)l +(e\016cients)f(of)h(the)1898 2803 y Fz(^)1881 2824 y +Fx(N)p 1881 2837 V 1957 2844 a Fq(i)2019 2824 y Fm(in)f(a)g(gener)l(al) +h(b)l(asis)g(of)g Fs(R)2867 2794 y Fp(1)2904 2824 y Fm(.)52 +b(In)33 b(the)h(c)l(ase)h(of)g(lowest)f(or)l(der)28 2923 +y(elements,)c(it)f(is)h(e)l(asy)h(to)f(verify)h(that)f(we)g(have)951 +3121 y Fz(^)934 3142 y Fx(N)p 934 3155 V 1009 3163 a +Fp(0)1070 3142 y Fz(=)1157 3025 y Fl(\022)1260 3091 y +Fz(1)18 b Fs(\000)24 b Fz(^)-48 b Fx(y)1335 3191 y Fz(^)g +Fx(x)1488 3025 y Fl(\023)1577 3142 y Fx(;)1716 3121 y +Fz(^)1699 3142 y Fx(N)p 1699 3155 V 1774 3163 a Fp(1)1835 +3142 y Fz(=)1922 3025 y Fl(\022)2025 3091 y Fs(\000)6 +b Fz(^)-48 b Fx(y)2061 3191 y Fz(^)g Fx(x)2175 3025 y +Fl(\023)2263 3142 y Fx(;)2402 3121 y Fz(^)2385 3142 y +Fx(N)p 2385 3155 V 2461 3163 a Fp(2)2521 3142 y Fz(=)2609 +3025 y Fl(\022)2753 3091 y Fs(\000)6 b Fz(^)-48 b Fx(y)2717 +3191 y Fz(^)h Fx(x)18 b Fs(\000)g Fz(1)2943 3025 y Fl(\023)3032 +3142 y Fx(:)800 b Fz(\(8\))28 3407 y Fo(2.1.3)105 b(Piola)35 +b(transformation)28 3560 y Fz(An)28 b(a\016ne)f(triangle)g(or)f +(tetrahedron)h Fx(K)33 b Fz(is)27 b(describ)r(ed)h(b)n(y)f(the)h +(a\016ne)g(elemen)n(t)f(map)1469 3733 y Fx(K)h Fs(3)23 +b Fx(x)h Fz(=)f Fx(F)1858 3745 y Fq(K)1922 3733 y Fz(\()5 +b(^)-47 b Fx(x)q Fz(\))23 b(=)g Fx(B)2208 3745 y Fq(K)2277 +3733 y Fz(^)-47 b Fx(x)19 b Fz(+)f Fx(b)2457 3745 y Fq(K)28 +3907 y Fz(In)39 b(standard)e Fx(H)576 3876 y Fp(1)613 +3907 y Fz(\(\012\)-conforming)h(FEM,)h(the)g(shap)r(e)g(functions)g +Fx(N)2292 3919 y Fq(i)2358 3907 y Fz(on)f(a)h(general)e(cell)i +Fx(K)44 b Fz(are)38 b(obtained)h(from)f(the)28 4006 y(reference)26 +b(shap)r(e)i(functions)992 3985 y(^)968 4006 y Fx(N)1035 +4018 y Fq(i)1090 4006 y Fz(on)f(the)h(reference)f(elemen)n(t)2025 +3985 y(^)2003 4006 y Fx(K)33 b Fz(b)n(y)28 b(the)g(pull-bac)n(k)1560 +4200 y Fx(N)1627 4212 y Fq(i)1654 4200 y Fz(\()p Fx(x)p +Fz(\))c(=)1877 4108 y Fl(\020)1951 4179 y Fz(^)1927 4200 +y Fx(N)1994 4212 y Fq(i)2039 4200 y Fs(\016)18 b Fx(F)2164 +4164 y Fh(\000)p Fp(1)2152 4224 y Fq(K)2253 4108 y Fl(\021)2317 +4200 y Fz(\()p Fx(x)p Fz(\))28 4398 y(In)24 b(the)g(case)f(of)i +Fx(H)7 b Fz(\(curl)o(;)14 b(\012\)-conforming)23 b(N)n(\023)-39 +b(ed)n(\023)g(elec)22 b(FEM)i(w)n(e)g(cannot)f(transforme)g(our)h(shap) +r(e)f(function)i(in)f(this)h(w)n(a)n(y)-7 b(.)34 b(The)28 +4498 y(pull-bac)n(k)d(of)h(a)f Fx(H)7 b Fz(\(curl;)870 +4477 y(^)848 4498 y Fx(K)e Fz(\)-function)33 b(needs)f(not)g(to)g(b)r +(e)g(in)g Fx(H)7 b Fz(\(curl;)14 b Fx(K)6 b Fz(\).)50 +b(In)32 b(addition,)h(the)g(pull-bac)n(k)e(is)h(not)g(an)f +Fs(R)3892 4467 y Fq(k)3934 4498 y Fz(-)28 4597 y(isomorphism)d(and)i +(it)g(do)r(es)f(not)h(lead)g(to)f(an)h Fx(H)7 b Fz(\(curl)o(;)14 +b(\012\)-conforming)29 b(metho)r(d)h(if)g(prescribing)f(the)h(dofs)g(b) +n(y)f(de\014nitions)28 4697 y(5)e(or)f(6.)28 4796 y(In)32 +b(N)n(\023)-39 b(ed)n(\023)g(elec's)31 b(FEM)h(\(or,)i(more)d(general,) +i(in)g Fx(H)7 b Fz(\(curl)o(;)14 b(\012\)-conforming)32 +b(FEM\),)h(the)g(shap)r(e)f(functions)h(are)e(transformed)28 +4896 y(b)n(y)c(the)h(follo)n(wing)e(co)n(v)-5 b(arian)n(t)26 +b(transformation)g(for)h(v)n(ector-\014elds:)255 5065 +y(The)f(elemen)n(t)h(shap)r(e)f(functions)h Fx(N)p 1319 +5078 V 1394 5086 a Fq(i)1422 5065 y Fz(\()p Fx(x)p Fz(\))g(on)g(the)f +(elemen)n(t)h Fx(K)h Fz(=)23 b Fx(F)2362 5077 y Fq(K)2426 +5065 y Fz(\()2481 5044 y(^)2458 5065 y Fx(K)6 b Fz(\))27 +b(are)e(obtained)h(from)g(the)h(reference)f(shap)r(e)255 +5164 y(functions)i(b)n(y)1333 5284 y Fx(N)p 1333 5297 +V 1408 5305 a Fq(i)1436 5284 y Fz(\()p Fx(x)p Fz(\))c(=)f +Fs(P)1717 5296 y Fq(K)1781 5284 y Fz(\()1830 5263 y(^)1813 +5284 y Fx(N)p 1813 5297 V 1889 5305 a Fq(i)1916 5284 +y Fz(\))h(=)2059 5192 y Fl(\020)2128 5263 y Fz(^)2109 +5284 y Fx(D)r(F)2245 5249 y Fh(\000)p Fq(T)2233 5309 +y(K)2366 5263 y Fz(^)2349 5284 y Fx(N)p 2349 5297 V 2425 +5305 a Fq(i)2452 5192 y Fl(\021)2520 5284 y Fs(\016)18 +b Fx(F)2645 5249 y Fh(\000)p Fp(1)2633 5309 y Fq(K)2734 +5284 y Fz(\()p Fx(x)p Fz(\))c Fx(;)973 b Fz(\(9\))255 +5469 y(where)514 5449 y(^)495 5469 y Fx(D)r(F)619 5481 +y Fq(K)711 5469 y Fz(is)28 b(the)f(jacobian)1296 5437 +y Fq(d)p 1277 5451 73 4 v 1277 5498 a(d)t Fp(^)-37 b +Fq(x)1359 5469 y Fx(F)1412 5481 y Fq(K)1477 5469 y Fz(\()5 +b(^)-47 b Fx(x)q Fz(\))28 b(of)f(the)h(elemen)n(t)g(map.)1972 +5719 y Fk(7)p eop +%%Page: 8 8 +8 7 bop 28 212 a Fz(In)34 b(literature,)i(an)e(equiv)-5 +b(alen)n(t)34 b(to)g(this)h(transformation)e(for)g Fx(H)7 +b Fz(\(div)r(;)14 b(\012\)-conforming)33 b(FEM)h(\(whic)n(h)h(in)f +(that)h(case)e(is)i(a)28 311 y(con)n(tra)n(v)-5 b(arian)n(t)24 +b(map\))k(is)g(referred)e(to)i(as)e Fm(Piola)32 b(tr)l(ansformation)p +Fz(,)d(cf.)37 b([3)o(])28 b(pp.)g(97.)28 411 y(Here,)f(w)n(e)g(will)h +(refer)f(to)g(the)h(transformation)e(\(9\))i(of)g(the)f(v)n(ector)g +(\014eld)h(also)e(as)h Fm(Piola)32 b(tr)l(ansformation)p +Fz(.)28 511 y(W)-7 b(e)23 b(note)g(that)g(the)h(gradien)n(ts)e(of)h +(scalar)e(no)r(dal)i Fx(H)1635 480 y Fp(1)1672 511 y +Fz(\(\012\)-conforming)f(\014nite)i(elemen)n(ts)f(transform)f +(according)f(to)i(the)h(Piola)28 610 y(transformation)i(\(9\).)28 +710 y(In)g(the)h(case)f(of)g(tetrahedral)g(elemen)n(ts)g(and)g(a\016ne) +h(elemen)n(t)f(map)h Fx(F)2230 722 y Fq(K)2294 710 y +Fz(\()5 b(^)-47 b Fx(x)q Fz(\))23 b(=)g Fx(B)2580 722 +y Fq(K)2649 710 y Fz(^)-47 b Fx(x)17 b Fz(+)e Fx(b)2824 +722 y Fq(k)2865 710 y Fz(,)27 b(the)g(jacobian)3405 689 +y(^)3385 710 y Fx(D)r(F)3509 722 y Fq(K)3600 710 y Fz(is)g(just)g(the) +28 809 y(constan)n(t)f(matrix)h Fx(B)695 821 y Fq(K)787 +809 y Fz(and)h(w)n(e)f(ha)n(v)n(e)1341 992 y Fx(v)p 1341 +1005 44 4 v 4 w Fz(\()p Fx(x)p Fz(\))d(=)e Fs(P)1665 +1004 y Fq(K)1729 992 y Fz(\()q(^)-43 b Fx(v)p 1761 1005 +V 4 w Fz(\))23 b(=)g Fx(B)2015 957 y Fh(\000)p Fq(T)2011 +1017 y(K)2133 925 y Fl(\000)2172 992 y Fz(^)-43 b Fx(v)p +2171 1005 V 22 w Fs(\016)17 b Fx(F)2357 957 y Fh(\000)p +Fp(1)2345 1017 y Fq(K)2447 925 y Fl(\001)2498 992 y Fz(\()p +Fx(x)p Fz(\))d Fx(;)1168 b Fz(\(10\))28 1221 y Fo(2.1.4)105 +b(T)-9 b(ransformation)34 b(of)h(the)g(curl)g(in)g(2d)28 +1374 y Fz(F)-7 b(or)30 b(\012)f Fs(\032)f Fr(R)416 1344 +y Fp(2)459 1374 y Fz(,)k(w)n(e)f(noted)g(in)g(remark)f(1)g(that)i(v)n +(ector)d(\014elds)i(in)h Fx(H)7 b Fz(\(curl)o(;)14 b(\012\))31 +b(can)g(b)r(e)h(represen)n(ted)d(as)i(rotated)f Fx(H)7 +b Fz(\(div)q(;)14 b(\012\))28 1474 y(v)n(ector)26 b(\014elds.)37 +b(Moreo)n(v)n(er,)25 b(it)j(is)f(easy)g(to)g(v)n(erify)g(that)1525 +1657 y Fx(B)1592 1621 y Fh(\000)p Fq(T)1588 1681 y(K)1719 +1657 y Fz(=)c(det)14 b Fx(B)2003 1621 y Fh(\000)p Fp(1)1999 +1681 y Fq(K)2106 1657 y Fx(R)2170 1622 y Fq(T)2222 1657 +y Fx(B)2285 1669 y Fq(K)2363 1657 y Fx(R)h(;)1350 b Fz(\(11\))28 +1839 y(where)27 b Fx(R)i Fz(is)f(the)h(rotation)e(matrix)g(from)h +(remark)f(1.)38 b(Therefore,)27 b(the)i(prop)r(erties)e(of)h(the)h +(Piola)e(transformation)f(\(10\))i(in)28 1939 y(the)33 +b(2d)f(case)g(can)g(b)r(e)h(deriv)n(ed)f(directly)h(from)f(the)h(prop)r +(erties)f(of)g(the)i Fx(H)7 b Fz(\(div)q(;)14 b(\012\)-Piola)31 +b(transformation)g(stated)i(in)g([3)o(])28 2039 y(pp.)28 +b(97.)28 2238 y Fn(Theorem)g Fz(4)f(\(Some)h(prop)r(erties)e(of)i(2d)f +(Piola)g(transformation)e(for)j(a\016ne)f(elemen)n(t)h(map\))45 +b Fm(L)l(et)25 b Fx(v)p 3160 2251 V 3 w Fz(\()p Fx(x)p +Fz(\))f(=)f Fs(P)3484 2250 y Fq(K)3548 2238 y Fz(\()q(^)-43 +b Fx(v)p 3580 2251 V 3 w Fz(\))p Fm(,)27 b Fx(')p Fz(\()p +Fx(x)p Fz(\))e(=)28 2270 y Fl(\000)79 2337 y Fz(^)-55 +b Fx(')18 b Fs(\016)g Fx(F)263 2302 y Fh(\000)p Fp(1)251 +2362 y Fq(K)352 2270 y Fl(\001)404 2337 y Fz(\()p Fx(x)p +Fz(\))p Fm(,)37 b Fz(^)-48 b Fx(x)24 b Fz(=)f Fx(F)795 +2302 y Fh(\000)p Fp(1)783 2362 y Fq(K)884 2337 y Fz(\()p +Fx(x)p Fz(\))p Fm(,)31 b(with)f(a\016ne)g(element)g(map)g +Fx(F)2004 2349 y Fq(K)2069 2337 y Fm(.)116 2487 y(\(i\))46 +b(The)31 b(gr)l(adient)f Fx(D)r(v)p 817 2500 V 33 w Fm(tr)l(ansforms)g +(ac)l(c)l(or)l(ding)h(to)1742 2670 y Fx(D)r(v)p 1813 +2683 V 27 w Fz(=)22 b Fx(B)2034 2634 y Fh(\000)p Fq(T)2030 +2694 y(K)2172 2649 y Fz(^)2152 2670 y Fx(D)s Fz(^)-42 +b Fx(v)p 2224 2683 V 17 w(B)2348 2634 y Fh(\000)p Fp(1)2344 +2694 y Fq(K)2451 2670 y Fx(:)1340 b Fz(\(12\))91 2877 +y Fm(\(ii\))46 b(The)31 b(curl)e(tr)l(ansforms)h(ac)l(c)l(or)l(ding)h +(to)1703 2990 y Fz(curl)13 b Fx(v)p 1855 3003 V 27 w +Fz(=)22 b(det)14 b Fx(B)2205 2955 y Fh(\000)p Fp(1)2201 +3015 y Fq(K)2304 2968 y Fl(d)2295 2990 y Fz(curl^)-43 +b Fx(v)p 2433 3003 V 17 w(:)1301 b Fz(\(13\))255 3152 +y Fm(As)32 b(a)g(c)l(onse)l(quenc)l(e)g(we)g(se)l(e)g(that)g +Fx(H)7 b Fz(\(curl;)14 b Fx(K)6 b Fz(\))32 b Fm(is)g(isomorphic)j(to)d +Fx(H)7 b Fz(\(curl;)2707 3131 y(^)2685 3152 y Fx(K)e +Fz(\))32 b Fm(under)g(the)h(Piola)g(tr)l(ansformation)255 +3251 y(\(10\).)28 3450 y Fn(Pr)n(oof.)122 3600 y Fz(\(i\))46 +b(Chain)27 b(rule)99 3749 y(\(ii\))46 b(W)-7 b(e)27 b(use)f(that)h(the) +f(2d)h(curl)f(op)r(erator)e(is)j(just)g(the)f(trace)g(of)g(the)h +(rotated)f(jacobian)f Fx(R)15 b(D)r(v)s Fz(.)37 b(By)26 +b(remark)f(11,)h(w)n(e)g(can)255 3849 y(replace)g Fx(B)603 +3813 y Fh(\000)p Fq(T)599 3873 y(K)735 3849 y Fz(and)i(w)n(e)f(get)g +(that)h Fx(R)15 b(D)r(v)31 b Fz(is)c(a\016ne-equiv)-5 +b(alen)n(t)27 b(to)g(det)15 b Fx(B)2554 3813 y Fh(\000)p +Fp(1)2550 3873 y Fq(K)2657 3849 y Fx(R)2754 3828 y Fz(^)2734 +3849 y Fx(D)5 b Fz(^)-45 b Fx(v)t Fz(,)27 b(whic)n(h)h(pro)n(v)n(es)d +(\(ii\).)3897 4048 y Fg(\003)28 4247 y Fn(Cor)n(ollar)-6 +b(y)28 b Fz(1)45 b Fm(F)-6 b(r)l(om)30 b(\(ii\))g(in)g(the)l(or)l(em)g +(4)g(we)g(de)l(duc)l(e)1435 4359 y Fl(Z)1481 4548 y Fq(K)1559 +4472 y Fz(curl)14 b Fx(v)p 1712 4485 V 17 w(')g(dx)24 +b Fz(=)2038 4359 y Fl(Z)2101 4533 y Fp(^)2084 4548 y +Fq(K)2172 4451 y Fl(d)2162 4472 y Fz(curl)q(^)-43 b Fx(v)p +2301 4485 V 30 w Fz(^)-55 b Fx(')14 b(d)5 b Fz(^)-47 +b Fx(x)14 b(;)28 4702 y Fm(and)30 b(we)g(have,)h(to)l(gether)f(with)h +(\(ii\))f(fr)l(om)g(the)l(or)l(em)g(4)1145 4814 y Fl(Z)1191 +5002 y Fq(K)1269 4927 y Fz(curl)13 b Fx(v)p 1421 4940 +V 31 w Fz(curl)g Fx(u)p 1644 4940 48 4 v 14 w(dx)23 b +Fz(=)g Fs(j)p Fx(B)1993 4939 y Fq(K)2057 4927 y Fs(j)2080 +4893 y Fh(\000)p Fp(1)2197 4814 y Fl(Z)2260 4988 y Fp(^)2243 +5003 y Fq(K)2330 4905 y Fl(d)2321 4927 y Fz(curl^)-42 +b Fx(v)p 2460 4940 44 4 v 2526 4905 a Fl(d)2517 4927 +y Fz(curl)r(^)d Fx(u)p 2655 4940 48 4 v 14 w(d)5 b Fz(^)-47 +b Fx(x)14 b(:)1972 5719 y Fk(8)p eop +%%Page: 9 9 +9 8 bop 28 213 a Fo(2.1.5)105 b(T)-9 b(ransformation)34 +b(of)h(the)g(curl)g(in)g(3d)28 366 y Fz(In)22 b(three)f(dimensions,)i +(w)n(e)f(cannot)f(iden)n(tify)i(the)f(curl-op)r(erator)d(with)k(the)f +(rotated)f(gradien)n(t)g(or)g(with)h(the)g(div)n(ergence)f(of)h(a)28 +465 y(rotated)h(v)n(ector)g(\014eld.)36 b(W)-7 b(e)25 +b(cannot,)g(as)f(in)g(2d,)h(deriv)n(e)f(a)g(transformation)e(form)n +(ula)i(for)g(the)h(curl)f(from)g(the)g(transformatin)28 +565 y(form)n(ula)i(of)i(the)g(div)n(ergence.)28 665 y(By)36 +b(the)i(c)n(hain)e(rule,)j(w)n(e)e(obtain)f(the)i(transformation)d(of)i +(the)g(gradien)n(t)f(of)h(a)g(v)n(ector)e(\014eld)j Fx(v)p +3098 678 44 4 v 3 w Fz(,)h(de\014ned)f(b)n(y)e(the)i(Piola)28 +764 y(transformation)26 b(\(10\))h(of)g(a)h(reference)e(\014eld)j(^)-43 +b Fx(v)p 1461 777 V 3 w Fz(:)1629 941 y Fx(D)r(v)p 1700 +954 V 26 w Fz(=)23 b Fx(B)1921 905 y Fh(\000)p Fq(T)1917 +965 y(K)2058 920 y Fz(^)2039 941 y Fx(D)s Fz(^)-43 b +Fx(v)p 2110 954 V 17 w(B)2234 905 y Fh(\000)p Fp(1)2230 +965 y Fq(K)2337 941 y Fx(:)1454 b Fz(\(14\))28 1117 y(W)-7 +b(e)28 b(in)n(tro)r(duce)f(the)h(sk)n(ew)f(symmetric)g(matrix)g(Curl)13 +b Fx(v)31 b Fz(as)1570 1332 y(\(Curl)14 b Fx(v)s Fz(\))1853 +1357 y Fq(ij)1935 1332 y Fz(=)2032 1276 y Fx(@)5 b(v)2121 +1288 y Fq(j)p 2032 1313 124 4 v 2032 1389 a Fx(@)g(x)2128 +1401 y Fq(i)2185 1332 y Fs(\000)2285 1276 y Fx(@)g(v)2374 +1288 y Fq(i)p 2278 1313 132 4 v 2278 1389 a Fx(@)g(x)2374 +1401 y Fq(j)3814 1332 y Fz(\(15\))28 1568 y(W)-7 b(e)28 +b(see)f(that)h(Curl)13 b Fx(v)26 b Fz(=)d Fx(D)r(v)p +885 1581 44 4 v 928 1538 a Fq(T)999 1568 y Fs(\000)18 +b Fx(D)r(v)p 1153 1581 V 31 w Fz(and)27 b(therefore)g(b)n(y)g(\(14\)) +1550 1758 y(Curl)13 b Fx(v)26 b Fz(=)d Fx(B)1946 1722 +y Fh(\000)p Fq(T)1942 1782 y(K)2071 1736 y Fl(d)2050 +1758 y Fz(Curl)17 b(^)-45 b Fx(v)17 b(B)2350 1722 y Fh(\000)p +Fp(1)2346 1782 y Fq(K)3814 1758 y Fz(\(16\))28 1962 y +Fn(Pr)n(oposition)27 b Fz(3)g(\(T)-7 b(ransformation)26 +b(of)h(the)h(curl)g(in)g(3d\))45 b Fm(L)l(et)2082 1941 +y Fz(^)2060 1962 y Fx(K)39 b Fm(b)l(e)34 b(the)g(r)l(efer)l(enc)l(e)h +(tetr)l(ahe)l(dr)l(on)f(and)g Fx(K)i Fz(=)31 b Fx(F)3633 +1974 y Fq(K)3697 1962 y Fz(\()3752 1941 y(^)3729 1962 +y Fx(K)6 b Fz(\))34 b Fm(an)28 2061 y(a\016ne)f(image)i(of)f(it.)50 +b(The)34 b(curl)f(of)h(a)g(ve)l(ctor)g(\014eld)g Fx(v)p +1689 2074 V 3 w Fz(\()p Fx(x)p Fz(\))g Fm(on)g Fx(K)6 +b Fm(,)34 b(de\014ne)l(d)f(by)h(the)g(Piola)h(tr)l(ansformation)f(of)g +(a)g(r)l(efer)l(enc)l(e)28 2161 y(\014eld)d Fz(^)-43 +b Fx(v)p 206 2174 V 3 w Fz(\()5 b(^)-47 b Fx(x)q Fz(\))30 +b Fm(tr)l(ansforms)g(ac)l(c)l(or)l(ding)h(to)1276 2337 +y Fz(\(curl)14 b Fx(v)p 1461 2350 V 3 w Fz(\))1536 2362 +y Fq(i)1578 2337 y Fz(\()p Fx(x)p Fz(\))24 b(=)f(det)14 +b(M)2006 2349 y Fp(i)2029 2337 y Fz(\()p Fx(x)p Fz(\))g +Fx(;)184 b(i)23 b Fz(=)g(1)p Fx(;)14 b Fz(2)p Fx(;)g +Fz(3)1113 b(\(17\))28 2514 y Fm(We)34 b(obtain)h(the)f(matrix)g +Fz(M)929 2526 y Fp(i)986 2514 y Fm(by)g(r)l(eplacing)i(i-th)e(c)l +(olumn)g(of)h(the)f(\(c)l(onstant\))g(jac)l(obian)i Fx(D)r +Fz(\()p Fx(F)3053 2478 y Fh(\000)p Fp(1)3041 2538 y Fq(K)3142 +2514 y Fz(\))31 b(=)g Fx(B)3368 2478 y Fh(\000)p Fp(1)3364 +2538 y Fq(K)3491 2514 y Fm(by)k(the)f(ve)l(ctor)28 2631 +y Fz(\()69 2609 y Fl(d)60 2631 y Fz(curl)14 b(^)-43 b +Fx(v)p 212 2644 V 22 w Fs(\016)18 b Fx(F)399 2595 y Fh(\000)p +Fp(1)387 2655 y Fq(K)488 2631 y Fz(\)\()p Fx(x)p Fz(\))p +Fm(:)1159 2792 y Fz(\(M)1267 2804 y Fp(i)1290 2792 y +Fz(\))1323 2817 y Fq(k)q(l)1399 2792 y Fz(\()p Fx(x)p +Fz(\))24 b(:=)1644 2675 y Fl(\032)1748 2747 y Fz(\()1789 +2726 y Fl(d)1780 2747 y Fz(curl)17 b(^)-45 b Fx(v)22 +b Fs(\016)c Fx(F)2120 2712 y Fh(\000)p Fp(1)2108 2772 +y Fq(K)2209 2747 y Fz(\))2241 2759 y Fq(k)2282 2747 y +Fz(\()p Fx(x)p Fz(\))84 b Fm(if)i Fx(l)24 b Fz(=)f Fx(i)1748 +2850 y Fz(\()p Fx(B)1847 2815 y Fh(\000)p Fp(1)1843 2875 +y Fq(K)1937 2850 y Fz(\))1969 2862 y Fq(k)q(l)2477 2850 +y Fm(if)86 b Fx(l)24 b Fs(6)p Fz(=)f Fx(i)28 2997 y Fm(\(Note:)38 +b(an)30 b(alternative,)h(e)l(quivalent,)g(tr)l(ansformation)f(formula)h +(for)f(the)g(curl)g(in)g(3d)g(is)h(given)f(in)g(pr)l(op)l(osition)h +(4\).)28 3189 y Fn(Pr)n(oof.)40 b Fz(It)28 b(holds)1525 +3367 y(curl)13 b Fx(v)p 1677 3380 V 27 w Fz(=)1831 3200 +y Fl(0)1831 3350 y(@)1945 3267 y Fz(\(Curl)h Fx(v)s Fz(\))2228 +3279 y Fp(23)1945 3366 y Fz(\(Curl)g Fx(v)s Fz(\))2228 +3378 y Fp(31)1945 3466 y Fz(\(Curl)g Fx(v)s Fz(\))2228 +3478 y Fp(12)2341 3200 y Fl(1)2341 3350 y(A)2441 3367 +y Fx(:)1350 b Fz(\(18\))28 3612 y(W)-7 b(e)34 b(demonstrate)f(the)h +(statemen)n(t)g(of)g(the)g(prop)r(osition)f(for)h(the)g(\014rst)g(comp) +r(onen)n(t)f(of)h(the)h(curl,)g(whic)n(h)f(is)g(\(curl)13 +b Fx(v)p 3750 3625 V 4 w Fz(\))3826 3624 y Fp(1)3897 +3612 y Fz(=)28 3712 y(Curl)g Fx(v)246 3724 y Fp(23)317 +3712 y Fz(.)45 b(Using)31 b(the)g(transformation)d(\(16\),)j(implicit)h +(summation)e(o)n(v)n(er)f(equal)h(indices)g(and)h(the)f(abbreviation)g +Fx(b)3788 3724 y Fq(ij)3874 3712 y Fz(:=)28 3812 y(\()p +Fx(B)127 3776 y Fh(\000)p Fp(1)123 3836 y Fq(K)216 3812 +y Fz(\))248 3824 y Fq(ij)307 3812 y Fz(,)e(w)n(e)f(ha)n(v)n(e)1474 +3929 y(\(Curl)14 b Fx(v)s Fz(\))1757 3941 y Fp(23)1850 +3929 y Fz(=)23 b Fx(b)1974 3941 y Fq(k)q Fp(2)2062 3929 +y Fz(\()2115 3907 y Fl(d)2094 3929 y Fz(Curl)16 b(^)-45 +b Fx(v)t Fz(\))2345 3941 y Fq(k)q(l)2421 3929 y Fx(b)2457 +3941 y Fq(l)p Fp(3)28 4074 y Fz(W)-7 b(riting)27 b(this)h(out)g(and)f +(recalling)f(that)i(Curl)14 b Fx(v)31 b Fz(is)c(sk)n(ew)g(symmetric,)g +(yields)227 4260 y(\(Curl)14 b Fx(v)s Fz(\))510 4272 +y Fp(23)604 4260 y Fz(=)22 b(\()p Fx(b)759 4272 y Fp(12)830 +4260 y Fx(b)866 4272 y Fp(23)954 4260 y Fs(\000)c Fx(b)1073 +4272 y Fp(22)1143 4260 y Fx(b)1179 4272 y Fp(13)1249 +4260 y Fz(\)\()1334 4238 y Fl(d)1313 4260 y Fz(Curl)f(^)-45 +b Fx(v)s Fz(\))1564 4272 y Fp(12)1653 4260 y Fs(\000)18 +b Fz(\()p Fx(b)1804 4272 y Fp(12)1875 4260 y Fx(b)1911 +4272 y Fp(33)1999 4260 y Fs(\000)g Fx(b)2118 4272 y Fp(32)2188 +4260 y Fx(b)2224 4272 y Fp(13)2294 4260 y Fz(\)\()2379 +4238 y Fl(d)2358 4260 y Fz(Curl)f(^)-45 b Fx(v)s Fz(\))2609 +4272 y Fp(31)2698 4260 y Fz(+)18 b(\()p Fx(b)2849 4272 +y Fp(22)2920 4260 y Fx(b)2956 4272 y Fp(33)3044 4260 +y Fs(\000)g Fx(b)3163 4272 y Fp(32)3233 4260 y Fx(b)3269 +4272 y Fp(23)3339 4260 y Fz(\)\()3424 4238 y Fl(d)3403 +4260 y Fz(Curl)f(^)-45 b Fx(v)s Fz(\))3654 4272 y Fp(23)3739 +4260 y Fx(;)28 4436 y Fz(and)27 b(with)h(\(18\))f(this)h(is)g(equal)f +(to)g(the)h(determinan)n(t)g(of)1394 4737 y(M)1470 4749 +y Fp(1)1530 4737 y Fz(:=)1641 4545 y Fl(0)1641 4692 y(B)1641 +4745 y(@)1755 4630 y Fz(\()1796 4608 y Fl(d)1787 4630 +y Fz(curl)14 b Fx(v)s Fz(\))2015 4642 y Fp(1)2135 4630 +y Fx(b)2171 4642 y Fp(12)2324 4630 y Fx(b)2360 4642 y +Fp(13)1755 4744 y Fz(\()1796 4722 y Fl(d)1787 4744 y +Fz(curl)g Fx(v)s Fz(\))2015 4756 y Fp(2)2135 4744 y Fx(b)2171 +4756 y Fp(22)2324 4744 y Fx(b)2360 4756 y Fp(23)1755 +4858 y Fz(\()1796 4836 y Fl(d)1787 4858 y Fz(curl)g Fx(v)s +Fz(\))2015 4870 y Fp(3)2135 4858 y Fx(b)2171 4870 y Fp(32)2324 +4858 y Fx(b)2360 4870 y Fp(33)2472 4545 y Fl(1)2472 4692 +y(C)2472 4745 y(A)2572 4737 y Fx(:)28 5034 y Fz(The)27 +b(pro)r(of)g(for)g(the)h(other)f(comp)r(onen)n(ts)g(follo)n(ws)g +(analogously)-7 b(.)3897 5202 y Fg(\003)28 5370 y Fz(In)42 +b(the)g(next)g(prop)r(osition,)j(w)n(e)d(state)f(an)h(alternativ)n(e,)j +(equiv)-5 b(alen)n(t,)45 b(form)n(ula)c(for)h(the)g(transformation)e +(of)i(the)h(curl)28 5469 y(\(e.)27 b(g.)h(used)f(b)n(y)h(Demk)n(o)n +(vicz)e(in)i([12)o(]\))1972 5719 y Fk(9)p eop +%%Page: 10 10 +10 9 bop 28 228 a Fn(Pr)n(oposition)27 b Fz(4)45 b Fm(F)-6 +b(or)25 b(a)h(ve)l(ctor)f(\014eld)h Fx(v)p 1277 241 44 +4 v 29 w Fm(on)f(the)g(tetr)l(ahe)l(dr)l(on)h Fx(K)i +Fz(=)23 b Fx(F)2264 240 y Fq(K)2328 228 y Fz(\()2383 +207 y(^)2360 228 y Fx(K)6 b Fz(\))p Fm(,)27 b(de\014ne)l(d)e(by)h(the)f +(Piola)j(tr)l(ansformation)d(\(10\))28 328 y(of)30 b(a)g(r)l(efer)l +(enc)l(e)g(\014eld)h Fz(^)-42 b Fx(v)p 726 341 V 33 w +Fm(on)939 307 y Fz(^)917 328 y Fx(K)6 b Fm(,)30 b(we)g(have)1361 +534 y Fz(curl)14 b Fx(v)p 1514 547 V 26 w Fz(=)1785 478 +y(1)p 1677 515 257 4 v 1677 591 a(det)h Fx(B)1870 603 +y Fq(K)1957 534 y Fx(B)2020 546 y Fq(K)2098 534 y Fz(\()2139 +512 y Fl(d)2130 534 y Fz(curl)g(^)-43 b Fx(v)p 2283 547 +44 4 v 22 w Fs(\016)17 b Fx(F)2469 499 y Fh(\000)p Fp(1)2457 +559 y Fq(K)2559 534 y Fz(\))d Fx(:)1186 b Fz(\(19\))28 +746 y Fn(Pr)n(oof.)38 b Fz(The)24 b(transformation)e(form)n(ula)h +(\(19\))g(can)g(b)r(e)h(pro)n(v)n(en)e(comp)r(onen)n(t)n(wise,)i(and)f +(w)n(e)g(will)h(only)f(carry)f(out)i(the)g(pro)r(of)28 +846 y(for)j(the)h(\014rst)f(v)n(ector)f(comp)r(onen)n(t)i(\(curl)13 +b Fx(v)p 1327 859 V 4 w Fz(\))1403 858 y Fp(1)1440 846 +y Fz(.)37 b(The)28 b(pro)r(ofs)e(for)i(the)g(other)f(comp)r(onen)n(ts)g +(follo)n(w)f(analogously)-7 b(.)28 945 y(The)27 b(iden)n(tit)n(y)h +(\(19\))f(reads)g(for)g(the)h(\014rst)f(v)n(ector)f(comp)r(onen)n(t) +1208 1156 y(\(curl)14 b Fx(v)p 1393 1169 V 3 w Fz(\))1468 +1168 y Fp(1)1528 1156 y Fz(=)1733 1100 y(1)p 1626 1137 +257 4 v 1626 1213 a(det)g Fx(B)1818 1225 y Fq(K)1892 +1156 y Fz(\()p Fx(B)1987 1168 y Fq(K)2051 1156 y Fz(\))2083 +1168 y Fp(1)p Fq(j)2152 1156 y Fz(\(\()2225 1134 y Fl(d)2216 +1156 y Fz(curl)h(^)-43 b Fx(v)p 2369 1169 44 4 v 3 w +Fz(\))2444 1168 y Fq(j)2498 1156 y Fs(\016)18 b Fx(F)2623 +1122 y Fh(\000)p Fp(1)2712 1156 y Fz(\))c Fx(:)1033 b +Fz(\(20\))28 1368 y(Referring)26 b(to)i(\(17\),)f(w)n(e)g(sho)n(w)g +(that)h(the)g(righ)n(t)f(hand)g(side)h(of)f(\(20\))h(equals)e(det)15 +b(M)2644 1380 y Fp(1)2681 1368 y Fz(.)37 b(F)-7 b(or)27 +b(this,)h(w)n(e)f(expand)g(det)14 b(M)3690 1380 y Fp(1)3755 +1368 y Fz(to)796 1553 y(det)g(M)1001 1565 y Fp(1)1061 +1553 y Fz(=)23 b(\()1190 1531 y Fl(d)1181 1553 y Fz(curl)14 +b(^)-42 b Fx(v)p 1334 1566 V 3 w Fz(\))1409 1565 y Fp(1)1460 +1553 y Fz(det)14 b Fs(B)1647 1519 y Fq(inv)1644 1574 +y Fp(11)1769 1553 y Fs(\000)k Fz(\()1893 1531 y Fl(d)1884 +1553 y Fz(curl)c(^)-42 b Fx(v)p 2037 1566 V 3 w Fz(\))2112 +1565 y Fp(2)2163 1553 y Fz(det)14 b Fs(B)2350 1519 y +Fq(inv)2347 1574 y Fp(21)2472 1553 y Fz(+)k(\()2596 1531 +y Fl(d)2587 1553 y Fz(curl)c(^)-43 b Fx(v)p 2739 1566 +V 4 w Fz(\))2815 1565 y Fp(3)2866 1553 y Fz(det)14 b +Fs(B)3053 1519 y Fq(inv)3050 1574 y Fp(31)3170 1553 y +Fx(;)28 1725 y Fz(where)27 b Fs(B)326 1694 y Fq(inv)323 +1746 y(ij)456 1725 y Fz(is)h(the)g(2)18 b Fs(\002)g Fz(2-matrix)26 +b(arising)g(from)h Fx(B)1696 1689 y Fh(\000)p Fp(1)1692 +1749 y Fq(K)1813 1725 y Fz(when)h(cancelling)f(its)h(i-th)g(ro)n(w)e +(and)h(its)h(j-th)g(column.)28 1833 y(W)-7 b(e)28 b(recall)e(the)i +(form)n(ula)f(for)g(the)h(in)n(v)n(erse)e(of)i(a)f(matrix)g +Fx(A)c Fs(2)h Fr(R)2037 1803 y Fp(3)p Fh(\002)p Fp(3)1404 +2027 y Fz(\()p Fx(A)1498 1992 y Fh(\000)p Fp(1)1587 2027 +y Fz(\))1619 2039 y Fq(ij)1701 2027 y Fz(=)1874 1970 +y(1)p 1799 2007 192 4 v 1799 2083 a(det)14 b Fx(A)2000 +2027 y Fz(\()p Fs(\000)p Fz(1\))2171 1992 y Fq(i)p Fp(+)p +Fq(j)2294 2027 y Fz(det)g Fs(A)2489 2039 y Fq(j)s(i)2562 +2027 y Fx(;)1229 b Fz(\(21\))28 2221 y(where)27 b Fs(A)334 +2233 y Fq(ij)420 2221 y Fz(is)h(the)g(2)18 b Fs(\002)g +Fz(2-matrix)26 b(arising)g(from)h Fx(A)h Fz(when)g(cancelling)f(its)h +(i-th)f(ro)n(w)g(and)g(its)h(j-th)g(column.)28 2321 y(Replacing)f +Fx(B)475 2333 y Fq(K)566 2321 y Fz(in)h(the)g(righ)n(t)f(hand)g(side)h +(of)g(\(19\))f(b)n(y)g(the)h(expression)e(\(21\))h(for)h +Fx(A)23 b Fz(=)g Fx(B)2852 2285 y Fh(\000)p Fp(1)2848 +2345 y Fq(K)2941 2321 y Fz(,)28 b(w)n(e)f(get)145 2479 +y(1)p 38 2516 257 4 v 38 2592 a(det)14 b Fx(B)230 2604 +y Fq(K)449 2479 y Fz(1)p 327 2516 286 4 v 327 2599 a(det)h +Fx(B)524 2564 y Fh(\000)p Fp(1)520 2623 y Fq(K)623 2535 +y Fz(\()p Fs(\000)p Fz(1\))794 2501 y Fp(1+)p Fq(j)926 +2535 y Fz(det)f Fs(B)1113 2501 y Fq(inv)1110 2556 y(j)s +Fp(1)1217 2535 y Fz(\()1258 2513 y Fl(d)1249 2535 y Fz(curl)g(^)-43 +b Fx(v)p 1401 2548 44 4 v 3 w Fz(\))1476 2547 y Fq(j)1535 +2535 y Fz(=)22 b(\()1663 2513 y Fl(d)1654 2535 y Fz(curl)15 +b(^)-43 b Fx(v)p 1807 2548 V 3 w Fz(\))1882 2547 y Fp(1)1934 +2535 y Fz(det)14 b Fs(B)2121 2501 y Fq(inv)2118 2556 +y Fp(11)2228 2535 y Fs(\000)t Fz(\()2338 2513 y Fl(d)2329 +2535 y Fz(curl)g(^)-43 b Fx(v)p 2481 2548 V 3 w Fz(\))2556 +2547 y Fp(2)2607 2535 y Fz(det)15 b Fs(B)2795 2501 y +Fq(inv)2792 2556 y Fp(21)2901 2535 y Fz(+)t(\()3011 2513 +y Fl(d)3002 2535 y Fz(curl)f(^)-43 b Fx(v)p 3154 2548 +V 4 w Fz(\))3230 2547 y Fp(3)3281 2535 y Fz(det)14 b +Fs(B)3468 2501 y Fq(inv)3465 2556 y Fp(31)3594 2535 y +Fz(=)23 b(det)14 b(M)3887 2547 y Fp(1)3938 2535 y Fx(:)3897 +2760 y Fg(\003)28 2990 y Fv(2.2)112 b(N)n(\023)-54 b(ed)n(\023)g(elec) +36 b(Elemen)m(ts)g(on)i(a\016ne)g(quadrilateral)f(or)g(hexahedral)h +(grids)28 3143 y Fz(W)-7 b(e)29 b(w)n(an)n(t)f(to)h(presen)n(t)f(the)h +(ingredien)n(ts)f(for)h(N)n(\023)-39 b(ed)n(\023)g(elec's)27 +b(\014nite)i(elemen)n(ts)g(of)g(\014rst)f(t)n(yp)r(e)h(on)g(grids)f +(consisiting)g(of)h(parallel-)28 3243 y(ograms)f(\(in)i(2d\))h(or)e +(the)h(resp)r(ectiv)n(e)g(ob)5 b(jects)29 b(in)i(3d,)f(so)g(called)f +(parallelotops)g(\(cf.)45 b(section)29 b Fm(FE)k(built)f(on)g(cub)l(es) +37 b Fz(in)30 b([8]\).)28 3343 y(Suc)n(h)d(grids)g(consist)g(of)g +(elemen)n(ts)h Fx(C)34 b Fz(that)28 b(are)e(a\016ne)i(images)e(of)i +(the)g(square)e(or)h(cubic)h(reference)e(elemen)n(t)3536 +3322 y(^)3517 3343 y Fx(C)j Fz(=)23 b([0)p Fx(;)14 b +Fz(1])3860 3313 y Fq(d)3898 3343 y Fz(:)1252 3514 y Fx(C)30 +b Fz(=)22 b Fx(F)1481 3526 y Fq(C)1538 3514 y Fz(\()1589 +3493 y(^)1570 3514 y Fx(C)6 b Fz(\))83 b Fx(C)30 b Fs(3)23 +b Fx(x)h Fz(=)e Fx(B)2138 3526 y Fq(C)2199 3514 y Fz(^)-47 +b Fx(x)19 b Fz(+)f Fx(b)p 2343 3527 36 4 v 21 x Fq(C)2448 +3514 y Fx(;)i Fz(^)-48 b Fx(x)24 b Fs(2)2653 3493 y Fz(^)2634 +3514 y Fx(C)c(:)28 3741 y Fo(2.2.1)105 b(P)m(olynomial)35 +b(spaces)h(on)f(the)g(reference)g(elemen)m(t)28 3895 +y Fz(In)23 b(order)f(to)h(in)n(tro)r(duce)g(the)g(function)h(spaces)e +(needed)i(for)e(the)i(construction)e(of)h(N)n(\023)-39 +b(ed)n(\023)g(elec's)22 b(\014nite)h(elemen)n(ts,)h(let)g(us)f +(de\014ne)28 3994 y(some)k(spaces)f(of)i(v)n(ector-v)-5 +b(alued)26 b(p)r(olynomials)28 4158 y Fn(Definition)i +Fz(7)45 b Fs(Q)649 4170 y Fq(l;m)781 4158 y Fm(ar)l(e)28 +b(the)h(sp)l(ac)l(es)g(of)g(p)l(olynomials)h(on)e(the)g(r)l(efer)l(enc) +l(e)h(squar)l(e)2729 4137 y Fz(^)2710 4158 y Fx(C)35 +b Fm(with)28 b(maximal)h(de)l(gr)l(e)l(e)g Fx(l)h Fm(in)j +Fz(^)-47 b Fx(x)3764 4170 y Fp(1)3830 4158 y Fm(and)28 +4257 y Fx(m)29 b Fm(in)35 b Fz(^)-47 b Fx(x)279 4269 +y Fp(2)317 4257 y Fm(.)28 4357 y Fs(Q)96 4369 y Fq(l;m;n)291 +4357 y Fm(ar)l(e)30 b(the)h(sp)l(ac)l(es)g(of)g(p)l(olynomials)h(on)f +(the)f(r)l(efer)l(enc)l(e)h(cub)l(e)2185 4336 y Fz(^)2166 +4357 y Fx(C)37 b Fm(with)31 b(maximal)g(de)l(gr)l(e)l(e)g +Fx(l)g Fm(in)36 b Fz(^)-47 b Fx(x)3233 4369 y Fp(1)3271 +4357 y Fm(,)30 b Fx(m)h Fm(in)k Fz(^)-47 b Fx(x)3579 +4369 y Fp(2)3647 4357 y Fm(and)31 b Fx(n)f Fm(in)33 4456 +y Fz(^)-47 b Fx(x)75 4468 y Fp(3)112 4456 y Fm(.)28 4620 +y Fz(The)27 b(spaces)471 4599 y(^)453 4620 y Fx(R)h Fz(for)f(the)h +(reference)f(shap)r(e)g(functions)h(no)n(w)f(are)g(in)h(2d)1037 +4836 y Fs(P)1102 4802 y Fq(k)1165 4836 y Fz(=)1253 4719 +y Fl(\032)1318 4836 y Fz(^)-45 b Fx(u)p 1315 4849 48 +4 v 23 w Fz(=)1473 4719 y Fl(\022)1581 4786 y Fz(^)e +Fx(u)1624 4798 y Fp(1)1581 4885 y Fz(^)g Fx(u)1624 4897 +y Fp(2)1702 4719 y Fl(\023)1787 4836 y Fz(:)111 b(^)-47 +b Fx(u)1964 4848 y Fp(1)2023 4836 y Fs(2)24 b(Q)2170 +4848 y Fq(k)q Fh(\000)p Fp(1)p Fq(;k)2366 4836 y Fx(;)19 +b Fz(^)-47 b Fx(u)2451 4848 y Fp(2)2511 4836 y Fs(2)23 +b(Q)2657 4848 y Fq(k)q(;k)q Fh(\000)p Fp(1)2839 4719 +y Fl(\033)2929 4836 y Fx(;)862 b Fz(\(22\))28 5053 y(and)27 +b(in)h(3d)686 5232 y Fs(P)751 5197 y Fq(k)814 5232 y +Fz(=)902 5062 y Fl(8)902 5136 y(<)902 5286 y(:)979 5232 +y Fz(^)-45 b Fx(u)p 976 5245 V 22 w Fz(=)1134 5065 y +Fl(0)1134 5214 y(@)1253 5131 y Fz(^)e Fx(u)1296 5143 +y Fp(1)1253 5231 y Fz(^)g Fx(u)1296 5243 y Fp(2)1253 +5330 y Fz(^)g Fx(u)1296 5342 y Fp(3)1374 5065 y Fl(1)1374 +5214 y(A)1470 5232 y Fz(:)111 b(^)-47 b Fx(u)1647 5244 +y Fp(1)1707 5232 y Fs(2)23 b(Q)1853 5244 y Fq(k)q Fh(\000)p +Fp(1)p Fq(;k)q(;k)2106 5232 y Fx(;)c Fz(^)-47 b Fx(u)2191 +5244 y Fp(2)2250 5232 y Fs(2)24 b(Q)2397 5244 y Fq(k)q(;k)q +Fh(\000)p Fp(1)p Fq(;k)2649 5232 y Fx(;)19 b Fz(^)-47 +b Fx(u)2734 5244 y Fp(3)2794 5232 y Fs(2)23 b(Q)2940 +5244 y Fq(k)q(;k)q(;k)q Fh(\000)p Fp(1)3179 5062 y Fl(9)3179 +5136 y(=)3179 5286 y(;)3280 5232 y Fx(:)511 b Fz(\(23\))28 +5469 y(W)-7 b(e)28 b(renounce)e(an)i(example,)f(since)g(it)h(is)g +(quite)g(eviden)n(t,)f(what)h(these)f(spaces)g(lo)r(ok)g(lik)n(e)g(for) +g(a)g(sp)r(eci\014c)h Fx(k)s Fz(.)1949 5719 y Fk(10)p +eop +%%Page: 11 11 +11 10 bop 28 213 a Fo(2.2.2)105 b(Degrees)35 b(of)g(freedom)g(on)g(the) +f(reference)h(elemen)m(t)28 366 y Fz(W)-7 b(e)28 b(start)f(with)h(the)g +(degrees)e(of)h(freedoms)g(on)h(the)g(reference)e(square)2323 +345 y(^)2305 366 y Fx(C)j Fs(\032)23 b Fr(R)2535 336 +y Fp(2)2578 366 y Fz(:)28 540 y Fn(Definition)28 b Fz(8)45 +b Fm(L)l(et)748 519 y Fz(^)729 540 y Fx(C)c Fm(denote)35 +b(the)g(r)l(efer)l(enc)l(e)h(squar)l(e)e(and)2021 525 +y Fz(^)2027 540 y Fx(t)p 2027 553 30 4 v 34 w Fm(the)h(tangent)g(as)g +(de\014ne)l(d)g(in)g(c)l(onvention)g(1.)54 b(The)36 b(set)e(of)28 +640 y(de)l(gr)l(e)l(es)c(of)g(fr)l(e)l(e)l(dom)h Fs(A)f +Fm(on)g Fs(P)993 610 y Fq(k)1063 640 y Fm(in)g(the)g(2d)g(c)l(ase)g(c)l +(onsists)g(of)h(the)e(line)l(ar)i(functionals)28 789 +y Fy(edge)g(dofs)1409 927 y Fz(^)-51 b Fx(\013)q Fz(\()s(^)-45 +b Fx(u)p 1486 940 48 4 v Fz(\))23 b(:=)1700 814 y Fl(Z)1749 +1002 y Fp(^)-36 b Fq(e)1781 927 y Fz(\()1807 911 y(^)1813 +927 y Fx(t)p 1813 940 30 4 v 19 w Fs(\001)22 b Fz(^)-45 +b Fx(u)p 1904 940 48 4 v -1 w Fz(\))28 b(^)-56 b Fx(')14 +b(d)s Fz(^)-45 b Fx(s)14 b(;)99 b Fs(8)27 b Fz(^)-55 +b Fx(')23 b Fs(2)g Fr(P)2551 939 y Fq(k)q Fh(\000)p Fp(1)2676 +927 y Fz(\()s(^)-45 b Fx(e)o Fz(\))14 b Fx(;)255 1139 +y Fm(for)30 b(every)h(e)l(dge)j Fz(^)-45 b Fx(e)29 b +Fm(of)974 1118 y Fz(^)955 1139 y Fx(C)7 b Fm(.)38 b(We)30 +b(have)h(a)f(total)g(of)h Fz(4)p Fx(k)h Fm(of)e(e)l(dge)h(dofs.)28 +1289 y Fy(inner)g(dofs)758 1417 y Fz(^)-50 b Fx(\013)p +Fz(\()s(^)-45 b Fx(u)p 835 1430 V Fz(\))23 b(:=)1049 +1304 y Fl(Z)1110 1478 y Fp(^)1095 1493 y Fq(C)1168 1417 +y Fz(^)-45 b Fx(u)p 1165 1430 V 18 w Fs(\001)25 b Fz(^)-49 +b Fx(')p 1272 1447 55 4 v 14 w(d)5 b Fz(^)-47 b Fx(x)15 +b(;)99 b Fs(8)19 b Fz(^)-47 b Fx(')p 1628 1447 V 22 w +Fz(=)1792 1300 y Fl(\022)1908 1367 y Fz(^)-56 b Fx(')1948 +1379 y Fp(1)1908 1466 y Fz(^)g Fx(')1948 1478 y Fp(2)2027 +1300 y Fl(\023)2116 1417 y Fx(;)112 b Fz(^)-55 b Fx(')2292 +1429 y Fp(1)2352 1417 y Fs(2)24 b(Q)2499 1429 y Fq(k)q +Fh(\000)p Fp(2)p Fq(;k)q Fh(\000)p Fp(1)2780 1417 y Fx(;)112 +b Fz(^)-56 b Fx(')2955 1429 y Fp(2)3016 1417 y Fs(2)24 +b(Q)3163 1429 y Fq(k)q Fh(\000)p Fp(1)p Fq(;k)q Fh(\000)p +Fp(2)3443 1417 y Fx(:)255 1616 y Fm(We)30 b(have)h(a)f(total)g(of)g +Fz(2)p Fx(k)s Fz(\()p Fx(k)21 b Fs(\000)d Fz(1\))30 b +Fm(of)g(inner)g(dofs.)28 1816 y Fn(Definition)e Fz(9)45 +b Fm(L)l(et)741 1795 y Fz(^)722 1816 y Fx(C)33 b Fm(denote)28 +b(the)g(r)l(efer)l(enc)l(e)g(cub)l(e,)1763 1800 y Fz(^)1769 +1816 y Fx(t)p 1769 1829 30 4 v 27 w Fm(the)g(tangent)e(to)i(an)f(e)l +(dge)h(as)g(de\014ne)l(d)g(in)f(c)l(onvention)h(1)g(and)k +Fz(^)-46 b Fx(n)p 3776 1829 50 4 v 27 w Fm(the)28 1915 +y(outwar)l(d)32 b(unit)g(normal)h(ve)l(ctor)f(to)g(a)h(fac)l(e.)47 +b(The)34 b(set)e(of)h(de)l(gr)l(e)l(es)f(of)h(fr)l(e)l(e)l(dom)h +Fs(A)e Fm(on)g Fs(P)2827 1885 y Fq(k)2900 1915 y Fm(in)g(the)h(3d)g(c)l +(ase)g(c)l(onsists)f(of)h(the)28 2015 y(line)l(ar)d(functionals)28 +2164 y Fy(edge)h(dofs)1409 2302 y Fz(^)-51 b Fx(\013)q +Fz(\()s(^)-45 b Fx(u)p 1486 2315 48 4 v Fz(\))23 b(:=)1700 +2189 y Fl(Z)1749 2377 y Fp(^)-36 b Fq(e)1781 2302 y Fz(\()1807 +2287 y(^)1813 2302 y Fx(t)p 1813 2315 30 4 v 19 w Fs(\001)22 +b Fz(^)-45 b Fx(u)p 1904 2315 48 4 v -1 w Fz(\))28 b(^)-56 +b Fx(')14 b(d)s Fz(^)-45 b Fx(s)14 b(;)99 b Fs(8)27 b +Fz(^)-55 b Fx(')23 b Fs(2)g Fr(P)2551 2314 y Fq(k)q Fh(\000)p +Fp(1)2676 2302 y Fz(\()s(^)-45 b Fx(e)o Fz(\))14 b Fx(;)255 +2514 y Fm(for)30 b(every)h(e)l(dge)j Fz(^)-45 b Fx(e)29 +b Fm(of)974 2493 y Fz(^)955 2514 y Fx(C)7 b Fm(.)38 b(We)30 +b(have)h(a)f(total)g(of)h Fz(12)p Fx(k)g Fm(of)g(e)l(dge)f(dofs.)28 +2664 y Fy(face)i(dofs)556 2875 y Fz(^)-51 b Fx(\013)q +Fz(\()s(^)-45 b Fx(u)p 633 2888 V -1 w Fz(\))24 b(:=)847 +2762 y Fl(Z)906 2936 y Fp(^)893 2951 y Fq(f)936 2875 +y Fz(\()s(^)-45 b Fx(u)p 968 2888 V 18 w Fs(^)23 b Fz(^)-46 +b Fx(n)p 1108 2888 50 4 v Fz(\))18 b Fs(\001)25 b Fz(^)-48 +b Fx(')p 1250 2905 55 4 v 14 w(d)q Fz(^)-43 b Fx(a)14 +b(;)99 b Fs(8)19 b Fz(^)-47 b Fx(')p 1602 2905 V 22 w +Fz(=)1766 2758 y Fl(\022)1882 2825 y Fz(^)-56 b Fx(')1922 +2837 y Fp(1)1882 2924 y Fz(^)g Fx(')1922 2936 y Fp(2)2001 +2758 y Fl(\023)2090 2875 y Fx(;)112 b Fz(^)-55 b Fx(')2266 +2887 y Fp(1)2327 2875 y Fs(2)23 b(Q)2473 2887 y Fq(k)q +Fh(\000)p Fp(2)p Fq(;k)q Fh(\000)p Fp(1)2740 2875 y Fz(\()2790 +2853 y(^)2772 2875 y Fx(f)9 b Fz(\))14 b Fx(;)112 b Fz(^)-55 +b Fx(')3044 2887 y Fp(2)3104 2875 y Fs(2)24 b(Q)3251 +2887 y Fq(k)q Fh(\000)p Fp(1)p Fq(;k)q Fh(\000)p Fp(2)3518 +2875 y Fz(\()3568 2853 y(^)3550 2875 y Fx(f)9 b Fz(\))14 +b Fx(:)255 3133 y Fm(for)30 b(every)h(fac)l(e)795 3111 +y Fz(^)777 3133 y Fx(f)38 b Fm(of)972 3112 y Fz(^)954 +3133 y Fx(C)6 b Fm(.)39 b(We)29 b(have)i(a)f(total)g(of)h +Fz(6)18 b Fs(\001)h Fz(2)p Fx(k)s Fz(\()p Fx(k)h Fs(\000)e +Fz(1\))30 b Fm(of)h(fac)l(e)f(dofs.)28 3283 y Fy(inner)h(dofs)263 +3544 y Fz(^)-50 b Fx(\013)p Fz(\()s(^)-45 b Fx(u)p 340 +3557 48 4 v Fz(\))23 b(:=)554 3431 y Fl(Z)615 3605 y +Fp(^)600 3620 y Fq(C)673 3544 y Fz(^)-45 b Fx(u)p 670 +3557 V -1 w Fs(\001)6 b Fz(^)-48 b Fx(')p 740 3574 55 +4 v 15 w(d)5 b Fz(^)-47 b Fx(x)14 b(;)99 b Fs(8)19 b +Fz(^)-47 b Fx(')p 1096 3574 V 22 w Fz(=)1260 3377 y Fl(0)1260 +3527 y(@)1387 3444 y Fz(^)-55 b Fx(')1428 3456 y Fp(1)1387 +3543 y Fz(^)g Fx(')1428 3555 y Fp(2)1387 3643 y Fz(^)g +Fx(')1428 3655 y Fp(3)1507 3377 y Fl(1)1507 3527 y(A)1607 +3544 y Fx(;)113 b Fz(^)-56 b Fx(')1783 3556 y Fp(1)1844 +3544 y Fs(2)23 b(Q)1990 3556 y Fq(k)q Fh(\000)p Fp(1)p +Fq(;k)q Fh(\000)p Fp(2)p Fq(;k)q Fh(\000)p Fp(2)2412 +3544 y Fx(;)124 b Fz(^)-67 b Fx(')2588 3556 y Fp(2)2649 +3544 y Fs(2)23 b(Q)2795 3556 y Fq(k)q Fh(\000)p Fp(2)p +Fq(;k)q Fh(\000)p Fp(1)p Fq(;k)q Fh(\000)p Fp(2)3218 +3544 y Fx(;)123 b Fz(^)-67 b Fx(')3393 3556 y Fp(3)3454 +3544 y Fs(2)23 b(Q)3600 3556 y Fq(k)q Fh(\000)p Fp(2)p +Fq(;k)q Fh(\000)p Fp(2)p Fq(;k)q Fh(\000)p Fp(1)4023 +3544 y Fx(:)255 3832 y Fm(We)30 b(have)h(a)f(total)g(of)g +Fz(3)p Fx(k)s Fz(\()p Fx(k)21 b Fs(\000)d Fz(1\))1298 +3802 y Fp(2)1365 3832 y Fm(of)31 b(inner)e(dofs.)28 4031 +y Fn(Example)e Fz(4)45 b Fm(Pr)l(o)l(c)l(e)l(e)l(ding)d(the)f(same)g +(way)h(as)g(in)f(example)h(3)f(for)h(a)g(triangular)f(r)l(efer)l(enc)l +(e)h(element,)i(we)d(obtain)h(the)28 4131 y(r)l(efer)l(enc)l(e)30 +b(shap)l(e)h(functions)e(of)i(lowest)f(or)l(der)h(on)e(the)h(squar)l(e) +g Fz([0)p Fx(;)14 b Fz(1])2209 4101 y Fp(2)2245 4131 +y Fm(.)39 b(F)-6 b(or)30 b(the)g(unit)f(tangents)g(as)h(in)g(c)l +(onvention)g(1)825 4348 y Fz(^)831 4363 y Fx(t)p 831 +4376 30 4 v 21 x Fp(0)921 4363 y Fz(=)1009 4246 y Fl(\022)1111 +4312 y Fz(1)1111 4412 y(0)1195 4246 y Fl(\023)1283 4363 +y Fx(;)1399 4348 y Fz(^)1405 4363 y Fx(t)p 1405 4376 +V 21 x Fp(1)1495 4363 y Fz(=)1583 4246 y Fl(\022)1686 +4312 y Fz(0)1686 4412 y(1)1769 4246 y Fl(\023)1857 4363 +y Fx(;)1973 4348 y Fz(^)1979 4363 y Fx(t)p 1979 4376 +V 21 x Fp(2)2069 4363 y Fz(=)2157 4246 y Fl(\022)2260 +4312 y Fs(\000)p Fz(1)2292 4412 y(0)2407 4246 y Fl(\023)2496 +4363 y Fx(;)2612 4348 y Fz(^)2618 4363 y Fx(t)p 2618 +4376 V 21 x Fp(3)2708 4363 y Fz(=)2796 4246 y Fl(\022)2931 +4312 y Fz(0)2898 4412 y Fs(\000)p Fz(1)3046 4246 y Fl(\023)3135 +4363 y Fx(;)28 4591 y Fm(they)g(r)l(e)l(ad)638 4715 y +Fz(^)621 4736 y Fx(N)p 621 4749 76 4 v 696 4757 a Fp(0)757 +4736 y Fz(=)844 4619 y Fl(\022)947 4685 y Fz(1)18 b Fs(\000)24 +b Fz(^)-48 b Fx(y)1019 4785 y Fz(0)1175 4619 y Fl(\023)1264 +4736 y Fx(;)1403 4715 y Fz(^)1386 4736 y Fx(N)p 1386 +4749 V 1461 4757 a Fp(1)1522 4736 y Fz(=)1609 4619 y +Fl(\022)1715 4685 y Fz(0)1717 4785 y(^)h Fx(x)1801 4619 +y Fl(\023)1890 4736 y Fx(;)2029 4715 y Fz(^)2011 4736 +y Fx(N)p 2011 4749 V 2087 4757 a Fp(2)2148 4736 y Fz(=)2235 +4619 y Fl(\022)2338 4685 y Fs(\000)6 b Fz(^)-48 b Fx(y)2371 +4785 y Fz(0)2488 4619 y Fl(\023)2576 4736 y Fx(;)2715 +4715 y Fz(^)2698 4736 y Fx(N)p 2698 4749 V 2774 4757 +a Fp(3)2834 4736 y Fz(=)2922 4619 y Fl(\022)3099 4685 +y Fz(0)3030 4785 y(^)g Fx(x)19 b Fs(\000)f Fz(1)3256 +4619 y Fl(\023)3345 4736 y Fx(:)446 b Fz(\(24\))28 5002 +y Fo(2.2.3)105 b(T)-9 b(ransformation)34 b(of)h(the)g(v)m(ector)g +(\014eld)28 5156 y Fz(Since)24 b(the)g(elemen)n(ts)g(of)f(the)i +(considered)d(grids)h(are)g(still)h(a\016ne)g(images)f(of)h(the)g +(reference)f(elemen)n(t,)i(w)n(e)e(can)h(use)f(the)i(Piola)28 +5255 y(transformation)j(\(10\))i(to)g(transform)f(v)n(ector)f(\014elds) +j(and)e(the)i(results)e(stated)h(in)h(sections)e(2.1.3)g({)h(2.1.5)f +(can)g(b)r(e)i(carried)28 5355 y(o)n(v)n(er)25 b(one)j(to)f(one.)1949 +5719 y Fk(11)p eop +%%Page: 12 12 +12 11 bop 28 214 a Fv(2.3)112 b Fo(Construction)35 b(of)g(N)n(\023)-50 +b(ed)n(\023)g(elec)35 b(elemen)m(ts)f(on)h(bi-)g(or)g(trilinear)g +(elemen)m(ts)28 367 y Fz(W)-7 b(e)28 b(no)n(w)f(w)n(an)n(t)g(to)h +(consider)f(grids)g(that)h(are)f(comp)r(osed)h(of)g(elemen)n(ts)f(that) +i(are)e(a)g(bi-)h(resp.)37 b(trilinear)27 b(images)g +Fx(F)3680 379 y Fq(C)3736 367 y Fz(\()3788 346 y(^)3768 +367 y Fx(C)7 b Fz(\))28 b(of)28 467 y(the)f(reference)e(elemen)n(t)842 +446 y(^)823 467 y Fx(C)k Fz(=)23 b([0)p Fx(;)14 b Fz(1])1166 +436 y Fq(d)1204 467 y Fz(.)36 b(The)27 b(main)f(di\013erence)h(here)f +(is,)h(that)g(the)g(jacobian)2964 446 y(^)2944 467 y +Fx(D)r(F)3068 479 y Fq(C)3125 467 y Fz(\()5 b(^)-47 b +Fx(x)p Fz(\))27 b(of)g(the)g(elemen)n(t)f(map)28 566 +y Fx(F)81 578 y Fq(C)164 566 y Fz(is)i(not)g(constan)n(t,)e(and)i(w)n +(e)f(ha)n(v)n(e)g(to)g(use)g(Piola)g(transformation)f(\(9\))h(to)h +(transform)e(v)n(ector)h(\014elds.)28 892 y Fo(2.3.1)105 +b(Bilinear)35 b(elemen)m(ts)f(in)h(2d)28 1045 y Fz(The)27 +b(p)r(olynomial)g(spaces)g Fs(P)947 1015 y Fq(k)1015 +1045 y Fz(and)g(the)h(dofs)g(remain)f(the)h(same)f(as)g(in)g(the)h +(case)f(of)h(a\016ne)f(quadrilateral)f(elemen)n(ts.)28 +1145 y(A)i(transformed)e(v)n(ector)g(\014eld)i(on)f(a)h(general)e +(elemen)n(t)i(is)f(no)n(w)g(de\014ned)h(b)n(y)f(the)h(Piola)f +(transformation)f(\(9\))1501 1308 y Fx(v)p 1501 1321 +44 4 v 4 w Fz(\()p Fx(x)p Fz(\))e(=)e(\()1819 1287 y(^)1799 +1308 y Fx(D)s(F)1936 1273 y Fh(\000)p Fq(T)1924 1333 +y(C)2041 1308 y Fz(^)-43 b Fx(v)p 2040 1321 V 2083 1329 +a Fq(i)2111 1308 y Fz(\))18 b Fs(\016)g Fx(F)2286 1273 +y Fh(\000)p Fp(1)2274 1333 y Fq(C)2375 1308 y Fz(\()p +Fx(x)p Fz(\))28 1484 y(of)32 b(a)g(v)n(ector)f(\014eld)i(on)f(the)h +(reference)f(elemen)n(t.)51 b(Note)33 b(that)g(the)g(jacobian)2508 +1463 y(^)2488 1484 y Fx(D)r(F)2612 1496 y Fq(C)2669 1484 +y Fz(\()5 b(^)-47 b Fx(x)p Fz(\))33 b(is)g(not)f(constan)n(t)g(in)h +(this)f(case.)51 b(In)28 1584 y(con)n(trast)27 b(to)i(the)g(case)f(of)g +(a\016ne)h(elemen)n(ts,)g(the)g(gradien)n(t)e Fx(D)r(v)p +1997 1597 V 33 w Fz(do)r(es)h(not)h(transform)e(according)g(to)i(form)n +(ula)f(\(12\).)40 b(Non-)28 1683 y(v)-5 b(anishing)26 +b(second)g(deriv)-5 b(ativ)n(es)26 b(of)1187 1662 y(^)1167 +1683 y Fx(D)r(F)1291 1695 y Fq(C)1348 1683 y Fz(\()5 +b(^)-47 b Fx(x)p Fz(\))28 b(app)r(ear)d(in)i(the)g(transformation)f +(rule)g(for)g(gradien)n(ts)g(of)g(v)n(ector)g(\014elds.)36 +b(This)28 1797 y(requires)26 b(a)h(new)h(approac)n(h)e(to)i(express)e +(curl)14 b Fx(v)p 1482 1810 V 31 w Fz(in)28 b(terms)g(of)1986 +1775 y Fl(d)1976 1797 y Fz(curl)15 b(^)-43 b Fx(v)p 2129 +1810 V 3 w Fz(.)38 b(Nev)n(ertheless,)26 b(it)j(can)e(b)r(e)h(sho)n(wn) +f(that)h(the)h(curl)e(of)h(a)28 1896 y(v)n(ector)e(\014eld)i +(transforms)e(analogously)f(to)j(the)g(case)e(of)i(a\016ne)f(elemen)n +(ts.)28 2073 y Fn(Pr)n(oposition)g Fz(5)45 b Fm(L)l(et)809 +2052 y Fz(^)790 2073 y Fx(C)39 b Fm(b)l(e)32 b(the)h(r)l(efer)l(enc)l +(e)f(element)g Fz([0)p Fx(;)14 b Fz(1])1962 2043 y Fp(2)2031 +2073 y Fm(and)32 b Fx(C)39 b Fm(a)32 b(biline)l(ar)i(image)f(of)3030 +2052 y Fz(^)3011 2073 y Fx(C)7 b Fm(.)46 b(If)32 b(the)h(ve)l(ctor)f +(\014eld)h Fx(v)p 3806 2086 V 3 w Fz(\()p Fx(x)p Fz(\))28 +2173 y Fm(tr)l(ansforms)c(ac)l(c)l(or)l(ding)i(to)f(the)g(Piola)i(tr)l +(ansformation)e(\(9\),)h(then)e(the)h(tr)l(ansformation)h(of)f(the)g +(curl)g(ob)l(eys)1126 2350 y Fz(curl)13 b Fx(v)p 1278 +2363 V 3 w Fz(\()p Fx(x)p Fz(\))24 b(=)f(\(det)1725 2329 +y(^)1706 2350 y Fx(D)r(F)12 b Fz(\))1874 2316 y Fh(\000)p +Fp(1)1972 2328 y Fl(d)1963 2350 y Fz(curl)i(^)-43 b Fx(v)p +2115 2363 V 4 w Fz(\()5 b(^)-47 b Fx(x)p Fz(\))14 b Fx(;)184 +b(x)24 b Fz(=)e Fx(F)12 b Fz(\()5 b(^)-47 b Fx(x)q Fz(\))14 +b Fx(;)28 2514 y Fm(as)30 b(in)f(the)h(a\016ne)h(c)l(ase.)28 +2791 y Fn(Pr)n(oof.)40 b Fz(In)28 b(this)g(pro)r(of,)f(the)h(mapp)r(ed) +g(elemen)n(t)f Fx(C)34 b Fz(will)28 b(b)r(e)g(\014xed,)g(so)f(for)g +(simplicit)n(y)g(w)n(e)h(write)f Fx(F)40 b Fz(for)27 +b Fx(F)3428 2803 y Fq(C)3484 2791 y Fz(.)28 2890 y(First)37 +b(note)g(that)h(\()675 2869 y(^)656 2890 y Fx(D)r(F)12 +b Fz(\()p Fx(F)889 2860 y Fh(\000)p Fp(1)978 2890 y Fz(\()p +Fx(x)p Fz(\)\)\))1153 2860 y Fh(\000)p Fp(1)1283 2890 +y Fz(=)39 b Fx(D)r Fz(\()p Fx(F)1555 2860 y Fh(\000)p +Fp(1)1645 2890 y Fz(\)\()p Fx(x)p Fz(\).)67 b(W)-7 b(e)38 +b(use)f(the)h(notation)f Fx(D)r Fz(\()p Fx(F)2847 2860 +y Fh(\000)p Fp(1)2936 2890 y Fz(\))2968 2902 y Fq(ij)3027 +2890 y Fz(\()p Fx(x)p Fz(\))j(=)3295 2856 y Fq(@)8 b +Fp(^)-37 b Fq(x)3372 2864 y Ff(i)p 3292 2871 108 4 v +3292 2919 a Fq(@)t(x)3369 2927 y Ff(j)3410 2890 y Fz(\()p +Fx(x)p Fz(\))38 b(and)g(imlicit)28 3001 y(summation)27 +b(to)g(rewrite)g(the)h(Piola)f(transformation)f(of)h(the)h(v)n(ector)e +(\014eld)i(comp)r(onen)n(t)n(wise)1250 3204 y Fx(v)1290 +3216 y Fq(i)1318 3204 y Fz(\()p Fx(x)p Fz(\))c(=)1550 +3148 y Fx(@)10 b Fz(^)-47 b Fx(x)1646 3160 y Fq(j)p 1550 +3185 132 4 v 1554 3261 a Fx(@)5 b(x)1650 3273 y Fq(i)1691 +3204 y Fz(\()p Fx(x)p Fz(\))16 b(^)-44 b Fx(v)p 1816 +3217 44 4 v 1861 3225 a Fq(j)1895 3204 y Fz(\()p Fx(F)1992 +3170 y Fh(\000)p Fp(1)2082 3204 y Fz(\()p Fx(x)p Fz(\)\))14 +b Fx(;)181 b(i)23 b Fz(=)f(1)p Fx(;)14 b Fz(2)g Fx(:)28 +3404 y Fz(In)27 b(the)h(case)f(of)h(a\016ne)f(elemen)n(ts,)h(i.)f(e.)h +(for)f(constan)n(t)g(jacobian,)g(w)n(e)g(ha)n(v)n(e)1441 +3634 y Fx(@)5 b(v)1530 3646 y Fp(2)p 1437 3671 134 4 +v 1437 3747 a Fx(@)g(x)1533 3759 y Fp(1)1603 3690 y Fz(=)1706 +3634 y Fx(@)10 b Fz(^)-47 b Fx(x)1802 3646 y Fq(i)p 1701 +3671 V 1701 3747 a Fx(@)5 b(x)1797 3759 y Fp(2)1844 3690 +y Fz(\()p Fx(x)p Fz(\))2022 3634 y Fx(@)p 1980 3671 V +1980 3747 a(@)g(x)2076 3759 y Fp(1)2124 3690 y Fz(^)-43 +b Fx(v)p 2123 3703 44 4 v 2167 3711 a Fq(i)2194 3690 +y Fz(\()p Fx(F)2291 3656 y Fh(\000)p Fp(1)2381 3690 y +Fz(\()p Fx(x)p Fz(\)\))1441 3850 y Fx(@)5 b(v)1530 3862 +y Fp(1)p 1437 3887 134 4 v 1437 3963 a Fx(@)g(x)1533 +3975 y Fp(2)1603 3906 y Fz(=)1706 3850 y Fx(@)10 b Fz(^)-47 +b Fx(x)1802 3862 y Fq(i)p 1701 3887 V 1701 3963 a Fx(@)5 +b(x)1797 3975 y Fp(1)1844 3906 y Fz(\()p Fx(x)p Fz(\))2022 +3850 y Fx(@)p 1980 3887 V 1980 3963 a(@)g(x)2076 3975 +y Fp(2)2124 3906 y Fz(^)-43 b Fx(v)p 2123 3919 44 4 v +2167 3927 a Fq(i)2194 3906 y Fz(\()p Fx(F)2291 3872 y +Fh(\000)p Fp(1)2381 3906 y Fz(\()p Fx(x)p Fz(\)\))14 +b Fx(;)28 4106 y Fz(whereas)26 b(for)h(non-constan)n(t)f(jacobian)h(w)n +(e)g(ha)n(v)n(e)983 4346 y Fx(@)5 b(v)1072 4358 y Fp(2)p +979 4383 134 4 v 979 4459 a Fx(@)g(x)1075 4471 y Fp(1)1146 +4402 y Fz(=)1296 4346 y Fx(@)1345 4316 y Fp(2)1387 4346 +y Fz(^)-47 b Fx(x)1429 4358 y Fq(i)p 1243 4383 267 4 +v 1243 4459 a Fx(@)5 b(x)1339 4471 y Fp(1)1377 4459 y +Fx(@)g(x)1473 4471 y Fp(2)1520 4402 y Fz(\()p Fx(x)p +Fz(\))16 b(^)-44 b Fx(v)p 1645 4415 44 4 v 1689 4423 +a Fq(i)1717 4402 y Fz(\()p Fx(F)1814 4368 y Fh(\000)p +Fp(1)1903 4402 y Fz(\()p Fx(x)p Fz(\)\))20 b(+)2163 4346 +y Fx(@)10 b Fz(^)-47 b Fx(x)2259 4358 y Fq(i)p 2159 4383 +134 4 v 2159 4459 a Fx(@)5 b(x)2255 4471 y Fp(2)2302 +4402 y Fz(\()p Fx(x)p Fz(\))2480 4346 y Fx(@)p 2438 4383 +V 2438 4459 a(@)g(x)2534 4471 y Fp(1)2582 4402 y Fz(^)-43 +b Fx(v)p 2581 4415 44 4 v 2624 4423 a Fq(i)2652 4402 +y Fz(\()p Fx(F)2749 4368 y Fh(\000)p Fp(1)2838 4402 y +Fz(\()p Fx(x)p Fz(\)\))983 4572 y Fx(@)5 b(v)1072 4584 +y Fp(1)p 979 4609 134 4 v 979 4685 a Fx(@)g(x)1075 4697 +y Fp(2)1146 4628 y Fz(=)1296 4572 y Fx(@)1345 4542 y +Fp(2)1387 4572 y Fz(^)-47 b Fx(x)1429 4584 y Fq(i)p 1243 +4609 267 4 v 1243 4685 a Fx(@)5 b(x)1339 4697 y Fp(1)1377 +4685 y Fx(@)g(x)1473 4697 y Fp(2)1520 4628 y Fz(\()p +Fx(x)p Fz(\))16 b(^)-44 b Fx(v)p 1645 4641 44 4 v 1689 +4649 a Fq(i)1717 4628 y Fz(\()p Fx(F)1814 4594 y Fh(\000)p +Fp(1)1903 4628 y Fz(\()p Fx(x)p Fz(\)\))20 b(+)2163 4572 +y Fx(@)10 b Fz(^)-47 b Fx(x)2259 4584 y Fq(i)p 2159 4609 +134 4 v 2159 4685 a Fx(@)5 b(x)2255 4697 y Fp(1)2302 +4628 y Fz(\()p Fx(x)p Fz(\))2480 4572 y Fx(@)p 2438 4609 +V 2438 4685 a(@)g(x)2534 4697 y Fp(2)2582 4628 y Fz(^)-43 +b Fx(v)p 2581 4641 44 4 v 2624 4649 a Fq(i)2652 4628 +y Fz(\()p Fx(F)2749 4594 y Fh(\000)p Fp(1)2838 4628 y +Fz(\()p Fx(x)p Fz(\)\))14 b Fx(:)28 4828 y Fz(W)-7 b(e)28 +b(see)f(that)h(in)g Fm(b)l(oth)34 b Fz(cases)26 b(w)n(e)i(ha)n(v)n(e) +690 5014 y(curl)14 b Fx(v)p 843 5027 V 26 w Fz(=)1010 +4958 y Fx(@)5 b(v)1099 4970 y Fp(2)p 1007 4995 134 4 +v 1007 5071 a Fx(@)g(x)1103 5083 y Fp(1)1168 5014 y Fs(\000)1265 +4958 y Fx(@)g(v)1354 4970 y Fp(1)p 1261 4995 V 1261 5071 +a Fx(@)g(x)1357 5083 y Fp(2)1428 5014 y Fz(=)1530 4958 +y Fx(@)10 b Fz(^)-47 b Fx(x)1626 4970 y Fq(i)p 1525 4995 +V 1525 5071 a Fx(@)5 b(x)1621 5083 y Fp(2)1669 5014 y +Fz(\()p Fx(x)p Fz(\))1847 4958 y Fx(@)p 1804 4995 V 1804 +5071 a(@)g(x)1900 5083 y Fp(1)1949 5014 y Fz(^)-43 b +Fx(v)p 1948 5027 44 4 v 1991 5035 a Fq(i)2019 5014 y +Fz(\()p Fx(F)2116 4980 y Fh(\000)p Fp(1)2205 5014 y Fz(\()p +Fx(x)p Fz(\)\))20 b Fs(\000)2466 4958 y Fx(@)10 b Fz(^)-47 +b Fx(x)2562 4970 y Fq(i)p 2461 4995 134 4 v 2461 5071 +a Fx(@)5 b(x)2557 5083 y Fp(1)2604 5014 y Fz(\()p Fx(x)p +Fz(\))2782 4958 y Fx(@)p 2740 4995 V 2740 5071 a(@)g(x)2836 +5083 y Fp(2)2884 5014 y Fz(^)-43 b Fx(v)p 2883 5027 44 +4 v 2926 5035 a Fq(i)2954 5014 y Fz(\()p Fx(F)3051 4980 +y Fh(\000)p Fp(1)3140 5014 y Fz(\()p Fx(x)p Fz(\)\))28 +5214 y(that)33 b(is,)i(the)e(second)g(deriv)-5 b(ativ)n(es)32 +b(cancel)h(out)g(in)g(the)h(expression)e(for)h(the)g(curl)g(and)g(the)h +(curl)f(in)g(the)h(non-a\016ne)e(case)28 5314 y(transforms)26 +b(equally)h(to)g(the)h(curl)f(in)h(the)g(a\016ne)g(case.)3897 +5469 y Fg(\003)1949 5719 y Fk(12)p eop +%%Page: 13 13 +13 12 bop 28 213 a Fo(2.3.2)105 b(T)-9 b(rilinear)35 +b(elemen)m(ts)f(in)h(3d)28 366 y Fz(The)27 b(p)r(olynomial)g(spaces)g +Fs(P)947 336 y Fq(k)1015 366 y Fz(and)g(the)h(dofs)g(remain)f(the)h +(same)f(as)g(in)g(the)h(case)f(of)h(a\016ne)f(hexahedral)f(elemen)n +(ts.)28 465 y(The)h(v)n(ector)g(\014eld)g(on)h(a)f(genereal)f(elemen)n +(t)i(is)f(de\014ned)h(b)n(y)f(the)h(Piola)f(transformation)f(\(9\).)28 +565 y(The)h(problem)g(of)g(the)h(non-v)-5 b(anishing)26 +b(second)h(deriv)-5 b(ativ)n(es)26 b(of)h(the)h(jacobian)e +Fx(D)r Fz(\()p Fx(F)2701 530 y Fh(\000)p Fp(1)2689 589 +y Fq(C)2791 565 y Fz(\)\()p Fx(x)p Fz(\))j(arises)c(again,)i(and)g(w)n +(e)g(cannot)28 665 y(generalize)f(the)i(results)f(from)g(the)h(a\016ne) +f(case)g(straigh)n(t)f(a)n(w)n(a)n(y)-7 b(.)28 764 y(But)30 +b(analogously)e(to)i(the)g(2d)g(case,)g(one)g(can)g(c)n(hec)n(k)f(that) +i(in)f(in)g(the)h(transformation)e(rule)g(for)h(expressions)3597 +730 y Fq(@)t(v)3669 738 y Ff(i)p 3592 745 108 4 v 3592 +793 a Fq(@)t(x)3669 801 y Ff(j)3730 764 y Fs(\000)3825 +722 y Fq(@)t(v)3897 730 y Ff(j)p 3825 745 104 4 v 3825 +793 a Fq(@)t(x)3902 801 y Ff(i)3938 764 y Fz(,)28 875 +y Fx(i;)14 b(j)27 b Fz(=)c(1)p Fx(;)14 b Fz(2)p Fx(;)g +Fz(3,)21 b(whic)n(h)f(de\014ne)i(the)f(curl-op)r(erator,)f(the)h(terms) +g(con)n(taining)f(second)h(deriv)-5 b(ativ)n(es)19 b(v)-5 +b(anish.)35 b(W)-7 b(e)21 b(ha)n(v)n(e)f(therefore)28 +975 y(again)26 b(the)i(transformation)e(rule)h(\(16\))g(for)g(the)h(sk) +n(ew)f(matrix)g(Curl)14 b Fx(v)26 b Fz(=)d Fx(D)r(v)2482 +945 y Fq(T)2553 975 y Fs(\000)18 b Fx(D)r(v)s Fz(:)391 +1155 y(Curl)13 b Fx(v)s Fz(\()p Fx(x)p Fz(\))25 b(=)d(\(\()916 +1134 y(^)896 1155 y Fx(D)s(F)1033 1119 y Fh(\000)p Fq(T)1021 +1179 y(C)1158 1133 y Fl(d)1137 1155 y Fz(Curl)17 b(^)-45 +b Fx(v)1389 1134 y Fz(^)1370 1155 y Fx(D)r(F)1506 1119 +y Fh(\000)p Fp(1)1494 1179 y Fq(C)1595 1155 y Fz(\))18 +b Fs(\016)g Fx(F)1770 1119 y Fh(\000)p Fp(1)1758 1179 +y Fq(C)1859 1155 y Fz(\)\()p Fx(x)p Fz(\))25 b(=)d(\()p +Fx(D)r(F)2282 1119 y Fh(\000)p Fp(1)2270 1179 y Fq(C)2372 +1155 y Fz(\))2404 1120 y Fq(T)2456 1155 y Fz(\()p Fx(x)p +Fz(\))14 b(\()2635 1133 y Fl(d)2613 1155 y Fz(Curl)k(^)-45 +b Fx(v)22 b Fs(\016)c Fx(F)2977 1119 y Fh(\000)p Fp(1)2965 +1179 y Fq(C)3066 1155 y Fz(\)\()p Fx(x)p Fz(\))c Fx(D)r(F)3359 +1119 y Fh(\000)p Fp(1)3347 1179 y Fq(C)3449 1155 y Fz(\()p +Fx(x)p Fz(\))g Fx(:)28 1321 y Fz(It)35 b(follo)n(ws)e(that)i(the)g +(follo)n(wing)f(prop)r(osition)g(can)g(b)r(e)h(pro)n(v)n(ed)e +(analogously)g(to)h(the)h(case)f(of)h(a\016ne)f(elemen)n(ts)h +(\(replace)28 1434 y(there)27 b Fx(B)303 1446 y Fq(C)386 +1434 y Fz(b)n(y)521 1413 y(^)502 1434 y Fx(D)r(F)626 +1446 y Fq(C)682 1434 y Fz(\()709 1408 y(^)714 1434 y(\()q +Fx(x)p Fz(\)\)\).)28 1592 y Fn(Pr)n(oposition)g Fz(6)45 +b Fm(L)l(et)33 b(the)g(ve)l(ctor)h(\014eld)g Fx(v)p 1364 +1605 44 4 v 3 w Fz(\()p Fx(x)p Fz(\))g Fm(on)g(a)f(triline)l(ar)i +(image)f Fx(C)i Fz(=)29 b Fx(F)2564 1604 y Fq(C)2620 +1592 y Fz(\()2671 1571 y(^)2652 1592 y Fx(C)7 b Fz(\))34 +b Fm(b)l(e)f(de\014ne)l(d)h(by)g(the)f(Piola)i(tr)l(ansfor-)28 +1692 y(mation)30 b(of)g(a)g(r)l(efer)l(enc)l(e)h(\014eld)g +Fz(^)-43 b Fx(v)p 1008 1705 V 3 w Fz(\()5 b(^)-47 b Fx(x)q +Fz(\))30 b Fm(on)1330 1671 y Fz(^)1312 1692 y Fx(C)6 +b Fm(.)38 b(The)31 b(tr)l(ansformation)g(formula)f(for)h(the)f(curl)g +(then)f(r)l(e)l(ads)1279 1908 y Fz(curl)13 b Fx(v)p 1431 +1921 V 27 w Fz(=)1585 1791 y Fl(\022)1790 1852 y Fz(1)p +1656 1889 310 4 v 1656 1977 a(det)1805 1956 y(^)1786 +1977 y Fx(D)r(F)1910 1989 y Fq(C)2009 1887 y Fz(^)1990 +1908 y Fx(D)r(F)2114 1920 y Fq(C)2193 1886 y Fl(d)2184 +1908 y Fz(curl)h(^)-43 b Fx(v)p 2336 1921 44 4 v 2379 +1791 a Fl(\023)2459 1908 y Fs(\016)18 b Fx(F)2584 1872 +y Fh(\000)p Fp(1)2572 1932 y Fq(C)2687 1908 y Fx(:)28 +2176 y Fv(2.4)112 b Fo(Construction)35 b(of)g(global)h(shap)s(e)e +(functions)28 2329 y Fz(In)25 b(the)g(previous)f(sections)g(w)n(e)h(ha) +n(v)n(e)e(in)n(tro)r(duced)i(function)h(spaces)e(and)g(degrees)g(of)h +(freedom,)g(whic)n(h,)g(together)f(with)i(the)28 2428 +y(Piola)g(transformation,)h(will)h(allo)n(w)f(us)h(to)g(de\014ne)h(an)e +Fx(H)7 b Fz(\(curl;)14 b(\012\)-conforming)27 b(\014nite)i(elemen)n(t)f +(metho)r(d.)39 b(Indeed,)28 b(in)h([8)o(],)28 2528 y(N)n(\023)-39 +b(ed)n(\023)g(elec)24 b(sho)n(ws)h(the)i(in)n(v)-5 b(ariance)25 +b(of)h(the)h(spaces)e Fs(R)1661 2498 y Fq(k)1729 2528 +y Fz(and)h Fs(Q)1957 2498 y Fq(k)2024 2528 y Fz(under)g(Piola)f +(transformation)g(of)h(the)h(v)n(ector)e(\014eld,)i(as)f(w)n(ell)28 +2628 y(as)e(the)h(unisolv)n(ence)f(of)h(the)g(set)g(of)g(degrees)e(of)i +(freedom)g Fs(A)g Fz(from)g(sections)f(2.1.2)f(and)i(2.2.2)f(\(for)g +(details,)i(see)e([8],)h(Section)28 2727 y(1.2,)30 b(Theorem)g(1)g(and) +h(Section)g(2,)g(Theorem)f(5\).)46 b(This)30 b(leads)g(to)h(the)g(fact) +g(that)g Fx(H)7 b Fz(\(curl;)14 b(\012\)-conforming)29 +b(global)h(shap)r(e)28 2827 y(functions)24 b(can)f(b)r(e)h(de\014ned)g +(b)n(y)f(mapping)g(elemen)n(t)n(wise)g(the)h(reference)f(shap)r(e)h +(functions)g(with)g(the)g(Piola)e(transformation)28 2927 +y Fs(P)86 2939 y Fq(K)149 2927 y Fz(.)42 b(Ho)n(w)n(ev)n(er,)28 +b(w)n(e)h(m)n(ust)h(pa)n(y)e(some)h(care)f(to)h(the)h(orien)n(tation)e +(of)h(an)g(in)n(terface)g(on)g(whic)n(h)g(the)h(momen)n(ts)f +(de\014ning)g(the)28 3026 y(degrees)22 b(of)i(freedom)f(are)g(based.)36 +b(F)-7 b(or)23 b(the)h(2d)g(case,)g(w)n(e)f(will)h(illustrate)g(in)g +(this)g(section)g(ho)n(w)f(w)n(e)g(m)n(ust)h(tak)n(e)g(in)n(to)f +(accoun)n(t)28 3126 y(the)28 b Fm(orientation)j(of)g(an)f(e)l(dge)35 +b Fz(in)28 b(the)h(de\014nition)f(of)g(the)g(resp)r(ectiv)n(e)f(elemen) +n(t)h(edge)g(shap)r(e)g(function,)g(in)g(order)f(to)h(get)g(an)28 +3225 y Fx(H)7 b Fz(\(curl)o(;)14 b(\012\)-conforming)27 +b(\014nite)h(elemen)n(t)f(space)g(of)h(global)e(shap)r(e)i(functions.) +28 3425 y(Let)22 b Fx(K)29 b Fz(=)23 b Fx(F)12 b Fz(\()478 +3404 y(^)456 3425 y Fx(K)5 b Fz(\))23 b(b)r(e)g(an)g(a\016ne)f(or)g +(bilinear)g(image)g(of)h(a)f(reference)g(elemen)n(t,)i +Fx(e)e Fz(one)h(of)f(its)h(edges)f(and)k(^)-45 b Fx(e)22 +b Fz(the)h(corresp)r(onding)28 3524 y(edge)k(on)g(the)h(reference)f +(elemen)n(t.)28 3624 y(Let)20 b(further)h([0)p Fx(;)14 +b Fs(j)p Fx(e)p Fs(j)p Fz(])22 b Fs(3)i Fx(s)f Fs(7!)g +Fx(x)p 921 3637 48 4 v Fz(\()p Fx(s)p Fz(\))h Fs(2)f +Fx(e)d Fz(and)h([0)p Fx(;)14 b Fs(j)s Fz(^)-45 b Fx(e)o +Fs(j)p Fz(])23 b Fs(3)k Fz(^)-45 b Fx(s)23 b Fs(7!)j +Fz(^)-45 b Fx(x)p 1866 3637 V Fz(\()s(^)g Fx(s)p Fz(\))24 +b Fs(2)i Fz(^)-45 b Fx(e)20 b Fz(b)r(e)h(parametrizations)e(with)i +(resp)r(ect)f(to)h(the)g(arc)e(length)28 3724 y(of)25 +b Fx(e)h Fz(and)i(^)-45 b Fx(e)26 b Fz(resp)r(ectiv)n(ely)-7 +b(.)35 b(W)-7 b(e)26 b(can)f(assume)g(that)h(these)g(parametrizations)e +(endo)n(w)h(the)h(edges)f(with)h(a)f(coun)n(terclo)r(c)n(kwise)28 +3823 y(orien)n(tation.)35 b(Then,)28 b(the)g(unit)g(tangen)n(t)f(v)n +(ectors)f Fx(t)p 1624 3836 30 4 v 28 w Fz(and)1838 3808 +y(^)1843 3823 y Fx(t)p 1843 3836 V 28 w Fz(are)h(giv)n(en)f(b)n(y)2382 +3783 y Fq(dx)p 2417 3794 38 3 v 2382 3804 73 4 v 2385 +3852 a(ds)2492 3823 y Fz(and)2663 3783 y Fq(d)r Fp(^)-35 +b Fq(x)p 2698 3794 38 3 v 2663 3804 73 4 v 2666 3852 +a(d)s Fp(^)f Fq(s)2745 3823 y Fz(.)28 4003 y Fn(Lemma)27 +b Fz(1)45 b Fm(L)l(et)27 b Fz(^)-42 b Fx(v)p 561 4016 +44 4 v 3 w Fz(\()5 b(^)-47 b Fx(x)p Fz(\))28 b Fm(b)l(e)e(a)i(ve)l +(ctor)f(\014eld)g(on)g(the)g(r)l(efer)l(enc)l(e)g(element)g(and)g +Fx(v)p 2389 4016 V 3 w Fz(\()p Fx(x)p Fz(\))h Fm(b)l(e)f(the)g(c)l(orr) +l(esp)l(onding)h(ve)l(ctor)f(\014eld)g(on)g Fx(K)6 b +Fm(,)28 4102 y(de\014ne)l(d)30 b(by)g(the)g(Piola)h(tr)l(ansformation)g +(\(9\).)39 b(It)29 b(then)h(holds)1703 4316 y Fx(v)p +1703 4329 V 21 w Fs(\001)19 b Fx(t)p 1806 4329 30 4 v +23 w Fz(=)1957 4260 y Fs(j)s Fz(^)-45 b Fx(e)o Fs(j)p +1957 4297 85 4 v 1957 4373 a(j)p Fx(e)p Fs(j)2051 4316 +y Fz(\()q(^)i Fx(v)p 2083 4329 44 4 v 22 w Fs(\001)2181 +4301 y Fz(^)2187 4316 y Fx(t)p 2187 4329 30 4 v Fz(\))14 +b Fx(;)1528 b Fz(\(25\))28 4531 y Fm(wher)l(e)30 b Fs(j)s +Fz(^)-45 b Fx(e)p Fs(j)29 b Fm(and)i Fs(j)p Fx(e)p Fs(j)e +Fm(denote)h(the)g(length)g(of)h(the)f(e)l(dges)j Fz(^)-45 +b Fx(e)30 b Fm(and)g Fx(e)p Fm(.)28 4711 y Fn(Pr)n(oof.)40 +b Fz(With)1288 4833 y(\()p Fx(v)p 1320 4846 44 4 v 3 +w Fz(\()p Fx(x)p Fz(\)\))1506 4845 y Fq(i)1558 4833 y +Fz(=)23 b(\()p Fx(D)r Fz(\()p Fx(F)1846 4799 y Fh(\000)p +Fp(1)1936 4833 y Fz(\))1968 4799 y Fq(T)2021 4833 y Fz(^)-43 +b Fx(v)p 2020 4846 V 3 w Fz(\))2095 4845 y Fq(i)2146 +4833 y Fz(=)2244 4777 y Fx(@)10 b Fz(^)-47 b Fx(x)2340 +4789 y Fq(j)p 2244 4814 132 4 v 2248 4890 a Fx(@)5 b(x)2344 +4902 y Fq(i)2385 4833 y Fz(\()p Fx(x)p Fz(\))q(^)-43 +b Fx(v)p 2496 4846 44 4 v 2540 4854 a Fq(j)2575 4833 +y Fz(\()5 b(^)-47 b Fx(x)q Fz(\))28 5013 y(and)32 b(^)-47 +b Fx(x)236 5025 y Fq(j)294 5013 y Fz(=)28 b(^)-47 b Fx(x)429 +5025 y Fq(j)465 5013 y Fz(\()p Fx(x)p 497 5026 48 4 v +Fz(\()p Fx(s)p Fz(\)\))29 b(and)j(^)-47 b Fx(x)916 5025 +y Fq(j)975 5013 y Fz(=)28 b(^)-48 b Fx(x)1109 5025 y +Fq(j)1145 5013 y Fz(\()s(^)j Fx(s)p Fz(\()p Fx(s)p Fz(\)\))28 +b(on)g(the)g(edges,)f(w)n(e)g(ha)n(v)n(e)812 5232 y Fx(v)p +812 5245 44 4 v 21 w Fs(\001)19 b Fx(t)p 915 5245 30 +4 v 23 w Fz(=)k Fx(v)p 1056 5245 44 4 v 21 w Fs(\001)1169 +5176 y Fx(dx)p 1212 5189 48 4 v 1169 5213 91 4 v 1173 +5289 a(ds)1292 5232 y Fz(=)1380 5115 y Fl(\022)1442 5232 +y Fz(^)-43 b Fx(v)p 1441 5245 44 4 v 1484 5253 a Fq(j)1529 +5176 y Fx(@)10 b Fz(^)-47 b Fx(x)1625 5188 y Fq(j)p 1529 +5213 132 4 v 1533 5289 a Fx(@)5 b(x)1629 5301 y Fq(i)1670 +5115 y Fl(\023)1745 5232 y Fz(\()p Fx(x)p Fz(\))1866 +5176 y Fx(dx)1956 5188 y Fq(i)p 1867 5213 119 4 v 1885 +5289 a Fx(ds)2019 5232 y Fz(=)23 b(^)-43 b Fx(v)p 2106 +5245 44 4 v 2150 5253 a Fq(j)2194 5176 y Fx(d)5 b Fz(^)-47 +b Fx(x)2284 5188 y Fq(j)p 2194 5213 126 4 v 2216 5289 +a Fx(ds)2353 5232 y Fz(=)24 b(^)-43 b Fx(v)p 2441 5245 +44 4 v 2484 5253 a Fq(j)2529 5176 y Fx(d)5 b Fz(^)-47 +b Fx(x)2619 5188 y Fq(j)p 2529 5213 126 4 v 2551 5289 +a Fx(d)s Fz(^)i Fx(s)2675 5176 y(d)s Fz(^)g Fx(s)p 2675 +5213 83 4 v 2675 5289 a(ds)2790 5232 y Fz(=)22 b(\()q(^)-43 +b Fx(v)p 2909 5245 44 4 v 22 w Fs(\001)3007 5217 y Fz(^)3013 +5232 y Fx(t)p 3013 5245 30 4 v Fz(\))3085 5176 y Fx(d)s +Fz(^)e Fx(s)p 3085 5213 83 4 v 3085 5289 a(ds)28 5469 +y Fz(and)27 b(with)388 5437 y Fq(d)s Fp(^)-36 b Fq(s)p +388 5451 66 4 v 388 5498 a(ds)487 5469 y Fz(=)585 5429 +y Fh(j)s Fp(^)g Fq(e)p Fh(j)p 585 5450 71 4 v 585 5498 +a(j)p Fq(e)p Fh(j)693 5469 y Fz(the)28 b(lemma)g(follo)n(ws.)1949 +5719 y Fk(13)p eop +%%Page: 14 14 +14 13 bop 3897 205 a Fg(\003)28 380 y Fz(As)27 b(a)g(consequence,)g(w)n +(e)g(ha)n(v)n(e)28 579 y Fn(Pr)n(oposition)g Fz(7)g(\(In)n(v)-5 +b(ariance)26 b(of)i(the)g(edge)f(dofs\))46 b Fm(L)l(et)27 +b(the)h(ve)l(ctor)g(\014eld)h Fx(v)p 2406 592 44 4 v +3 w Fz(\()p Fx(x)p Fz(\))g Fm(on)f Fx(K)34 b Fm(b)l(e)28 +b(de\014ne)l(d)g(by)g(the)g(Piola)i(tr)l(ansfor-)28 679 +y(mation)i(\(9\))g(of)h(a)g(r)l(efer)l(enc)l(e)f(ve)l(ctor)g(\014eld)i +Fz(^)-43 b Fx(v)p 1409 692 V 3 w Fz(\()5 b(^)-47 b Fx(x)q +Fz(\))32 b Fm(on)1739 658 y Fz(^)1717 679 y Fx(K)5 b +Fm(.)46 b(Then,)34 b(the)e(functionals)g(\()13 b Fz(edge)30 +b(dofs)p Fm(\))i Fx(\013)3179 649 y Fp([)p Fq(K)t Fp(])3281 +679 y Fz(\()p Fx(u)p 3313 692 48 4 v Fz(\))27 b(:=)3535 +612 y Fl(R)3574 708 y Fq(e)3610 679 y Fz(\()p Fx(v)p +3642 692 44 4 v 24 w Fs(\001)20 b Fx(t)p 3749 692 30 +4 v Fz(\))p Fx(')14 b(ds)28 778 y Fm(ar)l(e)30 b(invariant)g(in)g(the)g +(sense)g(of)315 999 y Fx(\013)368 965 y Fp([)p Fq(K)t +Fp(])470 999 y Fz(\()p Fx(u)p 502 1012 48 4 v -1 w Fz(\))24 +b(=)692 886 y Fl(Z)739 1074 y Fq(e)774 999 y Fz(\()p +Fx(v)p 806 1012 44 4 v 22 w Fs(\001)19 b Fx(t)p 910 1012 +30 4 v Fz(\))p Fx(')14 b(ds)23 b Fz(=)1233 886 y Fl(Z)1282 +1074 y Fp(^)-36 b Fq(e)1315 999 y Fz(\()q(^)-43 b Fx(v)p +1347 1012 44 4 v 22 w Fs(\001)1445 983 y Fz(^)1450 999 +y Fx(t)p 1450 1012 30 4 v Fz(\))13 b(^)-55 b Fx(')15 +b(d)s Fz(^)-45 b Fx(s)37 b Fz(=)30 b(^)-50 b Fx(\013)q +Fz(\()s(^)-45 b Fx(u)p 1873 1012 48 4 v -1 w Fz(\))14 +b Fx(;)184 b Fs(8)26 b Fz(^)-54 b Fx(')22 b Fs(2)i Fr(P)2441 +1011 y Fq(k)q Fh(\000)p Fp(1)2565 999 y Fz(\()s(^)-45 +b Fx(e)p Fz(\))14 b Fx(;)99 b(')24 b Fz(=)36 b(^)-56 +b Fx(')19 b Fs(\016)f Fx(F)3167 965 y Fh(\000)p Fp(1)3279 +999 y Fs(2)24 b Fr(P)3410 1011 y Fq(k)q Fh(\000)p Fp(1)3534 +999 y Fz(\()p Fx(e)p Fz(\))14 b Fx(:)28 1261 y Fz(Let)28 +b(no)n(w)g Fx(K)422 1273 y Fh(\000)503 1261 y Fz(=)c +Fx(F)645 1273 y Fh(\000)702 1261 y Fz(\()756 1240 y(^)734 +1261 y Fx(K)5 b Fz(\))29 b(and)g Fx(K)1105 1273 y Fp(+)1184 +1261 y Fz(=)c Fx(F)1327 1273 y Fp(+)1382 1261 y Fz(\()1437 +1240 y(^)1414 1261 y Fx(K)6 b Fz(\))29 b(b)r(e)g(t)n(w)n(o)f(neigh)n(b) +r(ouring)g(triangles)f(with)i(common)f(edge)h Fx(e)p +Fz(.)40 b(Let)28 b Fx(N)p 3627 1274 76 4 v 38 w Fz(b)r(e)h(the)28 +1361 y(global)f(edge)g(shap)r(e)h(function)h(that)f('liv)n(es')g(on)g +Fx(e)p Fz(.)41 b(By)29 b Fx(N)p 1792 1374 V 1868 1381 +a Fh(\000)1953 1361 y Fz(and)g Fx(N)p 2116 1374 V 2192 +1381 a Fp(+)2276 1361 y Fz(w)n(e)g(denote)g(the)h(restriction)e(of)h +Fx(N)p 3309 1374 V 38 w Fz(to)g Fx(K)3588 1373 y Fp(+)3672 +1361 y Fz(and)g Fx(K)3906 1373 y Fh(\000)28 1460 y Fz(resp)r(ectiv)n +(ely)-7 b(.)50 b(Let)33 b Fx(e)713 1472 y Fp(+)798 1460 +y Fz(=)e Fx(F)947 1472 y Fp(+)1003 1460 y Fz(\()s(^)-45 +b Fx(e)1074 1472 y Fq(i)1101 1460 y Fz(\))33 b(and)f +Fx(e)1371 1472 y Fh(\000)1458 1460 y Fz(=)f Fx(F)1607 +1472 y Fh(\000)1663 1460 y Fz(\()s(^)-45 b Fx(e)1734 +1472 y Fq(j)1769 1460 y Fz(\).)52 b(W)-7 b(e)32 b(write)h +Fx(t)p 2241 1473 30 4 v 21 x Fp(+)2358 1460 y Fz(for)f(the)h(tangen)n +(tial)e(unit)i(v)n(ector)e(to)i Fx(e)p Fz(,)g(orien)n(ted)28 +1560 y(coun)n(terclo)r(c)n(kwise)28 b(with)j(resp)r(ect)g(to)f +Fx(K)1318 1572 y Fp(+)1404 1560 y Fz(and)g Fx(t)p 1568 +1573 V 21 x Fh(\000)1682 1560 y Fz(=)e Fs(\000)p Fx(t)p +1840 1573 V 1869 1581 a Fp(+)1955 1560 y Fz(for)i(the)h(resp)r(ectiv)n +(e)f(from)g Fx(K)2890 1572 y Fh(\000)2946 1560 y Fz(.)46 +b(F)-7 b(or)30 b(line)h(in)n(tegrals)e(o)n(v)n(er)g(the)28 +1660 y(edge)d Fx(e)g Fz(w)n(e)g(write)613 1593 y Fl(R)652 +1689 y Fq(e)683 1697 y Fi(+)761 1660 y Fz(if)h(w)n(e)f(c)n(hose)g(the)g +(orien)n(tation)f(induced)i(b)n(y)f Fx(t)p 2160 1673 +V 20 x Fp(+)2272 1660 y Fz(and)2432 1593 y Fl(R)2472 +1689 y Fq(e)2503 1697 y Fe(\000)2583 1660 y Fz(for)g(the)h(orien)n +(tation)e(of)h Fx(e)g Fz(induced)h(b)n(y)f Fx(t)p 3852 +1673 V 20 x Fh(\000)3938 1660 y Fz(.)28 1775 y(In)c(order)f(to)h +(obtain)g(an)g Fx(H)7 b Fz(\(curl)o(;)14 b(\012\)-conforming)21 +b(metho)r(d,)j(prop)r(osition)e(1)f(tells)i(us)f(that)g(w)n(e)g(m)n +(ust)h(ensure)e(the)i(con)n(tin)n(uit)n(y)28 1874 y(of)k(the)h(tangen)n +(tial)f(comp)r(onen)n(ts)g(of)g(the)h(global)f(shap)r(e)g(functions,)h +(that)g(is)1572 2057 y Fx(N)p 1572 2070 76 4 v 1648 2078 +a Fp(+)1722 2057 y Fs(\001)18 b Fx(t)p 1763 2070 30 4 +v 21 x Fp(+)1867 2057 y Fz(+)g Fx(N)p 1950 2070 76 4 +v 2025 2078 a Fh(\000)2100 2057 y Fs(\001)g Fx(t)p 2141 +2070 30 4 v 21 x Fh(\000)2251 2057 y Fz(=)k(0)14 b Fx(:)1397 +b Fz(\(26\))28 2240 y(The)30 b(follo)n(wing)f(lemma)i(will)f(justify)h +(the)g(c)n(hoice)f(of)g(the)h(momen)n(ts)f(describing)f(the)i(edge)f +(dofs.)45 b(A)30 b(consequence)g(of)g(the)28 2339 y(lemma)e(will)h(b)r +(e,)g(that)g(the)g(matc)n(hing)f(of)h(the)g(lo)r(cal)f(edge)g(dofs)g +Fx(\013)2133 2309 y Fp([)p Fq(K)2208 2317 y Fi(+)2255 +2309 y Fp(])2307 2339 y Fz(and)g Fx(\013)2522 2309 y +Fp([)p Fq(K)2597 2317 y Fe(\000)2646 2309 y Fp(])2698 +2339 y Fz(guaran)n(tees)e(the)j(p)r(oin)n(t)n(wise)g(condition)28 +2439 y(\(26\).)28 2613 y Fn(Lemma)e Fz(2)45 b Fm(L)l(et)584 +2592 y Fz(^)562 2613 y Fx(K)33 b Fm(denote)28 b(the)g(r)l(efer)l(enc)l +(e)g(triangle)h(and)i Fz(^)-45 b Fx(e)28 b Fm(one)g(of)g(its)g(e)l +(dges,)i(p)l(ar)l(ametrize)l(d)f(by)i Fz(^)-45 b Fx(e)23 +b Fs(3)28 b Fz(^)-47 b Fx(x)q Fz(\()p Fx(s)p Fz(\))23 +b(:=)g Fx(a)p 3565 2626 44 4 v 14 w Fz(+)14 b Fx(s)3749 +2598 y Fz(^)3755 2613 y Fx(t)p 3755 2626 30 4 v Fm(.)38 +b(L)l(et)28 2713 y Fz(^)-42 b Fx(p)p 28 2742 42 4 v 22 +w Fs(2)24 b(S)227 2683 y Fq(k)268 2713 y Fm(,)30 b Fs(S)379 +2683 y Fq(k)450 2713 y Fm(as)g(de\014ne)l(d)h(in)e(\(4\).)39 +b(It)30 b(then)f(holds)1658 2910 y Fz(\(^)-42 b Fx(p)p +1690 2939 V 18 w Fs(\001)1786 2895 y Fz(^)1792 2910 y +Fx(t)p 1792 2923 30 4 v Fz(\))p Fs(j)1880 2922 y Fp(^)-36 +b Fq(e)1936 2910 y Fs(2)23 b Fr(P)2066 2922 y Fq(k)q +Fh(\000)p Fp(1)2191 2910 y Fz(\()s(^)-45 b Fx(e)p Fz(\))14 +b Fx(:)28 3093 y Fn(Pr)n(oof.)704 3251 y Fz(^)-42 b Fx(p)p +704 3280 42 4 v 23 w Fs(2)23 b(S)903 3216 y Fq(k)1051 +3251 y Fz(=)-14 b Fs(\))105 b Fz(for)28 b Fx(i)22 b Fz(=)h(1)p +Fx(;)14 b Fz(2)p Fx(;)g Fz(3)21 b(:)113 b(^)-49 b Fx(p)1949 +3263 y Fq(i)1977 3251 y Fz(\()5 b(^)-47 b Fx(x)q Fz(\))23 +b(=)2240 3147 y Fp(3)2204 3172 y Fl(Y)2200 3348 y Fq(j)s +Fp(=1)2334 3251 y Fz(^)-48 b Fx(x)2375 3206 y Fq(k)2410 +3214 y Ff(ij)2375 3274 y Fq(j)2482 3251 y Fx(;)97 b Fz(where)2899 +3147 y Fp(3)2856 3172 y Fl(X)2858 3348 y Fq(j)s Fp(=1)2990 +3251 y Fx(k)3033 3263 y Fq(ij)3114 3251 y Fz(=)23 b Fx(k)17 +b(:)28 3488 y Fz(Hence,)27 b(with)h(the)g(parametrization)e(of)31 +b(^)-45 b Fx(e)27 b Fz(b)n(y)33 b(^)-48 b Fx(x)q Fz(\()p +Fx(s)p Fz(\))1073 3750 y(^)f Fx(p)1108 3762 y Fq(i)1135 +3750 y Fz(\()5 b(^)-47 b Fx(x)q Fz(\()p Fx(s)p Fz(\)\))24 +b(=)1502 3646 y Fp(3)1466 3671 y Fl(Y)1461 3848 y Fq(j)s +Fp(=1)1576 3750 y Fz(\()p Fx(a)1652 3762 y Fq(j)1706 +3750 y Fz(+)18 b Fx(s)1843 3735 y Fz(^)1842 3750 y Fx(t)1872 +3762 y Fq(j)1907 3750 y Fz(\))1939 3716 y Fq(k)1974 3724 +y Ff(ij)2055 3750 y Fz(=)k Fx(s)2181 3716 y Fq(k)2291 +3646 y Fp(3)2254 3671 y Fl(Y)2250 3848 y Fq(j)s Fp(=1)2380 +3735 y Fz(^)2378 3750 y Fx(t)2408 3705 y Fq(k)2443 3713 +y Ff(ij)2408 3773 y Fq(j)2519 3750 y Fz(+)32 b(^)-56 +b Fx(')2656 3762 y Fq(k)q Fh(\000)p Fp(1)2783 3750 y +Fz(\()p Fx(s)p Fz(\))14 b Fx(;)28 4021 y Fz(with)41 b(^)-55 +b Fx(')271 4033 y Fq(k)q Fh(\000)p Fp(1)397 4021 y Fz(\()p +Fx(s)p Fz(\))23 b Fs(2)h Fr(P)654 4033 y Fq(k)q Fh(\000)p +Fp(1)778 4021 y Fz(\()s(^)-45 b Fx(e)p Fz(\),)28 b(and)1246 +4220 y(\(^)-42 b Fx(p)p 1278 4250 V 18 w Fs(\001)1374 +4205 y Fz(^)1380 4220 y Fx(t)p 1380 4233 30 4 v Fz(\))p +Fs(j)1468 4232 y Fp(^)-36 b Fq(e)1524 4220 y Fz(=)23 +b Fx(s)1651 4186 y Fq(k)1762 4117 y Fp(3)1719 4142 y +Fl(X)1725 4318 y Fq(i)p Fp(=1)1854 4205 y Fz(^)1853 4220 +y Fx(t)1883 4232 y Fq(i)1924 4054 y Fl(0)1924 4203 y(@)2038 +4117 y Fp(3)2001 4142 y Fl(Y)1997 4318 y Fq(j)s Fp(=1)2127 +4205 y Fz(^)2126 4220 y Fx(t)2156 4175 y Fq(k)2191 4183 +y Ff(ij)2156 4244 y Fq(j)2248 4054 y Fl(1)2248 4203 y(A)2339 +4220 y Fz(+)32 b(^)-56 b Fx(')2476 4232 y Fq(k)q Fh(\000)p +Fp(1)2602 4220 y Fz(\()p Fx(s)p Fz(\))14 b Fx(:)28 4480 +y Fz(W)-7 b(e)25 b(observ)n(e)e(that)i(the)g(co)r(e\016cien)n(t)g(of)f +Fx(s)1293 4450 y Fq(k)1359 4480 y Fz(is)g(exactly)h(^)-42 +b Fx(p)p 1723 4510 42 4 v -1 w Fz(\()1790 4465 y(^)1796 +4480 y Fx(t)p 1796 4493 30 4 v 1 w Fz(\))13 b Fs(\001)1902 +4465 y Fz(^)1908 4480 y Fx(t)p 1908 4493 V -1 w Fz(.)36 +b(By)25 b(the)g(de\014nition)g(of)g(the)g(space)f Fs(S)3137 +4450 y Fq(k)3178 4480 y Fz(,)i(this)f(expression)e(m)n(ust)28 +4580 y(v)-5 b(anish.)3897 4754 y Fg(\003)28 4953 y Fn(Remark)28 +b Fz(5)45 b Fm(In)29 b(the)g(c)l(ase)h(of)1013 4932 y +Fz(^)991 4953 y Fx(K)k Fm(b)l(eing)c(a)g(quadrilater)l(al,)h(we)f(have) +2217 4932 y Fz(^)2199 4953 y Fx(R)24 b Fz(=)f Fs(P)2439 +4923 y Fq(k)2479 4953 y Fm(.)39 b(By)30 b(the)f(de\014nition)h(of)g +Fs(P)3341 4923 y Fq(k)3411 4953 y Fm(we)f(se)l(e)g(imme)l(di-)28 +5053 y(ately)h(that)g(her)l(e)g(also)h Fz(\()q(^)-43 +b Fx(v)p 778 5066 44 4 v 22 w Fs(\001)876 5038 y Fz(^)881 +5053 y Fx(t)p 881 5066 30 4 v Fz(\))p Fs(j)969 5065 y +Fp(^)-36 b Fq(e)1025 5053 y Fs(2)24 b Fr(P)1156 5065 +y Fq(k)q Fh(\000)p Fp(1)1280 5053 y Fz(\()s(^)-45 b Fx(e)p +Fz(\))p Fm(.)28 5252 y Fz(The)25 b(next)h(prop)r(osition)e(tells)i(us)f +(ho)n(w)g(exactly)g(to)g(de\014ne)h(elemen)n(t)f(shap)r(e)h(functions)f +(on)h(a)f(mapp)r(ed)g(elemen)n(t)h Fx(K)31 b Fz(in)26 +b(order)28 5352 y(to)h(get)g Fx(H)7 b Fz(\(curl;)14 b +(\012\)-conforming)26 b(global)h(shap)r(e)g(functions.)1949 +5719 y Fk(14)p eop +%%Page: 15 15 +15 14 bop 28 212 a Fn(Pr)n(oposition)27 b Fz(8)45 b Fm(Condition)38 +b(\(26\))f(is)f(saties\014e)l(d,)j(if)f(we)e(de\014ne)h(the)f(element)g +(shap)l(e)i(functions)e Fx(N)p 3235 225 76 4 v 3311 232 +a Fp(+)3402 212 y Fm(and)h Fx(N)p 3570 225 V 3646 232 +a Fh(\000)3738 212 y Fm(by)g(the)28 311 y(Piola)31 b(tr)l(ansformation) +g(\(10\))f(and)g(take)g(into)g(ac)l(c)l(ount)g(the)f(orientation)i(of)g +(the)f(e)l(dge)g Fx(e)p Fm(:)786 494 y Fx(N)p 786 507 +V 862 515 a Fp(+)940 494 y Fz(:=)23 b Fs(P)1109 506 y +Fp(+)1164 494 y Fz(\()1213 473 y(^)1196 494 y Fx(N)p +1196 507 V 1272 515 a Fq(i)1299 494 y Fz(\))h(=)1462 +473 y(^)1442 494 y Fx(D)r(F)1578 458 y Fh(\000)p Fq(T)1566 +515 y Fp(+)1700 473 y Fz(^)1683 494 y Fx(N)p 1683 507 +V 1758 515 a Fq(i)1800 494 y Fx(;)183 b(N)p 2006 507 +V 2082 515 a Fh(\000)2161 494 y Fz(:=)23 b Fs(\000)14 +b(P)2409 506 y Fh(\000)2464 494 y Fz(\()2514 473 y(^)2496 +494 y Fx(N)p 2496 507 V 2572 515 a Fq(j)2607 494 y Fz(\))24 +b(=)e Fs(\000)2834 473 y Fz(^)2815 494 y Fx(D)r(F)2951 +458 y Fh(\000)p Fq(T)2939 515 y Fh(\000)3072 473 y Fz(^)3055 +494 y Fx(N)p 3055 507 V 3131 515 a Fq(j)3179 494 y Fx(:)612 +b Fz(\(27\))28 696 y Fn(Pr)n(oof.)40 b Fz(Let)526 675 +y(^)504 696 y Fx(K)33 b Fz(b)r(e)28 b(the)f(reference)g(elemen)n(t)h +(and)f Fx(K)33 b Fz(its)28 b(a\016ne)f(or)g(bilinear)g(image.)36 +b(Let)28 b Fx(v)p 2944 709 44 4 v 26 w Fz(:=)23 b Fs(P)3179 +708 y Fq(K)3242 696 y Fz(\()q(^)-43 b Fx(v)p 3274 709 +V 4 w Fz(\))28 b(b)r(e)g(a)f(v)n(ector)f(\014eld)28 796 +y(on)j Fx(K)6 b Fz(,)29 b(de\014ned)h(b)n(y)f(the)h(Piola)e +(transformation)f(of)j(a)f(reference)f(v)n(ector)g(\014eld)j(^)-43 +b Fx(v)p 2557 809 V 29 w Fs(2)2725 775 y Fz(^)2707 796 +y Fx(R)q Fz(.)42 b(Let)30 b Fx(e)f Fz(b)r(e)h(one)f(of)g(the)h(edges)e +(of)i Fx(K)28 895 y Fz(and)d Fx(t)p 189 908 30 4 v 28 +w Fz(the)h(tangen)n(t)f(according)f(to)h(con)n(v)n(en)n(tion)f(1.)28 +995 y(In)f(the)h(case)f(of)558 974 y(^)536 995 y Fx(K)31 +b Fz(b)r(eing)26 b(a)f(triangle,)g(w)n(e)h(ha)n(v)n(e)1581 +974 y(^)1563 995 y Fx(R)e Fz(=)e Fs(R)1807 965 y Fq(k)1848 +995 y Fz(.)37 b(By)25 b(the)h(de\014nition)g(of)f(the)h(space)f +Fs(R)3067 965 y Fq(k)3108 995 y Fz(,)h(lemma)g(2)f(and)g(1)h(w)n(e)f +(can)28 1095 y(conclude)i(that)h(\()p Fx(v)p 581 1108 +44 4 v 22 w Fs(\001)18 b Fx(t)p 684 1108 30 4 v Fz(\))p +Fs(j)769 1107 y Fq(e)828 1095 y Fs(2)24 b Fr(P)959 1107 +y Fq(k)q Fh(\000)p Fp(1)1083 1095 y Fz(\()p Fx(e)p Fz(\).)28 +1194 y(If)133 1173 y(^)111 1194 y Fx(K)33 b Fz(is)27 +b(a)g(quadrilateral,)f(the)i(previous)f(remark)f(and)h(1)g(also)g(tell) +h(us)f(that)h(\()p Fx(v)p 2498 1207 44 4 v 22 w Fs(\001)19 +b Fx(t)p 2602 1207 30 4 v Fz(\))p Fs(j)2687 1206 y Fq(e)2746 +1194 y Fs(2)k Fr(P)2876 1206 y Fq(k)q Fh(\000)p Fp(1)3001 +1194 y Fz(\()p Fx(e)p Fz(\).)28 1294 y(Hence)k(the)h(condition)1048 +1302 y Fl(Z)1094 1491 y Fq(e)1125 1499 y Fi(+)1190 1348 +y Fl(\000)1228 1415 y Fz(\()p Fx(N)p 1260 1428 76 4 v +1336 1436 a Fp(+)1410 1415 y Fs(\001)18 b Fx(t)p 1451 +1428 30 4 v 21 x Fp(+)1537 1415 y Fz(\))g(+)g(\()p Fx(N)p +1702 1428 76 4 v 1778 1436 a Fh(\000)1853 1415 y Fs(\001)g +Fx(t)p 1894 1428 30 4 v 21 x Fh(\000)1980 1415 y Fz(\))2012 +1348 y Fl(\001)2078 1415 y Fx(')c(ds)g(;)180 b Fs(8)14 +b Fx(')23 b Fs(2)g Fr(P)2713 1427 y Fq(k)q Fh(\000)p +Fp(1)2838 1415 y Fz(\()p Fx(e)p Fz(\))28 1626 y(on)k(the)h(edge)f +(momen)n(ts)g(is)h(su\016cien)n(t)f(for)h(the)g(global)e(edge)h(shap)r +(e)g(functions)h(to)g(satiesfy)f(\(26\).)37 b(Note)27 +b(that)28 1659 y Fl(R)67 1755 y Fq(e)98 1763 y Fi(+)149 +1726 y Fz(\()p Fx(N)p 181 1739 76 4 v 257 1747 a Fh(\000)323 +1726 y Fs(\001)9 b Fx(t)p 355 1739 30 4 v 21 x Fh(\000)441 +1726 y Fz(\))14 b Fx(')g(ds)24 b Fz(=)e Fs(\000)827 1659 +y Fl(R)866 1755 y Fq(e)897 1763 y Fe(\000)951 1726 y +Fz(\()p Fx(N)p 983 1739 76 4 v 1059 1747 a Fh(\000)1124 +1726 y Fs(\001)9 b Fx(t)p 1156 1739 30 4 v 1187 1747 +a Fh(\000)1243 1726 y Fz(\))14 b Fx(')g(ds)p Fz(.)36 +b(So,)24 b(b)n(y)e(the)i(de\014nition)f(\(27\))g(of)g(the)h(elemen)n(t) +f(shap)r(e)g(functions)g(on)g Fx(K)3712 1738 y Fp(+)3790 +1726 y Fz(resp.)28 1841 y(on)31 b Fx(K)218 1853 y Fh(\000)273 +1841 y Fz(,)i(b)n(y)e(the)h(in)n(v)-5 b(ariance)30 b(of)h(the)h(dofs)g +(\(prop)r(osition)e(7\))i(and)f(b)n(y)g(the)h(de\014nition)g(of)f(the)h +(reference)f(shap)r(e)g(functions)28 1941 y(\(example)c(3\))g(w)n(e)h +(ha)n(v)n(e)227 2053 y Fl(Z)273 2242 y Fq(e)304 2250 +y Fi(+)355 2166 y Fz(\()p Fx(N)p 387 2179 76 4 v 463 +2187 a Fp(+)537 2166 y Fs(\001)18 b Fx(t)p 578 2179 30 +4 v 21 x Fp(+)663 2166 y Fz(\))p Fx(')c(ds)24 b Fz(=)957 +2053 y Fl(Z)1006 2242 y Fp(^)-36 b Fq(e)1034 2250 y Ff(i)1065 +2166 y Fz(\()1114 2145 y(^)1097 2166 y Fx(N)p 1097 2179 +76 4 v 1173 2187 a Fq(i)1219 2166 y Fs(\001)1255 2151 +y Fz(^)1260 2166 y Fx(t)p 1260 2179 30 4 v 21 x Fq(i)1318 +2166 y Fz(\))13 b(^)-55 b Fx(')15 b(d)s Fz(^)-45 b Fx(s)23 +b Fz(=)f(1)166 b(and)2133 2053 y Fl(Z)2179 2242 y Fq(e)2210 +2250 y Fe(\000)2263 2166 y Fz(\()p Fx(N)p 2295 2179 76 +4 v 2371 2187 a Fh(\000)2446 2166 y Fs(\001)18 b Fx(t)p +2487 2179 30 4 v 21 x Fh(\000)2573 2166 y Fz(\))p Fx(')c(ds)24 +b Fz(=)f Fs(\000)2946 2053 y Fl(Z)2994 2242 y Fp(^)-36 +b Fq(e)3022 2250 y Ff(j)3058 2166 y Fz(\()3107 2145 y(^)3090 +2166 y Fx(N)p 3090 2179 76 4 v 3166 2187 a Fq(j)3219 +2166 y Fs(\001)3255 2151 y Fz(^)3261 2166 y Fx(t)p 3261 +2179 30 4 v 21 x Fq(j)3326 2166 y Fz(\))13 b(^)-55 b +Fx(')14 b(d)s Fz(^)-45 b Fx(s)24 b Fz(=)e Fs(\000)p Fz(1)14 +b Fx(:)3897 2405 y Fg(\003)28 2580 y Fz(T)-7 b(o)22 b(close)f(this)i +(section,)g(let)g(us)f(mak)n(e)g(a)g(note)g(on)g(the)h(in)n +(terpretation)f(of)g(the)h(dofs)f(on)g(an)g(elemen)n(t)h +Fx(K)28 b Fz(in)23 b(the)f(case)g(of)g(lo)n(w)n(est)28 +2679 y(order)28 b(p)r(olynomial)h(degree.)41 b(In)30 +b(this)g(case,)f(all)g(dofs)h(are)e(edge)h(dofs,)h(the)g(degrees)f(of)g +(freedom)g(are)37 b(^)-50 b Fx(\013)3315 2691 y Fq(j)3350 +2679 y Fz(\()q(^)-43 b Fx(v)p 3382 2692 44 4 v 3 w Fz(\))27 +b(=)3575 2612 y Fl(R)3617 2709 y Fp(^)-36 b Fq(e)3645 +2717 y Ff(j)3695 2679 y Fz(^)-42 b Fx(v)p 3695 2692 V +23 w Fs(\001)3795 2664 y Fz(^)3800 2679 y Fx(t)p 3800 +2692 30 4 v 21 x Fq(j)3879 2679 y Fx(d)s Fz(^)d Fx(s)28 +2812 y Fz(and)25 b(the)h(tangen)n(tial)e(traces)h(of)g(shap)r(e)h +(functions)f(are)g(constan)n(t)g(on)g(eac)n(h)f(edge.)36 +b(Since)26 b(w)n(e)f(require)33 b(^)-51 b Fx(\013)3286 +2824 y Fq(j)3321 2812 y Fz(\()3371 2791 y(^)3353 2812 +y Fx(N)p 3353 2825 76 4 v 3429 2833 a Fq(i)3457 2812 +y Fz(\))23 b(=)g Fx(\016)3637 2824 y Fq(ij)3721 2812 +y Fz(for)i(the)28 2912 y(reference)h(shap)r(e)i(functions,)g(w)n(e)f +(ha)n(v)n(e)1258 3094 y Fx(v)1298 3106 y Fq(j)1356 3094 +y Fz(=)k(^)-50 b Fx(\013)1497 3106 y Fq(j)1532 3094 y +Fz(\()q(^)-43 b Fx(v)p 1564 3107 44 4 v 4 w Fz(\))23 +b(=)g(\()1800 3073 y(^)1783 3094 y Fx(N)p 1783 3107 76 +4 v 1859 3115 a Fq(j)1912 3094 y Fs(\001)1948 3079 y +Fz(^)1954 3094 y Fx(t)p 1954 3107 30 4 v -1 w Fz(\))14 +b Fs(j)s Fz(^)-45 b Fx(e)2091 3106 y Fq(j)2126 3094 y +Fs(j)23 b Fz(=)g(\()p Fx(N)p 2292 3107 76 4 v 2368 3115 +a Fq(j)2422 3094 y Fs(\001)18 b Fx(t)p 2463 3107 30 4 +v 21 x Fq(j)2528 3094 y Fz(\))c Fs(j)p Fx(e)2636 3106 +y Fq(j)2671 3094 y Fs(j)g Fx(;)28 3277 y Fz(where)29 +b(for)h(the)g(last)g(equalit)n(y)g(w)n(e)g(ha)n(v)n(e)e(used)j(lemma)f +(1.)44 b(W)-7 b(e)30 b(see)g(that)h(the)f(dof)g Fx(\013)2720 +3289 y Fq(j)2755 3277 y Fz(\()p Fx(v)p 2787 3290 44 4 +v 4 w Fz(\))h('sitting')f(on)g(the)g(edge)g Fx(e)3695 +3289 y Fq(j)3760 3277 y Fz(is)g(the)28 3377 y(v)-5 b(alue)27 +b(of)h(the)g Fm(sc)l(ale)l(d)37 b Fz(tangen)n(tial)26 +b(comp)r(onen)n(t)i Fs(j)p Fx(e)1600 3389 y Fq(j)1635 +3377 y Fs(j)1672 3309 y Fl(\000)1709 3377 y Fx(v)p 1709 +3390 V 22 w Fs(\001)19 b Fx(t)p 1813 3390 30 4 v 20 x +Fq(j)1878 3309 y Fl(\001)1930 3377 y Fs(j)1953 3389 y +Fq(e)1988 3377 y Fz(.)28 3651 y Fn(Remark)28 b Fz(6)45 +b Fm(F)-6 b(or)36 b(the)h(invarianc)l(e)h(of)f(the)g(e)l(dge)g(dofs)h +(it)e(is)h(essential)g(that)g(the)f(moments)g Fx(\013)3071 +3621 y Fp([)p Fq(K)t Fp(])3210 3651 y Fm(on)g Fx(K)42 +b Fm(ar)l(e)37 b(de\014ne)l(d)g(by)28 3759 y(using)c(the)40 +b Fz(unit)34 b Fm(tangent)f(ve)l(ctor)h Fx(t)p 1129 3772 +V 30 w Fz(=)1293 3719 y Fh(j)s Fp(^)-36 b Fq(e)p Fh(j)p +1293 3740 71 4 v 1293 3788 a(j)p Fq(e)p Fh(j)1388 3759 +y Fz(\()1440 3738 y(^)1420 3759 y Fx(D)r(F)12 b Fz(\))1596 +3744 y(^)1602 3759 y Fx(t)p 1602 3772 30 4 v 34 w Fm(on)33 +b Fx(K)6 b Fm(.)50 b(If)34 b(not,)g(e.)h(g.)f(if)g(we)g(just)f(use)l(d) +h(the)f(tangent)3403 3744 y Fz(~)3409 3759 y Fx(t)p 3409 +3772 V 30 w Fz(=)d(\()3615 3738 y(^)3596 3759 y Fx(D)r(F)12 +b Fz(\))3772 3744 y(^)3778 3759 y Fx(t)p 3778 3772 V +Fm(,)35 b(we)28 3868 y(would)d(lose)h(the)f(invarianc)l(e)h(of)g(the)f +(dofs.)47 b(In)32 b(that)g(c)l(ase)g(the)g(dofs)h(would)g(sc)l(ale)g +(by)f(a)g(factor)h(dep)l(ending)h(on)e(the)g(size)g(of)28 +3968 y(the)d(e)l(dge)i(or)f(fac)l(e)h(\([8)q(],)f(r)l(emark)g(on)g(p.)h +(326\).)28 4296 y Fv(2.5)112 b Fo(Appro)m(ximation)35 +b(and)f(con)m(v)m(ergence)j(results)28 4450 y Fz(Without)d(going)e(in)n +(to)h(details,)i(w)n(e)e(will)g(cite)h(here)f(some)f(results)h(on)g +(appro)n(ximation)f(prop)r(erties)g(and)h(con)n(v)n(ergence)e(of)28 +4549 y(N)n(\023)-39 b(ed)n(\023)g(elec)25 b(FEM)j(of)f(\014rst)h(t)n +(yp)r(e.)28 4649 y(W)-7 b(e)21 b(are)g(in)h(the)g(setting)f(of)h(a)f +Fm(c)l(onforming)30 b Fz(FEM)21 b(and)h(ha)n(v)n(e)e(quasi-optimal)g +(appro)n(ximation)g(prop)r(erties)h(of)g(the)h(FE-spaces)28 +4749 y Fx(V)76 4761 y Fq(h)142 4749 y Fs(\032)h Fx(H)7 +b Fz(\(curl)o(;)14 b(\012\))1150 4848 y Fs(k)p Fx(u)p +1192 4861 48 4 v 17 w Fs(\000)k Fz(\005)1402 4814 y Fq(k)1402 +4869 y(h)1446 4848 y Fx(u)p 1446 4861 V -1 w Fs(k)1535 +4863 y Fq(H)t Fp(\(curl)o(;\012\))1850 4848 y Fz(=)k +Fx(C)70 b Fz(inf)2030 4902 y Fq(w)r Fh(2)p Fq(V)2164 +4911 y Ff(h)2216 4848 y Fs(k)p Fx(u)p 2258 4861 V 18 +w Fs(\000)18 b Fx(w)p 2407 4861 62 4 v 2 w Fs(k)2510 +4863 y Fq(H)t Fp(\(curl;\012\))2816 4848 y Fx(;)28 5047 +y Fz(where)33 b(\005)336 5017 y Fq(k)336 5071 y(h)379 +5047 y Fx(u)p 379 5060 48 4 v 34 w Fs(2)h(R)620 5017 +y Fq(k)695 5047 y Fz(or)f(\005)865 5017 y Fq(k)865 5071 +y(h)909 5047 y Fx(u)p 909 5060 V 33 w Fs(2)h(P)1144 5017 +y Fq(k)1219 5047 y Fz(resp)r(ectiv)n(ely)-7 b(,)35 b(denotes)f(the)g +(in)n(terp)r(olate)f(of)h Fx(u)p 2679 5060 V 34 w Fz(with)h(regard)d +(to)i(the)g(N)n(\023)-39 b(ed)n(\023)g(elec)32 b(dofs:)28 +5147 y Fx(\013)p Fz(\()p Fx(u)p 113 5160 V Fz(\))26 b(=)f +Fx(\013)p Fz(\(\005)456 5117 y Fq(k)456 5171 y(h)500 +5147 y Fx(u)p 500 5160 V Fz(\))30 b(for)e(all)h(dofs)h +Fx(\013)p Fz(.)42 b(The)30 b(in)n(terp)r(olation)e(op)r(erator)g(\005) +2216 5117 y Fq(k)2216 5171 y(h)2288 5147 y Fz(is)h(de\014ned)h(for)f +(su\016cien)n(tly)g(smo)r(oth)g(v)n(ector)f(\014elds,)28 +5247 y(namely)f(for)g(all)g Fx(v)p 558 5260 44 4 v 27 +w Fs(2)c Fx(H)779 5217 y Fq(r)815 5247 y Fz(\(curl\))28 +b(for)f(an)n(y)g Fx(r)f(>)1491 5214 y Fp(1)p 1491 5228 +34 4 v 1491 5275 a(2)1561 5247 y Fz(\(see)i([1)o(],)g(Lemma)g(5.1.,)e +([7])i(and)f(references)g(therein\).)28 5346 y(F)-7 b(or)27 +b(N)n(\023)-39 b(ed)n(\023)g(elec's)25 b(FEM)j(of)f(\014rst)g(t)n(yp)r +(e)h(w)n(e)f(state)h(\(without)g(pro)r(of)6 b(\))28 b(the)g(follo)n +(wing)e(optimal)i(estimate)f(in)h(the)g(curl-norm:)1949 +5719 y Fk(15)p eop +%%Page: 16 16 +16 15 bop 28 220 a Fn(Theorem)28 b Fz(5)45 b Fm(If)31 +b Fs(T)649 232 y Fq(h)692 220 y Fm(,)g Fx(h)25 b(>)f +Fz(0)p Fm(,)31 b(is)g(a)g(r)l(e)l(gular)g(family)h(of)g(triangulations) +f(on)g Fz(\012)f Fm(and)h Fx(r)d(>)2866 187 y Fp(1)p +2866 201 34 4 v 2866 248 a(2)2909 220 y Fm(,)j(then)g(ther)l(e)g +(exists)f(a)h(c)l(onstant)28 319 y Fx(C)e(>)23 b Fz(0)p +Fm(,)29 b(dep)l(ending)i(on)f Fx(r)j Fm(but)c(not)g(on)h +Fx(h)f Fm(or)i Fx(v)p 1465 332 44 4 v 3 w Fm(,)f(such)g(that)1163 +495 y Fs(k)p Fx(v)p 1205 508 V 22 w Fs(\000)18 b Fz(\005)1412 +461 y Fq(k)1412 515 y(h)1455 495 y Fx(v)p 1455 508 V +3 w Fs(k)1540 510 y Fq(H)t Fp(\(curl)o(;\012\))1855 495 +y Fs(\024)k Fx(C)e(h)2069 461 y Fp(min)o Fh(f)p Fq(r)n(;k)q +Fh(g)2337 495 y Fs(k)p Fx(v)p 2379 508 V 3 w Fs(k)2464 +510 y Fq(H)2522 493 y Ff(r)2555 510 y Fp(\(curl)o(;\012\))2802 +495 y Fx(;)989 b Fz(\(28\))28 671 y Fm(for)30 b(al)t(l)h +Fx(v)p 279 684 V 26 w Fs(2)24 b Fx(H)500 641 y Fq(r)536 +671 y Fz(\(curl;)14 b(\012\))p Fm(.)28 838 y Fz(The)27 +b(result)f(in)i(\(28\))f(w)n(as)f(obtained)g(b)n(y)h(Alonso)g(and)g(V) +-7 b(alli)27 b(in)g([1],)g(extending)g(earlier)f(in)n(terp)r(olation)g +(results)g(b)n(y)h(N)n(\023)-39 b(ed)n(\023)g(elec)28 +938 y(in)27 b([8])h(and)f(Monk)g(in)h([6].)28 1037 y(Optimal)34 +b(con)n(v)n(ergence)f(in)i(the)h Fx(H)7 b Fz(\(curl)o(;)14 +b(\012\)-norm)35 b(for)f(the)h(error)e(of)i(the)h(FE-appro)n(ximation)c +(of)j(the)h(mo)r(del)f(problem)28 1137 y(\(3\))f(b)n(y)f(N)n(\023)-39 +b(ed)n(\023)g(elec's)32 b(elemen)n(ts)h(of)h(\014rst)g(t)n(yp)r(e)g +(follo)n(ws)e(from)i(\(28\))f(b)n(y)h(C)n(\023)-39 b(ea's)32 +b(lemma.)55 b(This)34 b(result)g(has)f(b)r(een)h(v)n(eri\014ed)f(in)28 +1237 y(n)n(umerical)h(exp)r(erimen)n(ts)g(with)h(a)g +Fd(MATLAB)d Fz(co)r(de,)37 b(whic)n(h)e(uses)f(lo)n(w)n(est)g(order)f +(N)n(\023)-39 b(ed)n(\023)g(elec)33 b(elemen)n(ts)i(on)f(a\016ne)h +(triangular)28 1336 y(meshes)23 b(for)h(2d)g(problems,)g(as)f(w)n(ell)h +(as)f(with)i(a)f Fd(deal.II)d Fz(co)r(de,)k(whic)n(h)f(uses)f(lo)n(w)n +(est)g(order)g(N)n(\023)-39 b(ed)n(\023)g(elec)22 b(elemen)n(ts)i(on)g +(bilinear)28 1436 y(resp.)36 b(trilinear)27 b(meshes)g(for)g(2d)g +(resp.)36 b(3d)28 b(problems.)28 1535 y(As)36 b(for)g(the)h +Fx(L)504 1505 y Fp(2)540 1535 y Fz(\(\012\)-appro)n(ximation)e(prop)r +(erties)h(of)g(FE)g(spaces)f(based)h(on)g Fs(R)2602 1505 +y Fq(k)2680 1535 y Fz(or)f Fs(P)2855 1505 y Fq(k)2896 +1535 y Fz(,)k(w)n(e)d(could)g(hop)r(e)g(for)g(a)g(b)r(etter)28 +1635 y(order)25 b(than)j Fs(O)r Fz(\()p Fx(h)586 1605 +y Fq(k)627 1635 y Fz(\))g(at)f(\014rst)g(sigh)n(t:)36 +b(still,)27 b(w)n(e)g(ha)n(v)n(e)f([)p Fr(P)1764 1605 +y Fq(k)q Fh(\000)p Fp(1)1889 1635 y Fz(\()p Fx(K)6 b +Fz(\)])2053 1605 y Fq(d)2115 1635 y Fs(\022)22 b(R)2272 +1605 y Fq(k)2313 1635 y Fz(\()p Fx(K)6 b Fz(\).)37 b(Ho)n(w)n(ev)n(er,) +26 b(N)n(\023)-39 b(ed)n(\023)g(elec)25 b(sho)n(ws)h(in)h([8])g(that)h +(only)28 1735 y(sub)r(optimalit)n(y)f(can)g(b)r(e)h(exp)r(ected:)1421 +1834 y Fs(k)p Fx(v)p 1463 1847 V 21 w Fs(\000)18 b Fz(\005)1669 +1800 y Fq(k)1669 1855 y(h)1712 1834 y Fx(v)p 1712 1847 +V 4 w Fs(k)1798 1849 y Fq(L)1844 1833 y Fi(2)1875 1849 +y Fp(\(\012\))2002 1834 y Fs(\024)k Fx(C)6 b(h)2202 1800 +y Fq(k)2243 1834 y Fs(j)p Fx(v)p 2266 1847 V 3 w Fs(j)2332 +1851 y Fq(H)2390 1835 y Ff(k)2428 1851 y Fp(\(\012\))2545 +1834 y Fx(:)1246 b Fz(\(29\))28 1990 y(N)n(\023)-39 b(ed)n(\023)g(elec) +24 b(uses)i(a)g(standard)f(scaling)h(and)g(Bram)n(ble-Hilb)r(ert)f +(argumen)n(t)h(to)g(deriv)n(e)g(\(29\).)36 b(Since)26 +b([)p Fr(P)3183 1960 y Fq(k)q Fh(\000)p Fp(1)3308 1990 +y Fz(\()p Fx(K)6 b Fz(\)])3472 1960 y Fq(d)3534 1990 +y Fs(\022)22 b(R)3691 1960 y Fq(k)3733 1990 y Fz(\()p +Fx(K)6 b Fz(\))23 b Fr(\()28 2090 y Fz([)p Fr(P)103 2060 +y Fq(k)142 2090 y Fz(\()p Fx(K)6 b Fz(\)])306 2060 y +Fq(d)345 2090 y Fz(,)24 b(the)g(Bram)n(ble-Hilb)r(ert)e(argumen)n(t)g +(only)h(guaran)n(tees)e(an)i(elemen)n(t)n(wise)g(appro)n(ximation)e(of) +j(order)e Fx(k)k Fz(of)d Fx(H)3752 2060 y Fq(k)3793 2090 +y Fz(\()p Fx(K)6 b Fz(\)-)28 2189 y(functions)27 b(from)h(the)g(space)f +Fs(R)1017 2159 y Fq(k)1058 2189 y Fz(\()p Fx(K)6 b Fz(\).)28 +2289 y(Ho)n(w)n(ev)n(er,)22 b(in)j(a)e(recen)n(t)h(pap)r(er)f(Hiptmair) +i(uses)e(a)h(dualit)n(y)g(tec)n(hnique)g(to)g(state)f(optimal)h(con)n +(v)n(ergence)e(of)i(the)g Fx(L)3596 2259 y Fp(2)3633 +2289 y Fz(\(\012\)-error)28 2389 y Fs(k)p Fx(u)p 70 2402 +48 4 v 6 w Fs(\000)8 b Fx(u)p 197 2402 V 244 2409 a Fq(h)287 +2389 y Fs(k)329 2404 y Fq(L)375 2387 y Fi(2)407 2404 +y Fp(\(\012\))533 2389 y Fz(for)21 b(the)i(3d)f(case)f(and)i(N)n(\023) +-39 b(ed)n(\023)g(elec's)20 b(elemen)n(ts)i(of)g(\014rst)g(t)n(yp)r(e)h +(of)f(order)f Fx(k)k Fz(on)d(tetrahedral)f(meshes)h(\(see)g(Section)28 +2488 y(5.3,)k(Theorem)h(5.8)g(in)h([5)o(]\):)28 2656 +y Fn(Theorem)g Fz(6)45 b Fm(Ther)l(e)30 b(is)h(an)e Fx(s)23 +b(>)1122 2623 y Fp(1)p 1122 2637 34 4 v 1122 2684 a(2)1195 +2656 y Fm(such)30 b(that)1287 2831 y Fs(k)p Fx(u)p 1329 +2844 48 4 v 18 w Fs(\000)18 b Fx(u)p 1478 2844 V 1525 +2852 a Fq(h)1568 2831 y Fs(k)1610 2846 y Fq(L)1656 2830 +y Fi(2)1688 2846 y Fp(\(\012\))1814 2831 y Fs(\024)23 +b Fx(C)6 b(h)2015 2797 y Fq(s)2050 2831 y Fs(k)p Fx(u)p +2092 2844 V 18 w Fs(\000)18 b Fx(u)p 2241 2844 V 2288 +2852 a Fq(h)2331 2831 y Fs(k)2373 2846 y Fq(H)t Fp(\(curl;\012\))2679 +2831 y Fx(:)1112 b Fz(\(30\))28 3007 y Fm(Under)29 b(the)h(assumption)g +(that)g(the)g(b)l(oundary)g Fx(@)5 b Fz(\012)30 b Fm(is)g(smo)l(oth)g +(or)g(c)l(onvex,)g Fx(s)23 b Fz(=)g(1)29 b Fm(c)l(an)h(b)l(e)g(chosen.) +28 3174 y Fz(Sev)n(eral)23 b(k)n(ey)i(argumen)n(ts)f(of)h(the)h(pro)r +(of)f(in)g([5])h(mak)n(e)e(explicitely)h(use)h(of)f(features)g(that)g +(are)g(limited)h(to)f(3d)g(problems)f(and)28 3274 y(the)d(family)h(of)f +(\014nite)h(elemen)n(ts)g(based)f(on)g(tetrahedrons.)33 +b(They)22 b(cannot)f(b)r(e)g(mo)r(di\014ed)h(trivially)f(to)g(apply)h +(to)f(2d)g(problems)28 3374 y(or)30 b(3d)i(problems)e(on)i(hexahedral)e +(meshes.)48 b(Ev)n(en)31 b(w)n(orse,)g(it)h(is)g(suggested)e(b)n(y)h +(the)h(results)f(of)h(n)n(umerical)f(exp)r(erimen)n(ts)28 +3473 y(that)c(one)h(cannot)f(hop)r(e)g(to)h(obtain)f(a)g(result)h +(similar)f(to)g(\(30\).)28 3573 y(A)g(p)r(ossibilit)n(y)f(to)h(o)n(v)n +(ercome)d(this)j(de\014ciency)g(of)g(con)n(v)n(ergence)d(is)j(to)f(use) +h(N)n(\023)-39 b(ed)n(\023)g(elec)25 b(elemen)n(ts)i(of)f(second)g(t)n +(yp)r(e,)i(where)e(the)28 3673 y(full)i([)p Fr(P)248 +3685 y Fq(k)288 3673 y Fz(])311 3642 y Fq(d)377 3673 +y Fz(are)f(used)g(as)g(p)r(olynomial)g(spaces)g(\(see)g([10)o(]\).)28 +3913 y Fw(3)134 b Fv(Numerical)35 b(results)28 4095 y +Fz(The)27 b(n)n(umerical)f(results)h(in)g(this)g(section)g(pro)n(vide)f +(some)h(samples)f(of)h(the)h(qualit)n(y)e(of)h(the)h +Fx(H)7 b Fz(\(curl;)14 b(\012\)-conforming)25 b(FEM)28 +4194 y(with)j(N)n(\023)-39 b(ed)n(\023)g(elec)25 b(elemen)n(ts)j(of)f +(\014rst)h(t)n(yp)r(e)g(and)f(lo)n(w)n(est)g(order)f(\(p)r(olynomial)h +(degree)g Fx(k)e Fz(=)e(1\).)28 4294 y(W)-7 b(e)40 b(considered)f(the)i +(mo)r(del)f(problem)f(\(1\))i(in)f(\012)k(=)f([)p Fs(\000)p +Fz(1)p Fx(;)14 b Fz(1])2052 4264 y Fq(d)2090 4294 y Fz(,)43 +b Fx(d)h Fz(=)g(2)p Fx(;)14 b Fz(3,)42 b(with)f(homogeneous)d(Diric)n +(hlet)i(b)r(oundary)28 4393 y(condition)27 b(\(2\).)28 +4493 y(The)33 b(\014rst)g(few)h(results)e(for)h(the)h(t)n(w)n +(o-dimensional)e(problem)g(ha)n(v)n(e)h(b)r(een)g(obtained)g(b)n(y)g(a) +g Fd(MATLAB)e Fz(co)r(de.)54 b(F)-7 b(or)33 b(the)h(\014rst)28 +4593 y(example)27 b(w)n(e)g(used)h(the)g(data)1374 4738 +y Fx(c)23 b Fs(\021)f Fz(1)14 b Fx(;)180 b(f)p 1779 4767 +50 4 v 8 w Fz(\()p Fx(x;)14 b(y)s Fz(\))24 b(=)2131 4620 +y Fl(\022)2236 4687 y Fz(3)18 b Fs(\000)g Fx(y)2423 4657 +y Fp(2)2234 4787 y Fz(3)g Fs(\000)g Fx(x)2424 4756 y +Fp(2)2503 4620 y Fl(\023)2592 4738 y Fx(:)1199 b Fz(\(31\))28 +4928 y(F)-7 b(or)27 b(the)h(second)f(example)g(w)n(e)g(ha)n(v)n(e)f +(follo)n(w)n(ed)h(the)h(outlines)f(from)h(App)r(endix)g(A)g(and)f(tak)n +(en)g(the)h(data)g(from)f(example)g(5)1050 5149 y Fx(c)c +Fs(\021)g Fz(1)14 b Fx(;)179 b(f)p 1455 5178 V 8 w Fz(\()p +Fx(x;)14 b(y)s Fz(\))24 b(=)f(\(2)p Fx(\031)1932 5115 +y Fp(2)1988 5149 y Fz(+)18 b(1\))2159 5032 y Fl(\022)2300 +5098 y Fz(cos)13 b Fx(\031)s(x)h Fz(sin)g Fx(\031)s(y)2261 +5198 y Fs(\000)g Fz(sin)f Fx(\031)s(x)h Fz(cos)g Fx(\031)s(y)2827 +5032 y Fl(\023)2916 5149 y Fx(:)875 b Fz(\(32\))28 5370 +y(The)25 b(\014nite)i(elemen)n(t)f(solution)f(has)g(b)r(een)i(computed) +f(using)f(N)n(\023)-39 b(ed)n(\023)g(elec)24 b(elemen)n(ts)i(of)f +(\014rst)h(t)n(yp)r(e)g(and)f(of)h(p)r(olynomial)f(degree)28 +5469 y Fx(k)j Fz(=)d(1)k(on)f(a)h(family)g(of)g(a\016ne)g(triangular)e +(grids.)40 b(The)29 b(initial)h(coarse)d(grid)h(consisted)h(of)g(2)2983 +5439 y Fp(5)3049 5469 y Fz(triangles.)40 b(The)29 b(\014nest)g(grid) +1949 5719 y Fk(16)p eop +%%Page: 17 17 +17 16 bop 28 217 a Fz(with)28 b(2)259 187 y Fp(13)356 +217 y Fz(triangles)f(results)g(after)g(\014v)n(e)g(global)g +(re\014nemen)n(ts.)28 317 y(In)36 b(T)-7 b(able)35 b(1)h(w)n(e)f(see)h +(that)g(for)f(b)r(oth)h(examples)f(w)n(e)h(ha)n(v)n(e)f(optimal)g(con)n +(v)n(ergence)f(in)i(the)g Fx(H)7 b Fz(\(curl;)14 b(\012\)-semiorm,)37 +b(as)e(w)n(e)28 416 y(w)n(ould)e(exp)r(ect)h(from)g(the)g(theoretical)f +(results)h(of)g(the)g(previous)f(section.)55 b(As)34 +b(for)g(the)g Fx(L)2969 386 y Fp(2)3006 416 y Fz(\(\012\)-norm,)h(it)f +(app)r(ears)f(that)28 516 y(in)d(b)r(oth)h(examples)f(the)h(con)n(v)n +(ergence)d(of)j(the)f(n)n(umerical)g(solution)g(is)h(not)f(optimal)g +(for)g(our)g(c)n(hoice)g(of)g(\014nite)h(elemen)n(ts.)28 +616 y(In)e(the)h(case)f(of)g(N)n(\023)-39 b(ed)n(\023)g(elec)28 +b(elemen)n(ts)h(of)g(\014rst)h(t)n(yp)r(e)f(and)g(of)h(p)r(olynomial)f +(degree)f Fx(k)h Fz(=)d(1,)j(w)n(e)g(got)g(only)g Fs(O)r +Fz(\()p Fx(h)p Fz(\)-con)n(v)n(ergence)28 715 y(of)19 +b(the)i Fx(L)307 685 y Fp(2)344 715 y Fz(-error.)32 b(Ho)n(w)n(ev)n +(er,)19 b(this)h(order)f(of)h(con)n(v)n(ergence)e(is)h(consisten)n(t)h +(with)g(the)h(result)e(\(29\))h(obtained)g(b)n(y)f(N)n(\023)-39 +b(ed)n(\023)g(elec)18 b(in)j([8)o(].)p 725 918 2540 4 +v 723 1031 4 113 v 1224 1031 V 1276 997 a Fk(grid)p 1481 +1031 V 98 w(#)30 b(cells)p 1854 1031 V 1854 1031 V 147 +w Fc(H)7 b Fk(\(curl)o(\)-error)p 2578 1031 V 2578 1031 +V 279 w Fc(L)2822 964 y Fb(2)2861 997 y Fk(-error)p 3262 +1031 V 725 1034 2540 4 v 723 1147 4 113 v 1224 1147 V +1332 1113 a(1)p 1481 1147 V 338 w(32)p 1854 1147 V 120 +w(6.66e-01)p 2317 1147 V 181 w({)p 2578 1147 V 159 w(4.66e-01)p +3001 1147 V 161 w({)p 3262 1147 V 723 1260 V 1224 1260 +V 1332 1226 a(2)p 1481 1260 V 292 w(128)p 1854 1260 V +121 w(3.33e-01)p 2317 1260 V 123 w(1.00)p 2578 1260 V +102 w(2.35e-01)p 3001 1260 V 103 w(0.98)p 3262 1260 V +723 1373 V 775 1339 a(example)30 b(1)p 1224 1373 V 156 +w(3)p 1481 1373 V 292 w(512)p 1854 1373 V 121 w(1.66e-01)p +2317 1373 V 123 w(1.00)p 2578 1373 V 102 w(1.17e-01)p +3001 1373 V 103 w(0.99)p 3262 1373 V 723 1486 V 1224 +1486 V 1332 1452 a(4)p 1481 1486 V 247 w(2048)p 1854 +1486 V 121 w(8.33e-02)p 2317 1486 V 123 w(1.00)p 2578 +1486 V 102 w(5.89e-02)p 3001 1486 V 103 w(0.99)p 3262 +1486 V 723 1599 V 1224 1599 V 1332 1565 a(5)p 1481 1599 +V 247 w(8192)p 1854 1599 V 121 w(4.17e-02)p 2317 1599 +V 123 w(1.00)p 2578 1599 V 102 w(2.95e-02)p 3001 1599 +V 103 w(0.99)p 3262 1599 V 725 1602 2540 4 v 723 1715 +4 113 v 1224 1715 V 1332 1681 a(1)p 1481 1715 V 338 w(32)p +1854 1715 V 100 w(3.05e+00)p 2317 1715 V 160 w({)p 2578 +1715 V 159 w(6.48e-01)p 3001 1715 V 161 w({)p 3262 1715 +V 723 1828 V 1224 1828 V 1332 1794 a(2)p 1481 1828 V +292 w(128)p 1854 1828 V 101 w(1.61e+00)p 2317 1828 V +102 w(0.91)p 2578 1828 V 102 w(3.22e-01)p 3001 1828 V +103 w(1.00)p 3262 1828 V 723 1941 V 775 1907 a(example)g(2)p +1224 1941 V 156 w(3)p 1481 1941 V 292 w(512)p 1854 1941 +V 121 w(0.81e-01)p 2317 1941 V 123 w(0.97)p 2578 1941 +V 102 w(1.60e-01)p 3001 1941 V 103 w(1.00)p 3262 1941 +V 723 2053 V 1224 2053 V 1332 2020 a(4)p 1481 2053 V +247 w(2048)p 1854 2053 V 121 w(0.41e-01)p 2317 2053 V +123 w(0.99)p 2578 2053 V 102 w(8.02e-02)p 3001 2053 V +103 w(1.00)p 3262 2053 V 723 2166 V 1224 2166 V 1332 +2133 a(5)p 1481 2166 V 247 w(8192)p 1854 2166 V 121 w(2.05e-01)p +2317 2166 V 123 w(0.99)p 2578 2166 V 102 w(4.01e-02)p +3001 2166 V 103 w(1.00)p 3262 2166 V 725 2170 2540 4 +v 28 2436 a(T)-8 b(able)40 b(1:)63 b(Errors)40 b(and)h(con)m(v)m +(ergence)i(rates)f(in)e(the)h Fc(L)1993 2403 y Fb(2)2032 +2436 y Fk(\(\012\)-norm)h(and)e Fc(H)7 b Fk(\(curl)o(;)15 +b(\012\)-seminorm)41 b(for)f(the)i(t)m(w)m(o)28 2549 +y Fa(MATLAB)28 b Fk(examples.)872 4420 y @beginspecial +52 @llx 194 @lly 549 @urx 605 @ury 2693 @rwi 1984 @rhi +@setspecial +%%BeginDocument: example1_errors.eps +%!PS-Adobe-2.0 EPSF-1.2 +%%Creator: MATLAB, The Mathworks, Inc. +%%Title: examlpe1_error.eps +%%CreationDate: 08/26/2002 11:49:36 +%%DocumentNeededFonts: Helvetica +%%DocumentProcessColors: Cyan Magenta Yellow Black +%%Pages: 1 +%%BoundingBox: 52 194 549 605 +%%EndComments + +%%BeginProlog +% MathWorks dictionary +/MathWorks 160 dict begin +% definition operators +/bdef {bind def} bind def +/ldef {load def} bind def +/xdef {exch def} bdef +/xstore {exch store} bdef +% operator abbreviations +/c /clip ldef +/cc /concat ldef +/cp /closepath ldef +/gr /grestore ldef +/gs /gsave ldef +/mt /moveto ldef +/np /newpath ldef +/cm /currentmatrix ldef +/sm /setmatrix ldef +/rm /rmoveto ldef +/rl /rlineto ldef +/s /show ldef +/sc {setcmykcolor} bdef +/sr /setrgbcolor ldef +/sg /setgray ldef +/w /setlinewidth ldef +/j /setlinejoin ldef +/cap /setlinecap ldef +/rc {rectclip} bdef +/rf {rectfill} bdef +% page state control +/pgsv () def +/bpage {/pgsv save def} bdef +/epage {pgsv restore} bdef +/bplot /gsave ldef +/eplot {stroke grestore} bdef +% orientation switch +/portraitMode 0 def /landscapeMode 1 def /rotateMode 2 def +% coordinate system mappings +/dpi2point 0 def +% font control +/FontSize 0 def +/FMS {/FontSize xstore findfont [FontSize 0 0 FontSize neg 0 0] + makefont setfont} bdef +/reencode {exch dup where {pop load} {pop StandardEncoding} ifelse + exch dup 3 1 roll findfont dup length dict begin + { 1 index /FID ne {def}{pop pop} ifelse } forall + /Encoding exch def currentdict end definefont pop} bdef +/isroman {findfont /CharStrings get /Agrave known} bdef +/FMSR {3 1 roll 1 index dup isroman {reencode} {pop pop} ifelse + exch FMS} bdef +/csm {1 dpi2point div -1 dpi2point div scale neg translate + dup landscapeMode eq {pop -90 rotate} + {rotateMode eq {90 rotate} if} ifelse} bdef +% line types: solid, dotted, dashed, dotdash +/SO { [] 0 setdash } bdef +/DO { [.5 dpi2point mul 4 dpi2point mul] 0 setdash } bdef +/DA { [6 dpi2point mul] 0 setdash } bdef +/DD { [.5 dpi2point mul 4 dpi2point mul 6 dpi2point mul 4 + dpi2point mul] 0 setdash } bdef +% macros for lines and objects +/L {lineto stroke} bdef +/MP {3 1 roll moveto 1 sub {rlineto} repeat} bdef +/AP {{rlineto} repeat} bdef +/PDlw -1 def +/W {/PDlw currentlinewidth def setlinewidth} def +/PP {closepath eofill} bdef +/DP {closepath stroke} bdef +/MR {4 -2 roll moveto dup 0 exch rlineto exch 0 rlineto + neg 0 exch rlineto closepath} bdef +/FR {MR stroke} bdef +/PR {MR fill} bdef +/L1i {{currentfile picstr readhexstring pop} image} bdef +/tMatrix matrix def +/MakeOval {newpath tMatrix currentmatrix pop translate scale +0 0 1 0 360 arc tMatrix setmatrix} bdef +/FO {MakeOval stroke} bdef +/PO {MakeOval fill} bdef +/PD {currentlinecap 1 cap 3 1 roll 2 copy mt lineto stroke + cap PDlw -1 eq not {PDlw w /PDlw -1 def} if} def +/FA {newpath tMatrix currentmatrix pop translate scale + 0 0 1 5 -2 roll arc tMatrix setmatrix stroke} bdef +/PA {newpath tMatrix currentmatrix pop translate 0 0 moveto scale + 0 0 1 5 -2 roll arc closepath tMatrix setmatrix fill} bdef +/FAn {newpath tMatrix currentmatrix pop translate scale + 0 0 1 5 -2 roll arcn tMatrix setmatrix stroke} bdef +/PAn {newpath tMatrix currentmatrix pop translate 0 0 moveto scale + 0 0 1 5 -2 roll arcn closepath tMatrix setmatrix fill} bdef +/vradius 0 def /hradius 0 def /lry 0 def +/lrx 0 def /uly 0 def /ulx 0 def /rad 0 def +/MRR {/vradius xdef /hradius xdef /lry xdef /lrx xdef /uly xdef + /ulx xdef newpath tMatrix currentmatrix pop ulx hradius add uly + vradius add translate hradius vradius scale 0 0 1 180 270 arc + tMatrix setmatrix lrx hradius sub uly vradius add translate + hradius vradius scale 0 0 1 270 360 arc tMatrix setmatrix + lrx hradius sub lry vradius sub translate hradius vradius scale + 0 0 1 0 90 arc tMatrix setmatrix ulx hradius add lry vradius sub + translate hradius vradius scale 0 0 1 90 180 arc tMatrix setmatrix + closepath} bdef +/FRR {MRR stroke } bdef +/PRR {MRR fill } bdef +/MlrRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lry uly sub 2 div def + newpath tMatrix currentmatrix pop ulx rad add uly rad add translate + rad rad scale 0 0 1 90 270 arc tMatrix setmatrix lrx rad sub lry rad + sub translate rad rad scale 0 0 1 270 90 arc tMatrix setmatrix + closepath} bdef +/FlrRR {MlrRR stroke } bdef +/PlrRR {MlrRR fill } bdef +/MtbRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lrx ulx sub 2 div def + newpath tMatrix currentmatrix pop ulx rad add uly rad add translate + rad rad scale 0 0 1 180 360 arc tMatrix setmatrix lrx rad sub lry rad + sub translate rad rad scale 0 0 1 0 180 arc tMatrix setmatrix + closepath} bdef +/FtbRR {MtbRR stroke } bdef +/PtbRR {MtbRR fill } bdef +/stri 6 array def /dtri 6 array def +/smat 6 array def /dmat 6 array def +/tmat1 6 array def /tmat2 6 array def /dif 3 array def +/asub {/ind2 exch def /ind1 exch def dup dup + ind1 get exch ind2 get sub exch } bdef +/tri_to_matrix { + 2 0 asub 3 1 asub 4 0 asub 5 1 asub + dup 0 get exch 1 get 7 -1 roll astore } bdef +/compute_transform { + dmat dtri tri_to_matrix tmat1 invertmatrix + smat stri tri_to_matrix tmat2 concatmatrix } bdef +/ds {stri astore pop} bdef +/dt {dtri astore pop} bdef +/db {2 copy /cols xdef /rows xdef mul dup string + currentfile exch readhexstring pop + /bmap xdef pop pop} bdef +/it {gs np dtri aload pop moveto lineto lineto cp c + cols rows 8 compute_transform + {bmap} image gr}bdef +/il {newpath moveto lineto stroke}bdef +currentdict end def +%%EndProlog + +%%BeginSetup +MathWorks begin + +0 cap + +end +%%EndSetup + +%%Page: 1 1 +%%BeginPageSetup +%%PageBoundingBox: 52 194 549 605 +MathWorks begin +bpage +%%EndPageSetup + +%%BeginObject: obj1 +bplot + +/dpi2point 12 def +portraitMode 0204 7344 csm + + 424 80 5969 4933 MR c np +92 dict begin %Colortable dictionary +/c0 { 0 0 0 sr} bdef +/c1 { 1 1 1 sr} bdef +/c2 { 1 0 0 sr} bdef +/c3 { 0 1 0 sr} bdef +/c4 { 0 0 1 sr} bdef +/c5 { 1 1 0 sr} bdef +/c6 { 1 0 1 sr} bdef +/c7 { 0 1 1 sr} bdef +c0 +1 j +1 sg + 0 0 6913 5185 PR +6 w +0 4225 5356 0 0 -4225 899 4614 4 MP +PP +-5356 0 0 4225 5356 0 0 -4225 899 4614 5 MP stroke +4 w +DO +0 sg + 899 4614 mt 899 389 L + 899 389 mt 899 389 L +2684 4614 mt 2684 389 L +2684 389 mt 2684 389 L +4469 4614 mt 4469 389 L +4469 389 mt 4469 389 L +6255 4614 mt 6255 389 L +6255 389 mt 6255 389 L + 899 4614 mt 6255 4614 L +6255 4614 mt 6255 4614 L + 899 2501 mt 6255 2501 L +6255 2501 mt 6255 2501 L + 899 389 mt 6255 389 L +6255 389 mt 6255 389 L +SO +6 w + 899 4614 mt 6255 4614 L + 899 389 mt 6255 389 L + 899 4614 mt 899 389 L +6255 4614 mt 6255 389 L + 899 4614 mt 6255 4614 L + 899 4614 mt 899 389 L + 899 4614 mt 899 4587 L + 899 389 mt 899 415 L +DO + 899 4614 mt 899 389 L + 899 389 mt 899 389 L +SO + 899 4614 mt 899 4560 L + 899 389 mt 899 442 L +%%IncludeResource: font Helvetica +/Helvetica /ISOLatin1Encoding 120 FMSR + + 811 4796 mt +(10) s +%%IncludeResource: font Helvetica +/Helvetica /ISOLatin1Encoding 80 FMSR + + 944 4722 mt +(1) s +1436 4614 mt 1436 4587 L +1436 389 mt 1436 415 L +DO +1436 4614 mt 1436 389 L +1436 389 mt 1436 389 L +SO +1750 4614 mt 1750 4587 L +1750 389 mt 1750 415 L +DO +1750 4614 mt 1750 389 L +1750 389 mt 1750 389 L +SO +1973 4614 mt 1973 4587 L +1973 389 mt 1973 415 L +DO +1973 4614 mt 1973 389 L +1973 389 mt 1973 389 L +SO +2146 4614 mt 2146 4587 L +2146 389 mt 2146 415 L +DO +2146 4614 mt 2146 389 L +2146 389 mt 2146 389 L +SO +2288 4614 mt 2288 4587 L +2288 389 mt 2288 415 L +DO +2288 4614 mt 2288 389 L +2288 389 mt 2288 389 L +SO +2407 4614 mt 2407 4587 L +2407 389 mt 2407 415 L +DO +2407 4614 mt 2407 389 L +2407 389 mt 2407 389 L +SO +2511 4614 mt 2511 4587 L +2511 389 mt 2511 415 L +DO +2511 4614 mt 2511 389 L +2511 389 mt 2511 389 L +SO +2602 4614 mt 2602 4587 L +2602 389 mt 2602 415 L +DO +2602 4614 mt 2602 389 L +2602 389 mt 2602 389 L +SO +2684 4614 mt 2684 4587 L +2684 389 mt 2684 415 L +DO +2684 4614 mt 2684 389 L +2684 389 mt 2684 389 L +SO +2684 4614 mt 2684 4560 L +2684 389 mt 2684 442 L +%%IncludeResource: font Helvetica +/Helvetica /ISOLatin1Encoding 120 FMSR + +2596 4796 mt +(10) s +%%IncludeResource: font Helvetica +/Helvetica /ISOLatin1Encoding 80 FMSR + +2729 4722 mt +(2) s +3221 4614 mt 3221 4587 L +3221 389 mt 3221 415 L +DO +3221 4614 mt 3221 389 L +3221 389 mt 3221 389 L +SO +3536 4614 mt 3536 4587 L +3536 389 mt 3536 415 L +DO +3536 4614 mt 3536 389 L +3536 389 mt 3536 389 L +SO +3759 4614 mt 3759 4587 L +3759 389 mt 3759 415 L +DO +3759 4614 mt 3759 389 L +3759 389 mt 3759 389 L +SO +3932 4614 mt 3932 4587 L +3932 389 mt 3932 415 L +DO +3932 4614 mt 3932 389 L +3932 389 mt 3932 389 L +SO +4073 4614 mt 4073 4587 L +4073 389 mt 4073 415 L +DO +4073 4614 mt 4073 389 L +4073 389 mt 4073 389 L +SO +4193 4614 mt 4193 4587 L +4193 389 mt 4193 415 L +DO +4193 4614 mt 4193 389 L +4193 389 mt 4193 389 L +SO +4296 4614 mt 4296 4587 L +4296 389 mt 4296 415 L +DO +4296 4614 mt 4296 389 L +4296 389 mt 4296 389 L +SO +4387 4614 mt 4387 4587 L +4387 389 mt 4387 415 L +DO +4387 4614 mt 4387 389 L +4387 389 mt 4387 389 L +SO +4469 4614 mt 4469 4587 L +4469 389 mt 4469 415 L +DO +4469 4614 mt 4469 389 L +4469 389 mt 4469 389 L +SO +4469 4614 mt 4469 4560 L +4469 389 mt 4469 442 L +%%IncludeResource: font Helvetica +/Helvetica /ISOLatin1Encoding 120 FMSR + +4381 4796 mt +(10) s +%%IncludeResource: font Helvetica +/Helvetica /ISOLatin1Encoding 80 FMSR + +4514 4722 mt +(3) s +5007 4614 mt 5007 4587 L +5007 389 mt 5007 415 L +DO +5007 4614 mt 5007 389 L +5007 389 mt 5007 389 L +SO +5321 4614 mt 5321 4587 L +5321 389 mt 5321 415 L +DO +5321 4614 mt 5321 389 L +5321 389 mt 5321 389 L +SO +5544 4614 mt 5544 4587 L +5544 389 mt 5544 415 L +DO +5544 4614 mt 5544 389 L +5544 389 mt 5544 389 L +SO +5717 4614 mt 5717 4587 L +5717 389 mt 5717 415 L +DO +5717 4614 mt 5717 389 L +5717 389 mt 5717 389 L +SO +5858 4614 mt 5858 4587 L +5858 389 mt 5858 415 L +DO +5858 4614 mt 5858 389 L +5858 389 mt 5858 389 L +SO +5978 4614 mt 5978 4587 L +5978 389 mt 5978 415 L +DO +5978 4614 mt 5978 389 L +5978 389 mt 5978 389 L +SO +6081 4614 mt 6081 4587 L +6081 389 mt 6081 415 L +DO +6081 4614 mt 6081 389 L +6081 389 mt 6081 389 L +SO +6173 4614 mt 6173 4587 L +6173 389 mt 6173 415 L +DO +6173 4614 mt 6173 389 L +6173 389 mt 6173 389 L +SO +6255 4614 mt 6255 4587 L +6255 389 mt 6255 415 L +DO +6255 4614 mt 6255 389 L +6255 389 mt 6255 389 L +SO +6255 4614 mt 6255 4560 L +6255 389 mt 6255 442 L +%%IncludeResource: font Helvetica +/Helvetica /ISOLatin1Encoding 120 FMSR + +6167 4796 mt +(10) s +%%IncludeResource: font Helvetica +/Helvetica /ISOLatin1Encoding 80 FMSR + +6300 4722 mt +(4) s + 899 4614 mt 925 4614 L +6255 4614 mt 6228 4614 L +DO + 899 4614 mt 6255 4614 L +6255 4614 mt 6255 4614 L +SO + 899 4614 mt 952 4614 L +6255 4614 mt 6201 4614 L +%%IncludeResource: font Helvetica +/Helvetica /ISOLatin1Encoding 120 FMSR + + 640 4658 mt +(10) s +%%IncludeResource: font Helvetica +/Helvetica /ISOLatin1Encoding 80 FMSR + + 773 4584 mt +(-2) s + 899 3978 mt 925 3978 L +6255 3978 mt 6228 3978 L +DO + 899 3978 mt 6255 3978 L +6255 3978 mt 6255 3978 L +SO + 899 3606 mt 925 3606 L +6255 3606 mt 6228 3606 L +DO + 899 3606 mt 6255 3606 L +6255 3606 mt 6255 3606 L +SO + 899 3342 mt 925 3342 L +6255 3342 mt 6228 3342 L +DO + 899 3342 mt 6255 3342 L +6255 3342 mt 6255 3342 L +SO + 899 3137 mt 925 3137 L +6255 3137 mt 6228 3137 L +DO + 899 3137 mt 6255 3137 L +6255 3137 mt 6255 3137 L +SO + 899 2970 mt 925 2970 L +6255 2970 mt 6228 2970 L +DO + 899 2970 mt 6255 2970 L +6255 2970 mt 6255 2970 L +SO + 899 2828 mt 925 2828 L +6255 2828 mt 6228 2828 L +DO + 899 2828 mt 6255 2828 L +6255 2828 mt 6255 2828 L +SO + 899 2706 mt 925 2706 L +6255 2706 mt 6228 2706 L +DO + 899 2706 mt 6255 2706 L +6255 2706 mt 6255 2706 L +SO + 899 2598 mt 925 2598 L +6255 2598 mt 6228 2598 L +DO + 899 2598 mt 6255 2598 L +6255 2598 mt 6255 2598 L +SO + 899 2501 mt 925 2501 L +6255 2501 mt 6228 2501 L +DO + 899 2501 mt 6255 2501 L +6255 2501 mt 6255 2501 L +SO + 899 2501 mt 952 2501 L +6255 2501 mt 6201 2501 L +%%IncludeResource: font Helvetica +/Helvetica /ISOLatin1Encoding 120 FMSR + + 640 2545 mt +(10) s +%%IncludeResource: font Helvetica +/Helvetica /ISOLatin1Encoding 80 FMSR + + 773 2471 mt +(-1) s + 899 1865 mt 925 1865 L +6255 1865 mt 6228 1865 L +DO + 899 1865 mt 6255 1865 L +6255 1865 mt 6255 1865 L +SO + 899 1493 mt 925 1493 L +6255 1493 mt 6228 1493 L +DO + 899 1493 mt 6255 1493 L +6255 1493 mt 6255 1493 L +SO + 899 1229 mt 925 1229 L +6255 1229 mt 6228 1229 L +DO + 899 1229 mt 6255 1229 L +6255 1229 mt 6255 1229 L +SO + 899 1024 mt 925 1024 L +6255 1024 mt 6228 1024 L +DO + 899 1024 mt 6255 1024 L +6255 1024 mt 6255 1024 L +SO + 899 857 mt 925 857 L +6255 857 mt 6228 857 L +DO + 899 857 mt 6255 857 L +6255 857 mt 6255 857 L +SO + 899 716 mt 925 716 L +6255 716 mt 6228 716 L +DO + 899 716 mt 6255 716 L +6255 716 mt 6255 716 L +SO + 899 593 mt 925 593 L +6255 593 mt 6228 593 L +DO + 899 593 mt 6255 593 L +6255 593 mt 6255 593 L +SO + 899 485 mt 925 485 L +6255 485 mt 6228 485 L +DO + 899 485 mt 6255 485 L +6255 485 mt 6255 485 L +SO + 899 389 mt 925 389 L +6255 389 mt 6228 389 L +DO + 899 389 mt 6255 389 L +6255 389 mt 6255 389 L +SO + 899 389 mt 952 389 L +6255 389 mt 6201 389 L +%%IncludeResource: font Helvetica +/Helvetica /ISOLatin1Encoding 120 FMSR + + 640 433 mt +(10) s +%%IncludeResource: font Helvetica +/Helvetica /ISOLatin1Encoding 80 FMSR + + 773 359 mt +(0) s + 899 4614 mt 6255 4614 L + 899 389 mt 6255 389 L + 899 4614 mt 899 389 L +6255 4614 mt 6255 389 L +gs 899 389 5357 4226 MR c np +1075 636 1075 635 1075 634 1075 629 1800 1088 5 MP stroke +gs 1727 1015 4447 2681 MR c np + 36 36 1800 1088 FO + 36 36 2875 1717 FO + 36 36 3950 2351 FO + 36 36 5025 2986 FO + 36 36 6100 3622 FO +gr + +1075 636 1075 636 1075 636 1075 636 1800 760 5 MP stroke +gs 1727 687 4447 2691 MR c np +1764 760 mt 1836 760 L +1800 724 mt 1800 796 L +2839 1396 mt 2911 1396 L +2875 1360 mt 2875 1432 L +3914 2032 mt 3986 2032 L +3950 1996 mt 3950 2068 L +4989 2668 mt 5061 2668 L +5025 2632 mt 5025 2704 L +6064 3304 mt 6136 3304 L +6100 3268 mt 6100 3340 L +1775 735 mt 1825 785 L +1825 735 mt 1775 785 L +2850 1371 mt 2900 1421 L +2900 1371 mt 2850 1421 L +3925 2007 mt 3975 2057 L +3975 2007 mt 3925 2057 L +5000 2643 mt 5050 2693 L +5050 2643 mt 5000 2693 L +6075 3279 mt 6125 3329 L +6125 3279 mt 6075 3329 L +gr + +1075 636 1075 636 1075 636 1075 636 1800 1978 5 MP stroke +gr + +%%IncludeResource: font Helvetica +/Helvetica /ISOLatin1Encoding 168 FMSR + +1883 284 mt +(L2- and H\(curl\)-error vs. number of elements) s +2523 4974 mt +(number of elements in mesh) s + 585 3278 mt -90 rotate +(error in H\(curl\)-norm) s +90 rotate +1 sg +0 437 1076 0 0 -437 5119 886 4 MP +PP +-1076 0 0 437 1076 0 0 -437 5119 886 5 MP stroke +4 w +DO +SO +6 w +0 sg +5119 886 mt 6195 886 L +5119 449 mt 6195 449 L +5119 886 mt 5119 449 L +6195 886 mt 6195 449 L +5119 886 mt 6195 886 L +5119 886 mt 5119 449 L +5119 886 mt 6195 886 L +5119 449 mt 6195 449 L +5119 886 mt 5119 449 L +6195 886 mt 6195 449 L +%%IncludeResource: font Helvetica +/Helvetica /ISOLatin1Encoding 120 FMSR + +5452 571 mt +(L2-error) s +5452 709 mt +(H\(curl\)-error) s +5452 847 mt +(Order 1) s +gs 5119 449 1077 438 MR c np +200 0 5185 531 2 MP stroke +gs 5212 458 147 147 MR c np + 36 36 5285 531 FO +gr + +200 0 5185 669 2 MP stroke +gs 5212 596 147 147 MR c np +5249 669 mt 5321 669 L +5285 633 mt 5285 705 L +5260 644 mt 5310 694 L +5310 644 mt 5260 694 L +gr + +200 0 5185 808 2 MP stroke +gr + + +end + +eplot +%%EndObject + +epage +end + +showpage + +%%Trailer +%%EOF + +%%EndDocument + @endspecial 28 4616 a(Figure)f(1:)39 b(Con)m(v)m(ergence)30 +b(of)d(the)h(FE-appro)m(ximation)f(to)i(the)e(smo)s(oth)h(solution)e +(of)i(the)f Fa(MATLAB)f Fk(example)i(\(31\))28 4729 y(in)h(the)h +Fc(L)352 4696 y Fb(2)392 4729 y Fk(\(\012\)-norm)g(and)g(the)g +Fc(H)7 b Fk(\(curl)o(;)15 b(\(\012\)\)-seminorm)28 5150 +y Fn(Remark)28 b Fz(7)45 b Fm(The)22 b(mesh)g(gener)l(ation)f(and)h(r)l +(e\014nement)e(was)i(done)g(by)g Fd(PDE-toolbox)16 b +Fm(c)l(ommands.)37 b(Sinc)l(e)21 b(the)g Fd(PDE-toolbox)28 +5250 y Fm(do)l(es)32 b(not)f(supp)l(ort)h(thr)l(e)l(e)g(dimensional)h +(grids,)h(we)e(r)l(estricte)l(d)g(ourselves)g(to)g(2d)g(pr)l(oblems,)i +(and)e(we)g(have)h(so)f(far)h(no)e(nu-)28 5349 y(meric)l(al)f(r)l +(esults)f(for)i(the)f(c)l(ase)g(of)h(tetr)l(ahe)l(dr)l(al)f(grids)h(in) +f(3d.)1949 5719 y Fk(17)p eop +%%Page: 18 18 +18 17 bop 872 1803 a @beginspecial 52 @llx 194 @lly 549 +@urx 605 @ury 2693 @rwi 1984 @rhi @setspecial +%%BeginDocument: example2_errors.eps +%!PS-Adobe-2.0 EPSF-1.2 +%%Creator: MATLAB, The Mathworks, Inc. +%%Title: pix.eps +%%CreationDate: 08/26/2002 11:52:50 +%%DocumentNeededFonts: Helvetica +%%DocumentProcessColors: Cyan Magenta Yellow Black +%%Pages: 1 +%%BoundingBox: 52 194 549 605 +%%EndComments + +%%BeginProlog +% MathWorks dictionary +/MathWorks 160 dict begin +% definition operators +/bdef {bind def} bind def +/ldef {load def} bind def +/xdef {exch def} bdef +/xstore {exch store} bdef +% operator abbreviations +/c /clip ldef +/cc /concat ldef +/cp /closepath ldef +/gr /grestore ldef +/gs /gsave ldef +/mt /moveto ldef +/np /newpath ldef +/cm /currentmatrix ldef +/sm /setmatrix ldef +/rm /rmoveto ldef +/rl /rlineto ldef +/s /show ldef +/sc {setcmykcolor} bdef +/sr /setrgbcolor ldef +/sg /setgray ldef +/w /setlinewidth ldef +/j /setlinejoin ldef +/cap /setlinecap ldef +/rc {rectclip} bdef +/rf {rectfill} bdef +% page state control +/pgsv () def +/bpage {/pgsv save def} bdef +/epage {pgsv restore} bdef +/bplot /gsave ldef +/eplot {stroke grestore} bdef +% orientation switch +/portraitMode 0 def /landscapeMode 1 def /rotateMode 2 def +% coordinate system mappings +/dpi2point 0 def +% font control +/FontSize 0 def +/FMS {/FontSize xstore findfont [FontSize 0 0 FontSize neg 0 0] + makefont setfont} bdef +/reencode {exch dup where {pop load} {pop StandardEncoding} ifelse + exch dup 3 1 roll findfont dup length dict begin + { 1 index /FID ne {def}{pop pop} ifelse } forall + /Encoding exch def currentdict end definefont pop} bdef +/isroman {findfont /CharStrings get /Agrave known} bdef +/FMSR {3 1 roll 1 index dup isroman {reencode} {pop pop} ifelse + exch FMS} bdef +/csm {1 dpi2point div -1 dpi2point div scale neg translate + dup landscapeMode eq {pop -90 rotate} + {rotateMode eq {90 rotate} if} ifelse} bdef +% line types: solid, dotted, dashed, dotdash +/SO { [] 0 setdash } bdef +/DO { [.5 dpi2point mul 4 dpi2point mul] 0 setdash } bdef +/DA { [6 dpi2point mul] 0 setdash } bdef +/DD { [.5 dpi2point mul 4 dpi2point mul 6 dpi2point mul 4 + dpi2point mul] 0 setdash } bdef +% macros for lines and objects +/L {lineto stroke} bdef +/MP {3 1 roll moveto 1 sub {rlineto} repeat} bdef +/AP {{rlineto} repeat} bdef +/PDlw -1 def +/W {/PDlw currentlinewidth def setlinewidth} def +/PP {closepath eofill} bdef +/DP {closepath stroke} bdef +/MR {4 -2 roll moveto dup 0 exch rlineto exch 0 rlineto + neg 0 exch rlineto closepath} bdef +/FR {MR stroke} bdef +/PR {MR fill} bdef +/L1i {{currentfile picstr readhexstring pop} image} bdef +/tMatrix matrix def +/MakeOval {newpath tMatrix currentmatrix pop translate scale +0 0 1 0 360 arc tMatrix setmatrix} bdef +/FO {MakeOval stroke} bdef +/PO {MakeOval fill} bdef +/PD {currentlinecap 1 cap 3 1 roll 2 copy mt lineto stroke + cap PDlw -1 eq not {PDlw w /PDlw -1 def} if} def +/FA {newpath tMatrix currentmatrix pop translate scale + 0 0 1 5 -2 roll arc tMatrix setmatrix stroke} bdef +/PA {newpath tMatrix currentmatrix pop translate 0 0 moveto scale + 0 0 1 5 -2 roll arc closepath tMatrix setmatrix fill} bdef +/FAn {newpath tMatrix currentmatrix pop translate scale + 0 0 1 5 -2 roll arcn tMatrix setmatrix stroke} bdef +/PAn {newpath tMatrix currentmatrix pop translate 0 0 moveto scale + 0 0 1 5 -2 roll arcn closepath tMatrix setmatrix fill} bdef +/vradius 0 def /hradius 0 def /lry 0 def +/lrx 0 def /uly 0 def /ulx 0 def /rad 0 def +/MRR {/vradius xdef /hradius xdef /lry xdef /lrx xdef /uly xdef + /ulx xdef newpath tMatrix currentmatrix pop ulx hradius add uly + vradius add translate hradius vradius scale 0 0 1 180 270 arc + tMatrix setmatrix lrx hradius sub uly vradius add translate + hradius vradius scale 0 0 1 270 360 arc tMatrix setmatrix + lrx hradius sub lry vradius sub translate hradius vradius scale + 0 0 1 0 90 arc tMatrix setmatrix ulx hradius add lry vradius sub + translate hradius vradius scale 0 0 1 90 180 arc tMatrix setmatrix + closepath} bdef +/FRR {MRR stroke } bdef +/PRR {MRR fill } bdef +/MlrRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lry uly sub 2 div def + newpath tMatrix currentmatrix pop ulx rad add uly rad add translate + rad rad scale 0 0 1 90 270 arc tMatrix setmatrix lrx rad sub lry rad + sub translate rad rad scale 0 0 1 270 90 arc tMatrix setmatrix + closepath} bdef +/FlrRR {MlrRR stroke } bdef +/PlrRR {MlrRR fill } bdef +/MtbRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lrx ulx sub 2 div def + newpath tMatrix currentmatrix pop ulx rad add uly rad add translate + rad rad scale 0 0 1 180 360 arc tMatrix setmatrix lrx rad sub lry rad + sub translate rad rad scale 0 0 1 0 180 arc tMatrix setmatrix + closepath} bdef +/FtbRR {MtbRR stroke } bdef +/PtbRR {MtbRR fill } bdef +/stri 6 array def /dtri 6 array def +/smat 6 array def /dmat 6 array def +/tmat1 6 array def /tmat2 6 array def /dif 3 array def +/asub {/ind2 exch def /ind1 exch def dup dup + ind1 get exch ind2 get sub exch } bdef +/tri_to_matrix { + 2 0 asub 3 1 asub 4 0 asub 5 1 asub + dup 0 get exch 1 get 7 -1 roll astore } bdef +/compute_transform { + dmat dtri tri_to_matrix tmat1 invertmatrix + smat stri tri_to_matrix tmat2 concatmatrix } bdef +/ds {stri astore pop} bdef +/dt {dtri astore pop} bdef +/db {2 copy /cols xdef /rows xdef mul dup string + currentfile exch readhexstring pop + /bmap xdef pop pop} bdef +/it {gs np dtri aload pop moveto lineto lineto cp c + cols rows 8 compute_transform + {bmap} image gr}bdef +/il {newpath moveto lineto stroke}bdef +currentdict end def +%%EndProlog + +%%BeginSetup +MathWorks begin + +0 cap + +end +%%EndSetup + +%%Page: 1 1 +%%BeginPageSetup +%%PageBoundingBox: 52 194 549 605 +MathWorks begin +bpage +%%EndPageSetup + +%%BeginObject: obj1 +bplot + +/dpi2point 12 def +portraitMode 0204 7344 csm + + 424 80 5969 4933 MR c np +92 dict begin %Colortable dictionary +/c0 { 0 0 0 sr} bdef +/c1 { 1 1 1 sr} bdef +/c2 { 1 0 0 sr} bdef +/c3 { 0 1 0 sr} bdef +/c4 { 0 0 1 sr} bdef +/c5 { 1 1 0 sr} bdef +/c6 { 1 0 1 sr} bdef +/c7 { 0 1 1 sr} bdef +c0 +1 j +1 sg + 0 0 6913 5185 PR +6 w +0 4225 5356 0 0 -4225 899 4614 4 MP +PP +-5356 0 0 4225 5356 0 0 -4225 899 4614 5 MP stroke +4 w +DO +0 sg + 899 4614 mt 899 389 L + 899 389 mt 899 389 L +2684 4614 mt 2684 389 L +2684 389 mt 2684 389 L +4469 4614 mt 4469 389 L +4469 389 mt 4469 389 L +6255 4614 mt 6255 389 L +6255 389 mt 6255 389 L + 899 4614 mt 6255 4614 L +6255 4614 mt 6255 4614 L + 899 3205 mt 6255 3205 L +6255 3205 mt 6255 3205 L + 899 1797 mt 6255 1797 L +6255 1797 mt 6255 1797 L + 899 389 mt 6255 389 L +6255 389 mt 6255 389 L +SO +6 w + 899 4614 mt 6255 4614 L + 899 389 mt 6255 389 L + 899 4614 mt 899 389 L +6255 4614 mt 6255 389 L + 899 4614 mt 6255 4614 L + 899 4614 mt 899 389 L + 899 4614 mt 899 4587 L + 899 389 mt 899 415 L +DO + 899 4614 mt 899 389 L + 899 389 mt 899 389 L +SO + 899 4614 mt 899 4560 L + 899 389 mt 899 442 L +%%IncludeResource: font Helvetica +/Helvetica /ISOLatin1Encoding 120 FMSR + + 811 4796 mt +(10) s +%%IncludeResource: font Helvetica +/Helvetica /ISOLatin1Encoding 80 FMSR + + 944 4722 mt +(1) s +1436 4614 mt 1436 4587 L +1436 389 mt 1436 415 L +DO +1436 4614 mt 1436 389 L +1436 389 mt 1436 389 L +SO +1750 4614 mt 1750 4587 L +1750 389 mt 1750 415 L +DO +1750 4614 mt 1750 389 L +1750 389 mt 1750 389 L +SO +1973 4614 mt 1973 4587 L +1973 389 mt 1973 415 L +DO +1973 4614 mt 1973 389 L +1973 389 mt 1973 389 L +SO +2146 4614 mt 2146 4587 L +2146 389 mt 2146 415 L +DO +2146 4614 mt 2146 389 L +2146 389 mt 2146 389 L +SO +2288 4614 mt 2288 4587 L +2288 389 mt 2288 415 L +DO +2288 4614 mt 2288 389 L +2288 389 mt 2288 389 L +SO +2407 4614 mt 2407 4587 L +2407 389 mt 2407 415 L +DO +2407 4614 mt 2407 389 L +2407 389 mt 2407 389 L +SO +2511 4614 mt 2511 4587 L +2511 389 mt 2511 415 L +DO +2511 4614 mt 2511 389 L +2511 389 mt 2511 389 L +SO +2602 4614 mt 2602 4587 L +2602 389 mt 2602 415 L +DO +2602 4614 mt 2602 389 L +2602 389 mt 2602 389 L +SO +2684 4614 mt 2684 4587 L +2684 389 mt 2684 415 L +DO +2684 4614 mt 2684 389 L +2684 389 mt 2684 389 L +SO +2684 4614 mt 2684 4560 L +2684 389 mt 2684 442 L +%%IncludeResource: font Helvetica +/Helvetica /ISOLatin1Encoding 120 FMSR + +2596 4796 mt +(10) s +%%IncludeResource: font Helvetica +/Helvetica /ISOLatin1Encoding 80 FMSR + +2729 4722 mt +(2) s +3221 4614 mt 3221 4587 L +3221 389 mt 3221 415 L +DO +3221 4614 mt 3221 389 L +3221 389 mt 3221 389 L +SO +3536 4614 mt 3536 4587 L +3536 389 mt 3536 415 L +DO +3536 4614 mt 3536 389 L +3536 389 mt 3536 389 L +SO +3759 4614 mt 3759 4587 L +3759 389 mt 3759 415 L +DO +3759 4614 mt 3759 389 L +3759 389 mt 3759 389 L +SO +3932 4614 mt 3932 4587 L +3932 389 mt 3932 415 L +DO +3932 4614 mt 3932 389 L +3932 389 mt 3932 389 L +SO +4073 4614 mt 4073 4587 L +4073 389 mt 4073 415 L +DO +4073 4614 mt 4073 389 L +4073 389 mt 4073 389 L +SO +4193 4614 mt 4193 4587 L +4193 389 mt 4193 415 L +DO +4193 4614 mt 4193 389 L +4193 389 mt 4193 389 L +SO +4296 4614 mt 4296 4587 L +4296 389 mt 4296 415 L +DO +4296 4614 mt 4296 389 L +4296 389 mt 4296 389 L +SO +4387 4614 mt 4387 4587 L +4387 389 mt 4387 415 L +DO +4387 4614 mt 4387 389 L +4387 389 mt 4387 389 L +SO +4469 4614 mt 4469 4587 L +4469 389 mt 4469 415 L +DO +4469 4614 mt 4469 389 L +4469 389 mt 4469 389 L +SO +4469 4614 mt 4469 4560 L +4469 389 mt 4469 442 L +%%IncludeResource: font Helvetica +/Helvetica /ISOLatin1Encoding 120 FMSR + +4381 4796 mt +(10) s +%%IncludeResource: font Helvetica +/Helvetica /ISOLatin1Encoding 80 FMSR + +4514 4722 mt +(3) s +5007 4614 mt 5007 4587 L +5007 389 mt 5007 415 L +DO +5007 4614 mt 5007 389 L +5007 389 mt 5007 389 L +SO +5321 4614 mt 5321 4587 L +5321 389 mt 5321 415 L +DO +5321 4614 mt 5321 389 L +5321 389 mt 5321 389 L +SO +5544 4614 mt 5544 4587 L +5544 389 mt 5544 415 L +DO +5544 4614 mt 5544 389 L +5544 389 mt 5544 389 L +SO +5717 4614 mt 5717 4587 L +5717 389 mt 5717 415 L +DO +5717 4614 mt 5717 389 L +5717 389 mt 5717 389 L +SO +5858 4614 mt 5858 4587 L +5858 389 mt 5858 415 L +DO +5858 4614 mt 5858 389 L +5858 389 mt 5858 389 L +SO +5978 4614 mt 5978 4587 L +5978 389 mt 5978 415 L +DO +5978 4614 mt 5978 389 L +5978 389 mt 5978 389 L +SO +6081 4614 mt 6081 4587 L +6081 389 mt 6081 415 L +DO +6081 4614 mt 6081 389 L +6081 389 mt 6081 389 L +SO +6173 4614 mt 6173 4587 L +6173 389 mt 6173 415 L +DO +6173 4614 mt 6173 389 L +6173 389 mt 6173 389 L +SO +6255 4614 mt 6255 4587 L +6255 389 mt 6255 415 L +DO +6255 4614 mt 6255 389 L +6255 389 mt 6255 389 L +SO +6255 4614 mt 6255 4560 L +6255 389 mt 6255 442 L +%%IncludeResource: font Helvetica +/Helvetica /ISOLatin1Encoding 120 FMSR + +6167 4796 mt +(10) s +%%IncludeResource: font Helvetica +/Helvetica /ISOLatin1Encoding 80 FMSR + +6300 4722 mt +(4) s + 899 4614 mt 925 4614 L +6255 4614 mt 6228 4614 L +DO + 899 4614 mt 6255 4614 L +6255 4614 mt 6255 4614 L +SO + 899 4614 mt 952 4614 L +6255 4614 mt 6201 4614 L +%%IncludeResource: font Helvetica +/Helvetica /ISOLatin1Encoding 120 FMSR + + 640 4658 mt +(10) s +%%IncludeResource: font Helvetica +/Helvetica /ISOLatin1Encoding 80 FMSR + + 773 4584 mt +(-2) s + 899 4190 mt 925 4190 L +6255 4190 mt 6228 4190 L +DO + 899 4190 mt 6255 4190 L +6255 4190 mt 6255 4190 L +SO + 899 3942 mt 925 3942 L +6255 3942 mt 6228 3942 L +DO + 899 3942 mt 6255 3942 L +6255 3942 mt 6255 3942 L +SO + 899 3766 mt 925 3766 L +6255 3766 mt 6228 3766 L +DO + 899 3766 mt 6255 3766 L +6255 3766 mt 6255 3766 L +SO + 899 3629 mt 925 3629 L +6255 3629 mt 6228 3629 L +DO + 899 3629 mt 6255 3629 L +6255 3629 mt 6255 3629 L +SO + 899 3518 mt 925 3518 L +6255 3518 mt 6228 3518 L +DO + 899 3518 mt 6255 3518 L +6255 3518 mt 6255 3518 L +SO + 899 3423 mt 925 3423 L +6255 3423 mt 6228 3423 L +DO + 899 3423 mt 6255 3423 L +6255 3423 mt 6255 3423 L +SO + 899 3342 mt 925 3342 L +6255 3342 mt 6228 3342 L +DO + 899 3342 mt 6255 3342 L +6255 3342 mt 6255 3342 L +SO + 899 3270 mt 925 3270 L +6255 3270 mt 6228 3270 L +DO + 899 3270 mt 6255 3270 L +6255 3270 mt 6255 3270 L +SO + 899 3205 mt 925 3205 L +6255 3205 mt 6228 3205 L +DO + 899 3205 mt 6255 3205 L +6255 3205 mt 6255 3205 L +SO + 899 3205 mt 952 3205 L +6255 3205 mt 6201 3205 L +%%IncludeResource: font Helvetica +/Helvetica /ISOLatin1Encoding 120 FMSR + + 640 3249 mt +(10) s +%%IncludeResource: font Helvetica +/Helvetica /ISOLatin1Encoding 80 FMSR + + 773 3175 mt +(-1) s + 899 2781 mt 925 2781 L +6255 2781 mt 6228 2781 L +DO + 899 2781 mt 6255 2781 L +6255 2781 mt 6255 2781 L +SO + 899 2533 mt 925 2533 L +6255 2533 mt 6228 2533 L +DO + 899 2533 mt 6255 2533 L +6255 2533 mt 6255 2533 L +SO + 899 2357 mt 925 2357 L +6255 2357 mt 6228 2357 L +DO + 899 2357 mt 6255 2357 L +6255 2357 mt 6255 2357 L +SO + 899 2221 mt 925 2221 L +6255 2221 mt 6228 2221 L +DO + 899 2221 mt 6255 2221 L +6255 2221 mt 6255 2221 L +SO + 899 2109 mt 925 2109 L +6255 2109 mt 6228 2109 L +DO + 899 2109 mt 6255 2109 L +6255 2109 mt 6255 2109 L +SO + 899 2015 mt 925 2015 L +6255 2015 mt 6228 2015 L +DO + 899 2015 mt 6255 2015 L +6255 2015 mt 6255 2015 L +SO + 899 1933 mt 925 1933 L +6255 1933 mt 6228 1933 L +DO + 899 1933 mt 6255 1933 L +6255 1933 mt 6255 1933 L +SO + 899 1861 mt 925 1861 L +6255 1861 mt 6228 1861 L +DO + 899 1861 mt 6255 1861 L +6255 1861 mt 6255 1861 L +SO + 899 1797 mt 925 1797 L +6255 1797 mt 6228 1797 L +DO + 899 1797 mt 6255 1797 L +6255 1797 mt 6255 1797 L +SO + 899 1797 mt 952 1797 L +6255 1797 mt 6201 1797 L +%%IncludeResource: font Helvetica +/Helvetica /ISOLatin1Encoding 120 FMSR + + 640 1841 mt +(10) s +%%IncludeResource: font Helvetica +/Helvetica /ISOLatin1Encoding 80 FMSR + + 773 1767 mt +(0) s + 899 1373 mt 925 1373 L +6255 1373 mt 6228 1373 L +DO + 899 1373 mt 6255 1373 L +6255 1373 mt 6255 1373 L +SO + 899 1125 mt 925 1125 L +6255 1125 mt 6228 1125 L +DO + 899 1125 mt 6255 1125 L +6255 1125 mt 6255 1125 L +SO + 899 949 mt 925 949 L +6255 949 mt 6228 949 L +DO + 899 949 mt 6255 949 L +6255 949 mt 6255 949 L +SO + 899 812 mt 925 812 L +6255 812 mt 6228 812 L +DO + 899 812 mt 6255 812 L +6255 812 mt 6255 812 L +SO + 899 701 mt 925 701 L +6255 701 mt 6228 701 L +DO + 899 701 mt 6255 701 L +6255 701 mt 6255 701 L +SO + 899 607 mt 925 607 L +6255 607 mt 6228 607 L +DO + 899 607 mt 6255 607 L +6255 607 mt 6255 607 L +SO + 899 525 mt 925 525 L +6255 525 mt 6228 525 L +DO + 899 525 mt 6255 525 L +6255 525 mt 6255 525 L +SO + 899 453 mt 925 453 L +6255 453 mt 6228 453 L +DO + 899 453 mt 6255 453 L +6255 453 mt 6255 453 L +SO + 899 389 mt 925 389 L +6255 389 mt 6228 389 L +DO + 899 389 mt 6255 389 L +6255 389 mt 6255 389 L +SO + 899 389 mt 952 389 L +6255 389 mt 6201 389 L +%%IncludeResource: font Helvetica +/Helvetica /ISOLatin1Encoding 120 FMSR + + 640 433 mt +(10) s +%%IncludeResource: font Helvetica +/Helvetica /ISOLatin1Encoding 80 FMSR + + 773 359 mt +(1) s + 899 4614 mt 6255 4614 L + 899 389 mt 6255 389 L + 899 4614 mt 899 389 L +6255 4614 mt 6255 389 L +gs 899 389 5357 4226 MR c np +1075 424 1075 424 1075 427 1075 427 1800 2062 5 MP stroke +gs 1727 1989 4447 1849 MR c np + 36 36 1800 2062 FO + 36 36 2875 2489 FO + 36 36 3950 2916 FO + 36 36 5025 3340 FO + 36 36 6100 3764 FO +gr + +1075 423 1075 422 1075 415 1075 390 1800 1114 5 MP stroke +gs 1727 1041 4447 1797 MR c np +1764 1114 mt 1836 1114 L +1800 1078 mt 1800 1150 L +2839 1504 mt 2911 1504 L +2875 1468 mt 2875 1540 L +3914 1919 mt 3986 1919 L +3950 1883 mt 3950 1955 L +4989 2341 mt 5061 2341 L +5025 2305 mt 5025 2377 L +6064 2764 mt 6136 2764 L +6100 2728 mt 6100 2800 L +1775 1089 mt 1825 1139 L +1825 1089 mt 1775 1139 L +2850 1479 mt 2900 1529 L +2900 1479 mt 2850 1529 L +3925 1894 mt 3975 1944 L +3975 1894 mt 3925 1944 L +5000 2316 mt 5050 2366 L +5050 2316 mt 5000 2366 L +6075 2739 mt 6125 2789 L +6125 2739 mt 6075 2789 L +gr + +1075 424 1075 424 1075 424 1075 424 1800 2857 5 MP stroke +gr + +%%IncludeResource: font Helvetica +/Helvetica /ISOLatin1Encoding 168 FMSR + +1883 284 mt +(L2- and H\(curl\)-error vs. number of elements) s +2523 4974 mt +(number of elements in mesh) s + 585 3278 mt -90 rotate +(error in H\(curl\)-norm) s +90 rotate +1 sg +0 437 1076 0 0 -437 5119 886 4 MP +PP +-1076 0 0 437 1076 0 0 -437 5119 886 5 MP stroke +4 w +DO +SO +6 w +0 sg +5119 886 mt 6195 886 L +5119 449 mt 6195 449 L +5119 886 mt 5119 449 L +6195 886 mt 6195 449 L +5119 886 mt 6195 886 L +5119 886 mt 5119 449 L +5119 886 mt 6195 886 L +5119 449 mt 6195 449 L +5119 886 mt 5119 449 L +6195 886 mt 6195 449 L +%%IncludeResource: font Helvetica +/Helvetica /ISOLatin1Encoding 120 FMSR + +5452 571 mt +(L2-error) s +5452 709 mt +(H\(curl\)-error) s +5452 847 mt +(Order 1) s +gs 5119 449 1077 438 MR c np +200 0 5185 531 2 MP stroke +gs 5212 458 147 147 MR c np + 36 36 5285 531 FO +gr + +200 0 5185 669 2 MP stroke +gs 5212 596 147 147 MR c np +5249 669 mt 5321 669 L +5285 633 mt 5285 705 L +5260 644 mt 5310 694 L +5310 644 mt 5260 694 L +gr + +200 0 5185 808 2 MP stroke +gr + + +end + +eplot +%%EndObject + +epage +end + +showpage + +%%Trailer +%%EOF + +%%EndDocument + @endspecial 28 1999 a Fk(Figure)27 b(2:)39 b(Con)m(v)m(ergence)30 +b(of)d(the)h(FE-appro)m(ximation)f(to)i(the)e(smo)s(oth)h(solution)e +(of)i(the)f Fa(MATLAB)f Fk(example)i(\(32\))28 2112 y(in)h(the)h +Fc(L)352 2079 y Fb(2)392 2112 y Fk(\(\012\)-norm)g(and)g(the)g +Fc(H)7 b Fk(\(curl)o(;)15 b(\(\012\)\)-seminorm)28 2458 +y Fz(As)27 b(for)f(meshes)h(with)g(quadrilateral)e(cells,)i(n)n +(umerical)f(results)g(w)n(ere)g(obtained)h(with)g(a)g +Fd(deal.II)d Fz(co)r(de,)j(using)f(the)i(\014nite)28 +2558 y(elemen)n(t)i(class)f Fd(fe/fe)p 754 2571 44 4 +v 42 w(nedelec.cc)p Fz(.)40 b(This)30 b(class)f(pro)n(vides)g(N)n(\023) +-39 b(ed)n(\023)g(elec's)28 b Fx(H)7 b Fz(\(curl;)14 +b(\012\)-conforming)29 b(elemen)n(t)h(of)g(\014rst)g(t)n(yp)r(e)28 +2657 y(and)22 b(lo)n(w)n(est)f(order)h(in)g(t)n(w)n(o)g(and)h(three)f +(space)g(dimensions,)h(on)f(bilinear)g(quadrilateral,)g(resp.)34 +b(trilinear)22 b(hexahedral)f(grids.)28 2757 y(F)-7 b(or)29 +b(details)h(ab)r(out)g Fd(deal.II)p Fz(,)e(see)i([2)o(].)45 +b(In)30 b(the)h(follo)n(wing)e(results)h(w)n(ere)f(obtained)h(for)g +(the)g(mo)r(del)h(problem)e(\(1\))i(in)f(t)n(w)n(o)28 +2856 y(dimensions)25 b(using)g(the)h(data)f(\(32\).)35 +b(W)-7 b(e)26 b(computed)g(the)g(solution)f(on)g(\014v)n(e)g(successiv) +n(e)f(non-a\016ne)h(bilinear)g(grids)f(\()i(\014gure)28 +2956 y(3\),)h(eac)n(h)g(of)g(whic)n(h)h(w)n(as)f(obtained)g(b)n(y)g +(global)g(re\014nemen)n(t)g(of)h(the)g(previous)e(one.)1345 +4376 y @beginspecial 0 @llx 0 @lly 301 @urx 301 @ury +1559 @rwi 1559 @rhi @setspecial +%%BeginDocument: grid.eps +%!PS-Adobe-2.0 EPSF-1.2 +%%Title: deal.II Output +%%Creator: the deal.II library +%%Creation Date: 2003/4/28 - 11: 4:40 +%%BoundingBox: 0 0 301 301 +/m {moveto} bind def +/x {lineto stroke} bind def +/b {0 0 0 setrgbcolor} def +/r {1 0 0 setrgbcolor} def +%%EndProlog + +0.5 setlinewidth +b 0 0 m 75 0 x +b 75 0 m 150 0 x +b 150 0 m 166.915 82.0968 x +b 166.915 82.0968 m 179.319 164.952 x +b 0 150 m 90.0209 159.679 x +b 90.0209 159.679 m 179.319 164.952 x +b 0 0 m 0 75 x +b 0 75 m 0 150 x +b 75 0 m 83.5481 81.6946 x +b 83.5481 81.6946 m 90.0209 159.679 x +b 0 75 m 83.5481 81.6946 x +b 83.5481 81.6946 m 166.915 82.0968 x +b 150 0 m 225 0 x +b 225 0 m 300 0 x +b 300 0 m 300 75 x +b 300 75 m 300 150 x +b 179.319 164.952 m 240.445 158.833 x +b 240.445 158.833 m 300 150 x +b 225 0 m 233.767 80.9701 x +b 233.767 80.9701 m 240.445 158.833 x +b 166.915 82.0968 m 233.767 80.9701 x +b 233.767 80.9701 m 300 75 x +b 300 150 m 300 225 x +b 300 225 m 300 300 x +b 150 300 m 225 300 x +b 225 300 m 300 300 x +b 179.319 164.952 m 166.039 233.741 x +b 166.039 233.741 m 150 300 x +b 240.445 158.833 m 234.054 230.742 x +b 234.054 230.742 m 225 300 x +b 166.039 233.741 m 234.054 230.742 x +b 234.054 230.742 m 300 225 x +b 0 300 m 75 300 x +b 75 300 m 150 300 x +b 0 150 m 0 225 x +b 0 225 m 0 300 x +b 90.0209 159.679 m 82.6087 231.699 x +b 82.6087 231.699 m 75 300 x +b 0 225 m 82.6087 231.699 x +b 82.6087 231.699 m 166.039 233.741 x +showpage + +%%EndDocument + @endspecial 276 4572 a Fk(Figure)k(3:)41 b(Non-a\016ne)31 +b(bilinear)d(grid)h(used)g(in)g(the)i Fa(deal.II)d Fk(co)s(de,)j(after) +g(one)g(re\014nemen)m(t)f(step.)28 4867 y Fz(Again,)25 +b(in)g(T)-7 b(able)25 b(2)g(w)n(e)f(can)h(observ)n(e)e(optimal)i(con)n +(v)n(ergence)e(of)i(order)e Fs(O)r Fz(\()p Fx(h)p Fz(\))j(in)g(the)f +Fx(H)7 b Fz(\(curl;)14 b(\012\)-norm.)35 b(The)25 b(same)g(order)28 +4967 y(of)i(con)n(v)n(ergence)e(is)j(obtained)f(for)g(the)h(error)e(in) +i(the)g Fx(L)1777 4937 y Fp(2)1813 4967 y Fz(\(\012\)-norm.)28 +5166 y(With)d Fd(deal.II)p Fz(,)d(w)n(e)j(are)f(also)f(able)i(to)f +(treat)h(3d)f(problems)g(on)h(hexahedral)e(grids.)35 +b(F)-7 b(or)25 b(our)f(t)n(yp)r(e)h(of)f(problem,)h(N)n(\023)-39 +b(ed)n(\023)g(elec's)28 5266 y Fx(H)7 b Fz(\(curl)o(;)14 +b(\012\)-conforming)k(elemen)n(ts)g(of)h(\014rst)f(t)n(yp)r(e)h(and)f +(lo)n(w)n(est)g(order,)h(based)f(on)h(a)f(cubic)h(reference)e(elemen)n +(t,)k(are)d(a)n(v)-5 b(ailable.)1949 5719 y Fk(18)p eop +%%Page: 19 19 +19 18 bop 910 153 2170 4 v 908 266 4 113 v 960 232 a +Fk(grid)p 1165 266 V 98 w(#)30 b(cells)p 1537 266 V 1537 +266 V 170 w Fc(H)7 b Fk(\(curl)o(\)-error)p 2307 266 +V 2307 266 V 344 w Fc(L)2594 199 y Fb(2)2633 232 y Fk(-error)p +3077 266 V 910 269 2170 4 v 908 382 4 113 v 1015 348 +a(1)p 1165 382 V 384 w(4)p 1537 382 V 100 w(6.112e+00)p +2046 382 V 168 w(-)p 2307 382 V 166 w(1.442e+00)p 2816 +382 V 168 w(-)p 3077 382 V 910 385 2170 4 v 908 498 4 +113 v 1015 464 a(2)p 1165 498 V 338 w(16)p 1537 498 V +101 w(3.688e+00)p 2046 498 V 103 w(0.73)p 2307 498 V +121 w(6.765e-01)p 2816 498 V 124 w(1.09)p 3077 498 V +910 501 2170 4 v 908 614 4 113 v 1015 580 a(3)p 1165 +614 V 338 w(64)p 1537 614 V 101 w(1.991e+00)p 2046 614 +V 103 w(0.89)p 2307 614 V 121 w(3.280e-01)p 2816 614 +V 124 w(1.04)p 3077 614 V 910 618 2170 4 v 908 731 4 +113 v 1015 697 a(4)p 1165 731 V 293 w(256)p 1537 731 +V 101 w(1.015e+00)p 2046 731 V 103 w(0.97)p 2307 731 +V 121 w(1.617e-01)p 2816 731 V 124 w(1.02)p 3077 731 +V 910 734 2170 4 v 908 847 4 113 v 1015 813 a(5)p 1165 +847 V 247 w(1024)p 1537 847 V 122 w(5.098e-01)p 2046 +847 V 124 w(0.99)p 2307 847 V 121 w(8.049e-02)p 2816 +847 V 124 w(1.01)p 3077 847 V 910 850 2170 4 v 28 1117 +a(T)-8 b(able)26 b(2:)39 b(Errors)26 b(and)g(con)m(v)m(ergence)j(rates) +f(in)d(the)i Fc(H)7 b Fk(\(curl)o(;)15 b(\012\)-)28 b(and)e +Fc(L)2511 1084 y Fb(2)2550 1117 y Fk(\(\012\)-norm)h(for)g(the)g +(2d-example)f(solv)m(ed)28 1230 y(with)j Fa(deal.II)p +Fk(.)28 1458 y Fz(W)-7 b(e)28 b(computed)f(an)h(appro)n(ximation)d(to)j +(the)g(mo)r(del)g(problem)f(\(1\))g(in)h(3d)g(using)f(the)h(data)675 +1740 y Fx(c)23 b Fs(\021)f Fz(1)14 b Fx(;)180 b(f)p 1080 +1770 50 4 v 8 w Fz(\()p Fx(x;)14 b(y)s(;)g(z)t Fz(\))23 +b(=)1512 1574 y Fl(0)1512 1723 y(@)1794 1640 y Fx(xy)s +Fz(\(1)18 b Fs(\000)g Fx(y)2104 1610 y Fp(2)2141 1640 +y Fz(\)\(1)g Fs(\000)g Fx(z)2391 1610 y Fp(2)2428 1640 +y Fz(\))h(+)f(2)p Fx(xy)s Fz(\(1)g Fs(\000)g Fx(z)2913 +1610 y Fp(2)2949 1640 y Fz(\))1626 1740 y Fx(y)1670 1709 +y Fp(2)1707 1740 y Fz(\(1)g Fs(\000)g Fx(x)1929 1709 +y Fp(2)1967 1740 y Fz(\)\(1)g Fs(\000)g Fx(z)2217 1709 +y Fp(2)2254 1740 y Fz(\))g(+)h(\(1)f Fs(\000)g Fx(y)2607 +1709 y Fp(2)2644 1740 y Fz(\)\(2)g Fs(\000)g Fx(x)2898 +1709 y Fp(2)2954 1740 y Fs(\000)g Fx(z)3080 1709 y Fp(2)3117 +1740 y Fz(\))1794 1839 y Fx(y)s(z)t Fz(\(1)f Fs(\000)h +Fx(x)2102 1809 y Fp(2)2139 1839 y Fz(\)\(1)h Fs(\000)f +Fx(y)2391 1809 y Fp(2)2428 1839 y Fz(\))h(+)f(2)p Fx(y)s(z)t +Fz(\(1)e Fs(\000)i Fx(x)2911 1809 y Fp(2)2949 1839 y +Fz(\))3191 1574 y Fl(1)3191 1723 y(A)3291 1740 y Fx(:)500 +b Fz(\(33\))28 2018 y(In)25 b(a)g(\014rst)f(exp)r(erimen)n(t,)i(the)f +(\014nite)h(elemen)n(t)f(solution)g(w)n(as)f(computed)h(on)g(\014v)n(e) +g(successiv)n(e)f(globally)f(re\014ned)i(a\016ne)g(grids.)28 +2118 y(In)c(a)g(second)g(computation,)i(w)n(e)e(appro)n(ximated)f(the)i +(solution)f(of)g(the)h(same)f(problem)g(on)g(\014v)n(e)g(successiv)n(e) +f(globally)h(re\014ned)28 2217 y(non-a\016ne)26 b(trilinear)h(grids.)28 +2317 y(W)-7 b(e)28 b(see)g(in)h(T)-7 b(able)28 b(3)g(that)g(in)h(b)r +(oth)g(cases)e(w)n(e)h(observ)n(e)e(again)h(con)n(v)n(ergence)f(of)j +(order)d Fs(O)r Fz(\()p Fx(h)p Fz(\))k(in)e(the)h Fx(H)7 +b Fz(\(curl;)14 b(\012\)-)28 b(and)g(the)28 2417 y Fx(L)85 +2386 y Fp(2)121 2417 y Fz(\(\012\)-norm.)p 594 2619 2800 +4 v 592 2732 4 113 v 1304 2732 V 1356 2698 a Fk(grid)p +1561 2732 V 98 w(#)i(cells)p 1934 2732 V 1934 2732 V +150 w Fc(H)7 b Fk(\(curl)o(\)-error)p 2663 2732 V 2663 +2732 V 303 w Fc(L)2929 2665 y Fb(2)2969 2698 y Fk(-error)p +3393 2732 V 594 2735 2800 4 v 592 2848 4 113 v 1304 2848 +V 1411 2814 a(1)p 1561 2848 V 384 w(8)p 1934 2848 V 100 +w(7.696e-01)p 2402 2848 V 169 w(-)p 2663 2848 V 166 w(6.609e-01)p +3131 2848 V 169 w(-)p 3393 2848 V 592 2961 V 1304 2961 +V 1411 2927 a(2)p 1561 2961 V 339 w(64)p 1934 2961 V +100 w(4.088e-01)p 2402 2961 V 103 w(0.91)p 2663 2961 +V 102 w(2.943e-01)p 3131 2961 V 103 w(1.17)p 3393 2961 +V 592 3074 V 733 3040 a(a\016ne)30 b(grids)p 1304 3074 +V 242 w(3)p 1561 3074 V 293 w(512)p 1934 3074 V 101 w(2.075e-01)p +2402 3074 V 103 w(0.98)p 2663 3074 V 102 w(1.408e-01)p +3131 3074 V 103 w(1.06)p 3393 3074 V 592 3187 V 1304 +3187 V 1411 3153 a(4)p 1561 3187 V 248 w(4096)p 1934 +3187 V 101 w(1.041e-01)p 2402 3187 V 103 w(0.99)p 2663 +3187 V 102 w(6.955e-02)p 3131 3187 V 103 w(1.02)p 3393 +3187 V 592 3300 V 1304 3300 V 1411 3266 a(5)p 1561 3300 +V 202 w(32768)p 1934 3300 V 102 w(5.210e-02)p 2402 3300 +V 103 w(1.00)p 2663 3300 V 102 w(3.467e-02)p 3131 3300 +V 103 w(1.00)p 3393 3300 V 594 3303 2800 4 v 592 3416 +4 113 v 1304 3416 V 1411 3382 a(1)p 1561 3416 V 384 w(8)p +1934 3416 V 100 w(7.716e-01)p 2402 3416 V 169 w(-)p 2663 +3416 V 166 w(6.611e-01)p 3131 3416 V 169 w(-)p 3393 3416 +V 592 3529 V 1304 3529 V 1411 3495 a(2)p 1561 3529 V +339 w(64)p 1934 3529 V 100 w(4.108e-01)p 2402 3529 V +103 w(0.91)p 2663 3529 V 102 w(2.955e-01)p 3131 3529 +V 103 w(1.16)p 3393 3529 V 592 3642 V 644 3608 a(non-a\016ne)g(grids)p +1304 3642 V 154 w(3)p 1561 3642 V 293 w(512)p 1934 3642 +V 101 w(2.085e-01)p 2402 3642 V 103 w(0.98)p 2663 3642 +V 102 w(1.413e-01)p 3131 3642 V 103 w(1.06)p 3393 3642 +V 592 3755 V 1304 3755 V 1411 3721 a(4)p 1561 3755 V +248 w(4096)p 1934 3755 V 101 w(1.046e-01)p 2402 3755 +V 103 w(0.99)p 2663 3755 V 102 w(6.982e-02)p 3131 3755 +V 103 w(1.02)p 3393 3755 V 592 3868 V 1304 3868 V 1411 +3834 a(5)p 1561 3868 V 202 w(32768)p 1934 3868 V 102 +w(5.237e-02)p 2402 3868 V 103 w(1.00)p 2663 3868 V 102 +w(3.480e-02)p 3131 3868 V 103 w(1.00)p 3393 3868 V 594 +3871 2800 4 v 28 4138 a(T)-8 b(able)26 b(3:)39 b(Errors)26 +b(and)g(con)m(v)m(ergence)j(rates)f(in)d(the)i Fc(H)7 +b Fk(\(curl)o(;)15 b(\012\)-)28 b(and)e Fc(L)2511 4105 +y Fb(2)2550 4138 y Fk(\(\012\)-norm)h(for)g(the)g(3d-example)f(solv)m +(ed)28 4251 y(with)g Fa(deal.II)p Fk(.)h(The)g(\014rst)h(data)g(set)h +(is)e(for)h(the)g(computation)g(on)g(a)h(family)d(of)i(a\016ne)h +(grids,)e(the)h(second)g(set)h(of)28 4364 y(data)i(is)e(for)h +(non-a\016ne)g(trilinear)e(grids.)28 4581 y Fz(The)18 +b(conclusion)g(that)g(can)g(b)r(e)h(dra)n(wn)e(from)h(these)h(n)n +(umerical)e(exp)r(erimen)n(ts)h(is,)i(that)f(the)g(restriction)e(to)h +(three-dimensional)28 4680 y(tetrahedral)26 b(grids)h(of)g(Hiptmair's)h +(result)f(on)g(the)h Fx(L)1715 4650 y Fp(2)1752 4680 +y Fz(-con)n(v)n(ergence)d(of)i(the)h(error)e(\(6\))i(cannot)f(b)r(e)h +(relaxed.)28 4879 y(Finally)-7 b(,)27 b(here)g(are)g(some)g(prett)n(y)g +(pictures:)37 b(the)28 b(v)n(ector)e(\014eld)i(plots)f(from)h(the)g +Fd(MATLAB)d Fz(computations.)1949 5719 y Fk(19)p eop +%%Page: 20 20 +20 19 bop 872 2130 a @beginspecial 55 @llx 201 @lly 549 +@urx 611 @ury 2692 @rwi 1984 @rhi @setspecial +%%BeginDocument: field1.eps +%!PS-Adobe-2.0 EPSF-1.2 +%%Creator: MATLAB, The Mathworks, Inc. +%%Title: field1.eps +%%CreationDate: 08/26/2002 11:46:33 +%%DocumentNeededFonts: Helvetica +%%DocumentProcessColors: Cyan Magenta Yellow Black +%%Pages: 1 +%%BoundingBox: 55 201 549 611 +%%EndComments + +%%BeginProlog +% MathWorks dictionary +/MathWorks 160 dict begin +% definition operators +/bdef {bind def} bind def +/ldef {load def} bind def +/xdef {exch def} bdef +/xstore {exch store} bdef +% operator abbreviations +/c /clip ldef +/cc /concat ldef +/cp /closepath ldef +/gr /grestore ldef +/gs /gsave ldef +/mt /moveto ldef +/np /newpath ldef +/cm /currentmatrix ldef +/sm /setmatrix ldef +/rm /rmoveto ldef +/rl /rlineto ldef +/s /show ldef +/sc {setcmykcolor} bdef +/sr /setrgbcolor ldef +/sg /setgray ldef +/w /setlinewidth ldef +/j /setlinejoin ldef +/cap /setlinecap ldef +/rc {rectclip} bdef +/rf {rectfill} bdef +% page state control +/pgsv () def +/bpage {/pgsv save def} bdef +/epage {pgsv restore} bdef +/bplot /gsave ldef +/eplot {stroke grestore} bdef +% orientation switch +/portraitMode 0 def /landscapeMode 1 def /rotateMode 2 def +% coordinate system mappings +/dpi2point 0 def +% font control +/FontSize 0 def +/FMS {/FontSize xstore findfont [FontSize 0 0 FontSize neg 0 0] + makefont setfont} bdef +/reencode {exch dup where {pop load} {pop StandardEncoding} ifelse + exch dup 3 1 roll findfont dup length dict begin + { 1 index /FID ne {def}{pop pop} ifelse } forall + /Encoding exch def currentdict end definefont pop} bdef +/isroman {findfont /CharStrings get /Agrave known} bdef +/FMSR {3 1 roll 1 index dup isroman {reencode} {pop pop} ifelse + exch FMS} bdef +/csm {1 dpi2point div -1 dpi2point div scale neg translate + dup landscapeMode eq {pop -90 rotate} + {rotateMode eq {90 rotate} if} ifelse} bdef +% line types: solid, dotted, dashed, dotdash +/SO { [] 0 setdash } bdef +/DO { [.5 dpi2point mul 4 dpi2point mul] 0 setdash } bdef +/DA { [6 dpi2point mul] 0 setdash } bdef +/DD { [.5 dpi2point mul 4 dpi2point mul 6 dpi2point mul 4 + dpi2point mul] 0 setdash } bdef +% macros for lines and objects +/L {lineto stroke} bdef +/MP {3 1 roll moveto 1 sub {rlineto} repeat} bdef +/AP {{rlineto} repeat} bdef +/PDlw -1 def +/W {/PDlw currentlinewidth def setlinewidth} def +/PP {closepath eofill} bdef +/DP {closepath stroke} bdef +/MR {4 -2 roll moveto dup 0 exch rlineto exch 0 rlineto + neg 0 exch rlineto closepath} bdef +/FR {MR stroke} bdef +/PR {MR fill} bdef +/L1i {{currentfile picstr readhexstring pop} image} bdef +/tMatrix matrix def +/MakeOval {newpath tMatrix currentmatrix pop translate scale +0 0 1 0 360 arc tMatrix setmatrix} bdef +/FO {MakeOval stroke} bdef +/PO {MakeOval fill} bdef +/PD {currentlinecap 1 cap 3 1 roll 2 copy mt lineto stroke + cap PDlw -1 eq not {PDlw w /PDlw -1 def} if} def +/FA {newpath tMatrix currentmatrix pop translate scale + 0 0 1 5 -2 roll arc tMatrix setmatrix stroke} bdef +/PA {newpath tMatrix currentmatrix pop translate 0 0 moveto scale + 0 0 1 5 -2 roll arc closepath tMatrix setmatrix fill} bdef +/FAn {newpath tMatrix currentmatrix pop translate scale + 0 0 1 5 -2 roll arcn tMatrix setmatrix stroke} bdef +/PAn {newpath tMatrix currentmatrix pop translate 0 0 moveto scale + 0 0 1 5 -2 roll arcn closepath tMatrix setmatrix fill} bdef +/vradius 0 def /hradius 0 def /lry 0 def +/lrx 0 def /uly 0 def /ulx 0 def /rad 0 def +/MRR {/vradius xdef /hradius xdef /lry xdef /lrx xdef /uly xdef + /ulx xdef newpath tMatrix currentmatrix pop ulx hradius add uly + vradius add translate hradius vradius scale 0 0 1 180 270 arc + tMatrix setmatrix lrx hradius sub uly vradius add translate + hradius vradius scale 0 0 1 270 360 arc tMatrix setmatrix + lrx hradius sub lry vradius sub translate hradius vradius scale + 0 0 1 0 90 arc tMatrix setmatrix ulx hradius add lry vradius sub + translate hradius vradius scale 0 0 1 90 180 arc tMatrix setmatrix + closepath} bdef +/FRR {MRR stroke } bdef +/PRR {MRR fill } bdef +/MlrRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lry uly sub 2 div def + newpath tMatrix currentmatrix pop ulx rad add uly rad add translate + rad rad scale 0 0 1 90 270 arc tMatrix setmatrix lrx rad sub lry rad + sub translate rad rad scale 0 0 1 270 90 arc tMatrix setmatrix + closepath} bdef +/FlrRR {MlrRR stroke } bdef +/PlrRR {MlrRR fill } bdef +/MtbRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lrx ulx sub 2 div def + newpath tMatrix currentmatrix pop ulx rad add uly rad add translate + rad rad scale 0 0 1 180 360 arc tMatrix setmatrix lrx rad sub lry rad + sub translate rad rad scale 0 0 1 0 180 arc tMatrix setmatrix + closepath} bdef +/FtbRR {MtbRR stroke } bdef +/PtbRR {MtbRR fill } bdef +/stri 6 array def /dtri 6 array def +/smat 6 array def /dmat 6 array def +/tmat1 6 array def /tmat2 6 array def /dif 3 array def +/asub {/ind2 exch def /ind1 exch def dup dup + ind1 get exch ind2 get sub exch } bdef +/tri_to_matrix { + 2 0 asub 3 1 asub 4 0 asub 5 1 asub + dup 0 get exch 1 get 7 -1 roll astore } bdef +/compute_transform { + dmat dtri tri_to_matrix tmat1 invertmatrix + smat stri tri_to_matrix tmat2 concatmatrix } bdef +/ds {stri astore pop} bdef +/dt {dtri astore pop} bdef +/db {2 copy /cols xdef /rows xdef mul dup string + currentfile exch readhexstring pop + /bmap xdef pop pop} bdef +/it {gs np dtri aload pop moveto lineto lineto cp c + cols rows 8 compute_transform + {bmap} image gr}bdef +/il {newpath moveto lineto stroke}bdef +currentdict end def +%%EndProlog + +%%BeginSetup +MathWorks begin + +0 cap + +end +%%EndSetup + +%%Page: 1 1 +%%BeginPageSetup +%%PageBoundingBox: 55 201 549 611 +MathWorks begin +bpage +%%EndPageSetup + +%%BeginObject: obj1 +bplot + +/dpi2point 12 def +portraitMode 0204 7344 csm + + 457 4 5930 4927 MR c np +92 dict begin %Colortable dictionary +/c0 { 0 0 0 sr} bdef +/c1 { 1 1 1 sr} bdef +/c2 { 1 0 0 sr} bdef +/c3 { 0 1 0 sr} bdef +/c4 { 0 0 1 sr} bdef +/c5 { 1 1 0 sr} bdef +/c6 { 1 0 1 sr} bdef +/c7 { 0 1 1 sr} bdef +c0 +1 j +1 sg + 0 0 6913 5185 PR +6 w +0 4225 5356 0 0 -4225 899 4614 4 MP +PP +-5356 0 0 4225 5356 0 0 -4225 899 4614 5 MP stroke +4 w +DO +SO +6 w +0 sg + 899 4614 mt 6255 4614 L + 899 389 mt 6255 389 L + 899 4614 mt 899 389 L +6255 4614 mt 6255 389 L + 899 4614 mt 6255 4614 L + 899 4614 mt 899 389 L + 899 4614 mt 899 4560 L + 899 389 mt 899 442 L +%%IncludeResource: font Helvetica +/Helvetica /ISOLatin1Encoding 120 FMSR + + 796 4759 mt +(-1) s +1970 4614 mt 1970 4560 L +1970 389 mt 1970 442 L +1817 4759 mt +(-0.5) s +3041 4614 mt 3041 4560 L +3041 389 mt 3041 442 L +3008 4759 mt +(0) s +4112 4614 mt 4112 4560 L +4112 389 mt 4112 442 L +4029 4759 mt +(0.5) s +5183 4614 mt 5183 4560 L +5183 389 mt 5183 442 L +5150 4759 mt +(1) s +6255 4614 mt 6255 4560 L +6255 389 mt 6255 442 L +6172 4759 mt +(1.5) s + 899 4614 mt 952 4614 L +6255 4614 mt 6201 4614 L + 628 4658 mt +(-1.5) s + 899 3909 mt 952 3909 L +6255 3909 mt 6201 3909 L + 728 3953 mt +(-1) s + 899 3205 mt 952 3205 L +6255 3205 mt 6201 3205 L + 628 3249 mt +(-0.5) s + 899 2501 mt 952 2501 L +6255 2501 mt 6201 2501 L + 798 2545 mt +(0) s + 899 1797 mt 952 1797 L +6255 1797 mt 6201 1797 L + 698 1841 mt +(0.5) s + 899 1093 mt 952 1093 L +6255 1093 mt 6201 1093 L + 798 1137 mt +(1) s + 899 389 mt 952 389 L +6255 389 mt 6201 389 L + 698 433 mt +(1.5) s + 899 4614 mt 6255 4614 L + 899 389 mt 6255 389 L + 899 4614 mt 899 389 L +6255 4614 mt 6255 389 L +gs 899 389 5357 4226 MR c np +15 0 899 3909 2 MP stroke +74 0 899 3708 2 MP stroke +137 0 899 3507 2 MP stroke +176 0 899 3306 2 MP stroke +217 0 899 3105 2 MP stroke +237 0 899 2903 2 MP stroke +257 0 899 2702 2 MP stroke +257 0 899 2501 2 MP stroke +247 0 899 2300 2 MP stroke +235 0 899 2099 2 MP stroke +206 0 899 1897 2 MP stroke +172 0 899 1696 2 MP stroke +123 0 899 1495 2 MP stroke +67 0 899 1294 2 MP stroke +899 1093 PD +0 -49 1205 3909 2 MP stroke +74 -40 1205 3708 2 MP stroke +124 -48 1205 3507 2 MP stroke +176 -41 1205 3306 2 MP stroke +206 -48 1205 3105 2 MP stroke +237 -41 1205 2903 2 MP stroke +248 -47 1205 2702 2 MP stroke +257 -42 1205 2501 2 MP stroke +254 -47 1205 2300 2 MP stroke +235 -43 1205 2099 2 MP stroke +210 -45 1205 1897 2 MP stroke +172 -44 1205 1696 2 MP stroke +126 -45 1205 1495 2 MP stroke +68 -45 1205 1294 2 MP stroke +0 -45 1205 1093 2 MP stroke +0 -90 1511 3909 2 MP stroke +73 -81 1511 3708 2 MP stroke +124 -89 1511 3507 2 MP stroke +176 -82 1511 3306 2 MP stroke +216 -82 1511 3105 2 MP stroke +237 -82 1511 2903 2 MP stroke +255 -82 1511 2702 2 MP stroke +257 -82 1511 2501 2 MP stroke +249 -83 1511 2300 2 MP stroke +235 -83 1511 2099 2 MP stroke +208 -82 1511 1897 2 MP stroke +172 -82 1511 1696 2 MP stroke +126 -83 1511 1495 2 MP stroke +68 -83 1511 1294 2 MP stroke +0 -82 1511 1093 2 MP stroke +0 -116 1817 3909 2 MP stroke +61 -116 1817 3708 2 MP stroke +124 -116 1817 3507 2 MP stroke +166 -116 1817 3306 2 MP stroke +207 -116 1817 3105 2 MP stroke +237 -110 1817 2903 2 MP stroke +249 -115 1817 2702 2 MP stroke +257 -112 1817 2501 2 MP stroke +253 -115 1817 2300 2 MP stroke +235 -113 1817 2099 2 MP stroke +210 -114 1817 1897 2 MP stroke +173 -114 1817 1696 2 MP stroke +125 -114 1817 1495 2 MP stroke +67 -114 1817 1294 2 MP stroke +0 -114 1817 1093 2 MP stroke +0 -143 2123 3909 2 MP stroke +72 -136 2123 3708 2 MP stroke +124 -142 2123 3507 2 MP stroke +175 -137 2123 3306 2 MP stroke +214 -137 2123 3105 2 MP stroke +237 -137 2123 2903 2 MP stroke +254 -137 2123 2702 2 MP stroke +257 -137 2123 2501 2 MP stroke +250 -138 2123 2300 2 MP stroke +236 -138 2123 2099 2 MP stroke +210 -138 2123 1897 2 MP stroke +173 -138 2123 1696 2 MP stroke +125 -137 2123 1495 2 MP stroke +69 -139 2123 1294 2 MP stroke +0 -136 2123 1093 2 MP stroke +0 -156 2429 3909 2 MP stroke +63 -156 2429 3708 2 MP stroke +125 -156 2429 3507 2 MP stroke +168 -156 2429 3306 2 MP stroke +208 -156 2429 3105 2 MP stroke +237 -152 2429 2903 2 MP stroke +250 -155 2429 2702 2 MP stroke +257 -154 2429 2501 2 MP stroke +252 -156 2429 2300 2 MP stroke +236 -156 2429 2099 2 MP stroke +209 -155 2429 1897 2 MP stroke +171 -155 2429 1696 2 MP stroke +125 -155 2429 1495 2 MP stroke +65 -155 2429 1294 2 MP stroke +0 -155 2429 1093 2 MP stroke +0 -169 2735 3909 2 MP stroke +71 -163 2735 3708 2 MP stroke +125 -168 2735 3507 2 MP stroke +175 -164 2735 3306 2 MP stroke +208 -168 2735 3105 2 MP stroke +236 -164 2735 2903 2 MP stroke +251 -166 2735 2702 2 MP stroke +257 -165 2735 2501 2 MP stroke +252 -166 2735 2300 2 MP stroke +236 -166 2735 2099 2 MP stroke +209 -164 2735 1897 2 MP stroke +174 -166 2735 1696 2 MP stroke +125 -164 2735 1495 2 MP stroke +70 -167 2735 1294 2 MP stroke +0 -163 2735 1093 2 MP stroke +0 -169 3041 3909 2 MP stroke +64 -169 3041 3708 2 MP stroke +125 -169 3041 3507 2 MP stroke +170 -169 3041 3306 2 MP stroke +209 -169 3041 3105 2 MP stroke +234 -169 3041 2903 2 MP stroke +251 -169 3041 2702 2 MP stroke +257 -169 3041 2501 2 MP stroke +251 -169 3041 2300 2 MP stroke +234 -169 3041 2099 2 MP stroke +209 -169 3041 1897 2 MP stroke +170 -169 3041 1696 2 MP stroke +125 -169 3041 1495 2 MP stroke +64 -169 3041 1294 2 MP stroke +0 -169 3041 1093 2 MP stroke +0 -163 3347 3909 2 MP stroke +71 -167 3347 3708 2 MP stroke +125 -164 3347 3507 2 MP stroke +174 -167 3347 3306 2 MP stroke +209 -165 3347 3105 2 MP stroke +236 -166 3347 2903 2 MP stroke +252 -165 3347 2702 2 MP stroke +257 -165 3347 2501 2 MP stroke +251 -167 3347 2300 2 MP stroke +237 -165 3347 2099 2 MP stroke +209 -167 3347 1897 2 MP stroke +175 -164 3347 1696 2 MP stroke +125 -168 3347 1495 2 MP stroke +72 -163 3347 1294 2 MP stroke +0 -169 3347 1093 2 MP stroke +0 -154 3653 3909 2 MP stroke +66 -155 3653 3708 2 MP stroke +125 -155 3653 3507 2 MP stroke +172 -155 3653 3306 2 MP stroke +210 -156 3653 3105 2 MP stroke +236 -155 3653 2903 2 MP stroke +252 -155 3653 2702 2 MP stroke +257 -154 3653 2501 2 MP stroke +250 -156 3653 2300 2 MP stroke +237 -153 3653 2099 2 MP stroke +208 -155 3653 1897 2 MP stroke +168 -156 3653 1696 2 MP stroke +125 -156 3653 1495 2 MP stroke +63 -156 3653 1294 2 MP stroke +0 -157 3653 1093 2 MP stroke +0 -136 3959 3909 2 MP stroke +70 -138 3959 3708 2 MP stroke +126 -137 3959 3507 2 MP stroke +174 -138 3959 3306 2 MP stroke +210 -138 3959 3105 2 MP stroke +236 -137 3959 2903 2 MP stroke +251 -137 3959 2702 2 MP stroke +257 -137 3959 2501 2 MP stroke +255 -137 3959 2300 2 MP stroke +237 -137 3959 2099 2 MP stroke +215 -136 3959 1897 2 MP stroke +176 -136 3959 1696 2 MP stroke +125 -142 3959 1495 2 MP stroke +73 -136 3959 1294 2 MP stroke +0 -144 3959 1093 2 MP stroke +0 -113 4265 3909 2 MP stroke +67 -113 4265 3708 2 MP stroke +126 -114 4265 3507 2 MP stroke +173 -114 4265 3306 2 MP stroke +210 -114 4265 3105 2 MP stroke +236 -112 4265 2903 2 MP stroke +253 -114 4265 2702 2 MP stroke +257 -112 4265 2501 2 MP stroke +250 -115 4265 2300 2 MP stroke +237 -111 4265 2099 2 MP stroke +208 -115 4265 1897 2 MP stroke +167 -115 4265 1696 2 MP stroke +125 -116 4265 1495 2 MP stroke +62 -116 4265 1294 2 MP stroke +0 -117 4265 1093 2 MP stroke +0 -81 4571 3909 2 MP stroke +69 -83 4571 3708 2 MP stroke +126 -83 4571 3507 2 MP stroke +173 -83 4571 3306 2 MP stroke +208 -83 4571 3105 2 MP stroke +236 -82 4571 2903 2 MP stroke +249 -82 4571 2702 2 MP stroke +257 -82 4571 2501 2 MP stroke +256 -82 4571 2300 2 MP stroke +237 -82 4571 2099 2 MP stroke +217 -82 4571 1897 2 MP stroke +176 -82 4571 1696 2 MP stroke +124 -89 4571 1495 2 MP stroke +74 -82 4571 1294 2 MP stroke +0 -91 4571 1093 2 MP stroke +0 -44 4877 3909 2 MP stroke +68 -45 4877 3708 2 MP stroke +126 -45 4877 3507 2 MP stroke +173 -44 4877 3306 2 MP stroke +211 -46 4877 3105 2 MP stroke +236 -43 4877 2903 2 MP stroke +255 -46 4877 2702 2 MP stroke +257 -42 4877 2501 2 MP stroke +249 -47 4877 2300 2 MP stroke +238 -42 4877 2099 2 MP stroke +207 -47 4877 1897 2 MP stroke +177 -40 4877 1696 2 MP stroke +124 -48 4877 1495 2 MP stroke +74 -40 4877 1294 2 MP stroke +0 -49 4877 1093 2 MP stroke +5183 3909 PD +68 0 5183 3708 2 MP stroke +124 0 5183 3507 2 MP stroke +172 0 5183 3306 2 MP stroke +207 0 5183 3105 2 MP stroke +236 0 5183 2903 2 MP stroke +248 0 5183 2702 2 MP stroke +257 0 5183 2501 2 MP stroke +257 0 5183 2300 2 MP stroke +238 0 5183 2099 2 MP stroke +218 0 5183 1897 2 MP stroke +177 0 5183 1696 2 MP stroke +138 0 5183 1495 2 MP stroke +75 0 5183 1294 2 MP stroke +5183 1093 PD +-5 1 5 1 909 3908 3 MP stroke +-25 5 25 5 948 3703 3 MP stroke +-45 10 45 10 991 3497 3 MP stroke +-58 12 58 13 1017 3293 3 MP stroke +-71 15 71 16 1045 3089 3 MP stroke +-78 17 78 17 1058 2886 3 MP stroke +-85 19 85 18 1071 2684 3 MP stroke +-85 18 85 18 1071 2483 3 MP stroke +-81 18 81 18 1065 2282 3 MP stroke +-78 16 78 17 1056 2082 3 MP stroke +-68 15 68 14 1037 1883 3 MP stroke +-57 13 57 12 1014 1684 3 MP stroke +-40 9 40 9 982 1486 3 MP stroke +-22 5 22 5 944 1289 3 MP stroke +899 1093 PD +8 17 9 -17 1196 3877 3 MP stroke +-18 19 31 -8 1248 3676 3 MP stroke +-33 24 49 -7 1280 3466 3 MP stroke +-52 26 65 -1 1316 3266 3 MP stroke +-60 30 76 -1 1335 3058 3 MP stroke +-71 31 85 3 1357 2859 3 MP stroke +-74 33 90 2 1363 2653 3 MP stroke +-78 32 92 5 1370 2454 3 MP stroke +-76 34 92 3 1367 2250 3 MP stroke +-71 31 85 3 1355 2053 3 MP stroke +-62 30 77 0 1338 1852 3 MP stroke +-50 27 64 -2 1313 1654 3 MP stroke +-34 24 49 -6 1282 1456 3 MP stroke +-15 20 30 -10 1243 1259 3 MP stroke +7 15 8 -15 1197 1063 3 MP stroke +15 30 15 -30 1496 3849 3 MP stroke +-11 32 38 -21 1546 3648 3 MP stroke +-26 38 56 -20 1579 3438 3 MP stroke +-45 40 72 -14 1615 3238 3 MP stroke +-58 42 85 -11 1642 3034 3 MP stroke +-65 44 92 -10 1656 2831 3 MP stroke +-70 45 98 -9 1668 2629 3 MP stroke +-71 45 99 -8 1669 2427 3 MP stroke +-69 45 96 -10 1664 2227 3 MP stroke +-64 44 91 -10 1655 2026 3 MP stroke +-55 42 83 -12 1636 1827 3 MP stroke +-43 39 70 -14 1613 1628 3 MP stroke +-28 37 56 -19 1581 1431 3 MP stroke +-9 32 36 -22 1543 1233 3 MP stroke +13 27 14 -27 1497 1038 3 MP stroke +19 38 20 -38 1797 3831 3 MP stroke +-1 43 39 -34 1839 3626 3 MP stroke +-22 47 60 -29 1881 3420 3 MP stroke +-36 50 74 -26 1909 3216 3 MP stroke +-49 53 87 -23 1937 3012 3 MP stroke +-60 53 97 -19 1957 2812 3 MP stroke +-63 56 101 -20 1965 2607 3 MP stroke +-67 56 104 -19 1970 2408 3 MP stroke +-65 56 103 -20 1967 2205 3 MP stroke +-59 54 96 -20 1956 2006 3 MP stroke +-51 53 88 -23 1939 1806 3 MP stroke +-38 50 76 -26 1914 1608 3 MP stroke +-22 47 60 -29 1882 1410 3 MP stroke +-4 43 41 -33 1843 1213 3 MP stroke +18 38 19 -38 1798 1017 3 MP stroke +23 47 24 -47 2099 3813 3 MP stroke +-1 50 46 -40 2149 3612 3 MP stroke +-17 56 64 -38 2183 3403 3 MP stroke +-35 58 80 -33 2218 3202 3 MP stroke +-48 60 93 -30 2244 2998 3 MP stroke +-56 63 101 -29 2259 2795 3 MP stroke +-61 64 106 -27 2271 2592 3 MP stroke +-62 63 108 -27 2272 2391 3 MP stroke +-60 64 105 -28 2268 2190 3 MP stroke +-55 62 101 -28 2258 1989 3 MP stroke +-47 61 93 -31 2240 1790 3 MP stroke +-34 58 80 -33 2216 1591 3 MP stroke +-18 54 64 -36 2184 1394 3 MP stroke +0 51 46 -41 2146 1196 3 MP stroke +22 45 23 -45 2100 1002 3 MP stroke +26 52 26 -52 2403 3805 3 MP stroke +5 56 47 -47 2445 3599 3 MP stroke +-16 60 67 -43 2487 3394 3 MP stroke +-30 63 81 -39 2516 3189 3 MP stroke +-43 66 95 -36 2542 2985 3 MP stroke +-53 67 104 -33 2562 2784 3 MP stroke +-57 69 108 -33 2571 2580 3 MP stroke +-59 69 110 -32 2576 2379 3 MP stroke +-57 70 109 -34 2572 2178 3 MP stroke +-52 69 104 -35 2561 1978 3 MP stroke +-43 66 94 -36 2544 1778 3 MP stroke +-31 64 82 -39 2518 1580 3 MP stroke +-15 60 67 -42 2487 1382 3 MP stroke +4 56 47 -46 2447 1185 3 MP stroke +25 51 26 -51 2403 989 3 MP stroke +28 56 28 -56 2707 3796 3 MP stroke +4 59 50 -49 2756 3594 3 MP stroke +-14 64 69 -46 2791 3385 3 MP stroke +-31 66 85 -41 2825 3183 3 MP stroke +-41 70 96 -41 2847 2978 3 MP stroke +-50 71 105 -37 2866 2776 3 MP stroke +-55 73 111 -37 2875 2573 3 MP stroke +-57 73 112 -36 2880 2372 3 MP stroke +-56 73 111 -37 2876 2171 3 MP stroke +-50 71 105 -38 2866 1971 3 MP stroke +-42 69 96 -39 2848 1772 3 MP stroke +-30 67 85 -42 2824 1572 3 MP stroke +-14 63 68 -45 2792 1376 3 MP stroke +5 60 51 -50 2754 1177 3 MP stroke +27 53 27 -53 2708 983 3 MP stroke +28 56 28 -56 3013 3796 3 MP stroke +7 60 49 -51 3056 3590 3 MP stroke +-13 65 69 -47 3097 3385 3 MP stroke +-28 68 84 -43 3127 3180 3 MP stroke +-41 70 97 -40 3153 2976 3 MP stroke +-49 73 105 -39 3170 2773 3 MP stroke +-55 74 111 -38 3181 2571 3 MP stroke +-57 74 113 -37 3185 2369 3 MP stroke +-55 74 111 -38 3181 2169 3 MP stroke +-49 72 105 -39 3170 1969 3 MP stroke +-41 71 97 -41 3153 1769 3 MP stroke +-28 68 84 -44 3127 1571 3 MP stroke +-13 65 69 -47 3097 1373 3 MP stroke +7 60 49 -51 3056 1176 3 MP stroke +28 55 28 -55 3013 979 3 MP stroke +27 54 27 -54 3320 3800 3 MP stroke +4 60 51 -50 3367 3591 3 MP stroke +-14 63 68 -45 3404 3388 3 MP stroke +-30 68 85 -43 3436 3182 3 MP stroke +-42 69 96 -39 3460 2979 3 MP stroke +-50 72 105 -38 3478 2775 3 MP stroke +-56 72 111 -36 3488 2573 3 MP stroke +-57 73 112 -36 3492 2372 3 MP stroke +-55 73 111 -37 3487 2170 3 MP stroke +-51 71 106 -37 3478 1971 3 MP stroke +-42 70 97 -40 3459 1770 3 MP stroke +-31 67 85 -42 3437 1574 3 MP stroke +-13 64 69 -46 3403 1373 3 MP stroke +3 59 51 -48 3368 1179 3 MP stroke +28 55 28 -55 3319 979 3 MP stroke +26 51 26 -51 3627 3806 3 MP stroke +4 56 48 -47 3671 3600 3 MP stroke +-15 60 67 -42 3711 3394 3 MP stroke +-31 63 83 -39 3742 3190 3 MP stroke +-44 67 95 -37 3768 2986 3 MP stroke +-52 68 103 -34 3786 2782 3 MP stroke +-57 69 109 -33 3796 2580 3 MP stroke +-59 69 110 -32 3800 2379 3 MP stroke +-56 70 108 -34 3795 2178 3 MP stroke +-53 67 104 -33 3786 1979 3 MP stroke +-43 66 94 -36 3767 1778 3 MP stroke +-29 64 81 -40 3740 1580 3 MP stroke +-16 60 67 -43 3711 1382 3 MP stroke +5 56 47 -47 3669 1185 3 MP stroke +26 52 26 -52 3627 988 3 MP stroke +23 45 22 -45 3937 3818 3 MP stroke +0 50 46 -40 3983 3610 3 MP stroke +-19 54 64 -36 4021 3406 3 MP stroke +-35 58 81 -33 4052 3201 3 MP stroke +-46 60 92 -30 4077 2997 3 MP stroke +-55 62 101 -28 4094 2794 3 MP stroke +-60 63 106 -27 4104 2592 3 MP stroke +-62 63 107 -27 4109 2391 3 MP stroke +-62 63 107 -27 4107 2190 3 MP stroke +-55 62 101 -28 4095 1990 3 MP stroke +-48 60 94 -29 4080 1790 3 MP stroke +-36 57 81 -32 4054 1592 3 MP stroke +-18 56 65 -38 4019 1391 3 MP stroke +-2 50 47 -40 3985 1198 3 MP stroke +24 48 24 -48 3935 997 3 MP stroke +19 37 19 -37 4246 3833 3 MP stroke +-3 42 41 -32 4291 3627 3 MP stroke +-23 47 60 -29 4331 3422 3 MP stroke +-38 50 76 -25 4362 3217 3 MP stroke +-50 52 88 -22 4387 3013 3 MP stroke +-59 54 97 -20 4404 2811 3 MP stroke +-64 56 102 -19 4416 2607 3 MP stroke +-66 56 103 -19 4419 2408 3 MP stroke +-64 56 102 -20 4413 2205 3 MP stroke +-60 54 96 -20 4406 2008 3 MP stroke +-50 53 88 -23 4385 1805 3 MP stroke +-36 50 74 -26 4358 1607 3 MP stroke +-22 47 61 -30 4329 1409 3 MP stroke +-1 43 40 -34 4287 1212 3 MP stroke +19 39 19 -39 4246 1015 3 MP stroke +14 27 13 -27 4558 3855 3 MP stroke +-9 33 37 -23 4603 3648 3 MP stroke +-28 37 55 -18 4642 3442 3 MP stroke +-43 40 71 -15 4673 3238 3 MP stroke +-55 42 82 -12 4697 3034 3 MP stroke +-64 44 92 -10 4715 2831 3 MP stroke +-68 45 95 -9 4725 2629 3 MP stroke +-71 45 98 -8 4730 2427 3 MP stroke +-71 45 98 -8 4729 2226 3 MP stroke +-64 44 91 -10 4717 2027 3 MP stroke +-58 43 85 -12 4703 1827 3 MP stroke +-44 40 71 -15 4676 1629 3 MP stroke +-26 38 55 -20 4640 1426 3 MP stroke +-11 32 38 -22 4607 1234 3 MP stroke +15 30 15 -30 4556 1032 3 MP stroke +8 15 7 -15 4870 3880 3 MP stroke +-15 20 30 -10 4915 3673 3 MP stroke +-34 24 49 -6 4954 3468 3 MP stroke +-50 27 64 -2 4986 3264 3 MP stroke +-62 30 77 0 5011 3059 3 MP stroke +-71 31 85 2 5028 2858 3 MP stroke +-77 33 92 3 5040 2653 3 MP stroke +-77 32 91 5 5043 2454 3 MP stroke +-75 33 90 3 5036 2250 3 MP stroke +-72 31 86 3 5029 2054 3 MP stroke +-60 30 76 -1 5008 1851 3 MP stroke +-52 26 65 0 4989 1656 3 MP stroke +-33 25 49 -7 4952 1454 3 MP stroke +-18 19 31 -8 4920 1262 3 MP stroke +8 16 8 -16 4869 1060 3 MP stroke +5183 3909 PD +-22 5 22 5 5229 3703 3 MP stroke +-41 9 41 9 5266 3498 3 MP stroke +-56 12 56 13 5299 3293 3 MP stroke +-68 14 68 15 5322 3090 3 MP stroke +-78 17 78 16 5341 2887 3 MP stroke +-82 18 82 18 5349 2684 3 MP stroke +-84 18 84 18 5356 2483 3 MP stroke +-84 18 84 19 5356 2281 3 MP stroke +-79 17 79 17 5342 2082 3 MP stroke +-72 16 72 15 5329 1882 3 MP stroke +-58 13 58 12 5302 1684 3 MP stroke +-46 10 46 10 5275 1485 3 MP stroke +-25 5 25 5 5233 1289 3 MP stroke +5183 1093 PD +gr + +%%IncludeResource: font Helvetica +/Helvetica /ISOLatin1Encoding 168 FMSR + +2300 208 mt +(Vector-field plot of FE-solution E) s +%%IncludeResource: font Helvetica +/Helvetica /ISOLatin1Encoding 132 FMSR + +4779 292 mt +(h) s +%%IncludeResource: font Helvetica +/Helvetica /ISOLatin1Encoding 120 FMSR + +3546 4902 mt +(x) s + 573 2532 mt -90 rotate +(y) s +90 rotate + +end + +eplot +%%EndObject + +epage +end + +showpage + +%%Trailer +%%EOF + +%%EndDocument + @endspecial 758 2326 a Fk(Figure)30 b(4:)41 b(V)-8 b(ector-\014eld)32 +b(plot)d(of)i(the)f(FE-solution)g(of)g(example)h(\(31\).)872 +4824 y @beginspecial 55 @llx 201 @lly 549 @urx 611 @ury +2692 @rwi 1984 @rhi @setspecial +%%BeginDocument: field2.eps +%!PS-Adobe-2.0 EPSF-1.2 +%%Creator: MATLAB, The Mathworks, Inc. +%%Title: pix.eps +%%CreationDate: 08/26/2002 11:55:05 +%%DocumentNeededFonts: Helvetica +%%DocumentProcessColors: Cyan Magenta Yellow Black +%%Pages: 1 +%%BoundingBox: 55 201 549 611 +%%EndComments + +%%BeginProlog +% MathWorks dictionary +/MathWorks 160 dict begin +% definition operators +/bdef {bind def} bind def +/ldef {load def} bind def +/xdef {exch def} bdef +/xstore {exch store} bdef +% operator abbreviations +/c /clip ldef +/cc /concat ldef +/cp /closepath ldef +/gr /grestore ldef +/gs /gsave ldef +/mt /moveto ldef +/np /newpath ldef +/cm /currentmatrix ldef +/sm /setmatrix ldef +/rm /rmoveto ldef +/rl /rlineto ldef +/s /show ldef +/sc {setcmykcolor} bdef +/sr /setrgbcolor ldef +/sg /setgray ldef +/w /setlinewidth ldef +/j /setlinejoin ldef +/cap /setlinecap ldef +/rc {rectclip} bdef +/rf {rectfill} bdef +% page state control +/pgsv () def +/bpage {/pgsv save def} bdef +/epage {pgsv restore} bdef +/bplot /gsave ldef +/eplot {stroke grestore} bdef +% orientation switch +/portraitMode 0 def /landscapeMode 1 def /rotateMode 2 def +% coordinate system mappings +/dpi2point 0 def +% font control +/FontSize 0 def +/FMS {/FontSize xstore findfont [FontSize 0 0 FontSize neg 0 0] + makefont setfont} bdef +/reencode {exch dup where {pop load} {pop StandardEncoding} ifelse + exch dup 3 1 roll findfont dup length dict begin + { 1 index /FID ne {def}{pop pop} ifelse } forall + /Encoding exch def currentdict end definefont pop} bdef +/isroman {findfont /CharStrings get /Agrave known} bdef +/FMSR {3 1 roll 1 index dup isroman {reencode} {pop pop} ifelse + exch FMS} bdef +/csm {1 dpi2point div -1 dpi2point div scale neg translate + dup landscapeMode eq {pop -90 rotate} + {rotateMode eq {90 rotate} if} ifelse} bdef +% line types: solid, dotted, dashed, dotdash +/SO { [] 0 setdash } bdef +/DO { [.5 dpi2point mul 4 dpi2point mul] 0 setdash } bdef +/DA { [6 dpi2point mul] 0 setdash } bdef +/DD { [.5 dpi2point mul 4 dpi2point mul 6 dpi2point mul 4 + dpi2point mul] 0 setdash } bdef +% macros for lines and objects +/L {lineto stroke} bdef +/MP {3 1 roll moveto 1 sub {rlineto} repeat} bdef +/AP {{rlineto} repeat} bdef +/PDlw -1 def +/W {/PDlw currentlinewidth def setlinewidth} def +/PP {closepath eofill} bdef +/DP {closepath stroke} bdef +/MR {4 -2 roll moveto dup 0 exch rlineto exch 0 rlineto + neg 0 exch rlineto closepath} bdef +/FR {MR stroke} bdef +/PR {MR fill} bdef +/L1i {{currentfile picstr readhexstring pop} image} bdef +/tMatrix matrix def +/MakeOval {newpath tMatrix currentmatrix pop translate scale +0 0 1 0 360 arc tMatrix setmatrix} bdef +/FO {MakeOval stroke} bdef +/PO {MakeOval fill} bdef +/PD {currentlinecap 1 cap 3 1 roll 2 copy mt lineto stroke + cap PDlw -1 eq not {PDlw w /PDlw -1 def} if} def +/FA {newpath tMatrix currentmatrix pop translate scale + 0 0 1 5 -2 roll arc tMatrix setmatrix stroke} bdef +/PA {newpath tMatrix currentmatrix pop translate 0 0 moveto scale + 0 0 1 5 -2 roll arc closepath tMatrix setmatrix fill} bdef +/FAn {newpath tMatrix currentmatrix pop translate scale + 0 0 1 5 -2 roll arcn tMatrix setmatrix stroke} bdef +/PAn {newpath tMatrix currentmatrix pop translate 0 0 moveto scale + 0 0 1 5 -2 roll arcn closepath tMatrix setmatrix fill} bdef +/vradius 0 def /hradius 0 def /lry 0 def +/lrx 0 def /uly 0 def /ulx 0 def /rad 0 def +/MRR {/vradius xdef /hradius xdef /lry xdef /lrx xdef /uly xdef + /ulx xdef newpath tMatrix currentmatrix pop ulx hradius add uly + vradius add translate hradius vradius scale 0 0 1 180 270 arc + tMatrix setmatrix lrx hradius sub uly vradius add translate + hradius vradius scale 0 0 1 270 360 arc tMatrix setmatrix + lrx hradius sub lry vradius sub translate hradius vradius scale + 0 0 1 0 90 arc tMatrix setmatrix ulx hradius add lry vradius sub + translate hradius vradius scale 0 0 1 90 180 arc tMatrix setmatrix + closepath} bdef +/FRR {MRR stroke } bdef +/PRR {MRR fill } bdef +/MlrRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lry uly sub 2 div def + newpath tMatrix currentmatrix pop ulx rad add uly rad add translate + rad rad scale 0 0 1 90 270 arc tMatrix setmatrix lrx rad sub lry rad + sub translate rad rad scale 0 0 1 270 90 arc tMatrix setmatrix + closepath} bdef +/FlrRR {MlrRR stroke } bdef +/PlrRR {MlrRR fill } bdef +/MtbRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lrx ulx sub 2 div def + newpath tMatrix currentmatrix pop ulx rad add uly rad add translate + rad rad scale 0 0 1 180 360 arc tMatrix setmatrix lrx rad sub lry rad + sub translate rad rad scale 0 0 1 0 180 arc tMatrix setmatrix + closepath} bdef +/FtbRR {MtbRR stroke } bdef +/PtbRR {MtbRR fill } bdef +/stri 6 array def /dtri 6 array def +/smat 6 array def /dmat 6 array def +/tmat1 6 array def /tmat2 6 array def /dif 3 array def +/asub {/ind2 exch def /ind1 exch def dup dup + ind1 get exch ind2 get sub exch } bdef +/tri_to_matrix { + 2 0 asub 3 1 asub 4 0 asub 5 1 asub + dup 0 get exch 1 get 7 -1 roll astore } bdef +/compute_transform { + dmat dtri tri_to_matrix tmat1 invertmatrix + smat stri tri_to_matrix tmat2 concatmatrix } bdef +/ds {stri astore pop} bdef +/dt {dtri astore pop} bdef +/db {2 copy /cols xdef /rows xdef mul dup string + currentfile exch readhexstring pop + /bmap xdef pop pop} bdef +/it {gs np dtri aload pop moveto lineto lineto cp c + cols rows 8 compute_transform + {bmap} image gr}bdef +/il {newpath moveto lineto stroke}bdef +currentdict end def +%%EndProlog + +%%BeginSetup +MathWorks begin + +0 cap + +end +%%EndSetup + +%%Page: 1 1 +%%BeginPageSetup +%%PageBoundingBox: 55 201 549 611 +MathWorks begin +bpage +%%EndPageSetup + +%%BeginObject: obj1 +bplot + +/dpi2point 12 def +portraitMode 0204 7344 csm + + 457 4 5930 4927 MR c np +92 dict begin %Colortable dictionary +/c0 { 0 0 0 sr} bdef +/c1 { 1 1 1 sr} bdef +/c2 { 1 0 0 sr} bdef +/c3 { 0 1 0 sr} bdef +/c4 { 0 0 1 sr} bdef +/c5 { 1 1 0 sr} bdef +/c6 { 1 0 1 sr} bdef +/c7 { 0 1 1 sr} bdef +c0 +1 j +1 sg + 0 0 6913 5185 PR +6 w +0 4225 5356 0 0 -4225 899 4614 4 MP +PP +-5356 0 0 4225 5356 0 0 -4225 899 4614 5 MP stroke +4 w +DO +SO +6 w +0 sg + 899 4614 mt 6255 4614 L + 899 389 mt 6255 389 L + 899 4614 mt 899 389 L +6255 4614 mt 6255 389 L + 899 4614 mt 6255 4614 L + 899 4614 mt 899 389 L + 899 4614 mt 899 4560 L + 899 389 mt 899 442 L +%%IncludeResource: font Helvetica +/Helvetica /ISOLatin1Encoding 120 FMSR + + 746 4759 mt +(-1.5) s +1791 4614 mt 1791 4560 L +1791 389 mt 1791 442 L +1688 4759 mt +(-1) s +2684 4614 mt 2684 4560 L +2684 389 mt 2684 442 L +2531 4759 mt +(-0.5) s +3577 4614 mt 3577 4560 L +3577 389 mt 3577 442 L +3544 4759 mt +(0) s +4469 4614 mt 4469 4560 L +4469 389 mt 4469 442 L +4386 4759 mt +(0.5) s +5362 4614 mt 5362 4560 L +5362 389 mt 5362 442 L +5329 4759 mt +(1) s +6255 4614 mt 6255 4560 L +6255 389 mt 6255 442 L +6172 4759 mt +(1.5) s + 899 4614 mt 952 4614 L +6255 4614 mt 6201 4614 L + 628 4658 mt +(-1.5) s + 899 3909 mt 952 3909 L +6255 3909 mt 6201 3909 L + 728 3953 mt +(-1) s + 899 3205 mt 952 3205 L +6255 3205 mt 6201 3205 L + 628 3249 mt +(-0.5) s + 899 2501 mt 952 2501 L +6255 2501 mt 6201 2501 L + 798 2545 mt +(0) s + 899 1797 mt 952 1797 L +6255 1797 mt 6201 1797 L + 698 1841 mt +(0.5) s + 899 1093 mt 952 1093 L +6255 1093 mt 6201 1093 L + 798 1137 mt +(1) s + 899 389 mt 952 389 L +6255 389 mt 6201 389 L + 698 433 mt +(1.5) s + 899 4614 mt 6255 4614 L + 899 389 mt 6255 389 L + 899 4614 mt 899 389 L +6255 4614 mt 6255 389 L +gs 899 389 5357 4226 MR c np +1791 3909 PD +135 0 1791 3708 2 MP stroke +243 0 1791 3507 2 MP stroke +303 0 1791 3306 2 MP stroke +303 0 1791 3105 2 MP stroke +243 0 1791 2903 2 MP stroke +135 0 1791 2702 2 MP stroke +1791 2501 PD +-135 0 1791 2300 2 MP stroke +-243 0 1791 2099 2 MP stroke +-303 0 1791 1897 2 MP stroke +-303 0 1791 1696 2 MP stroke +-243 0 1791 1495 2 MP stroke +-135 0 1791 1294 2 MP stroke +1791 1093 PD +0 107 2046 3909 2 MP stroke +122 96 2046 3708 2 MP stroke +220 63 2046 3507 2 MP stroke +274 25 2046 3306 2 MP stroke +274 -26 2046 3105 2 MP stroke +220 -63 2046 2903 2 MP stroke +122 -96 2046 2702 2 MP stroke +0 -106 2046 2501 2 MP stroke +-122 -96 2046 2300 2 MP stroke +-220 -64 2046 2099 2 MP stroke +-274 -26 2046 1897 2 MP stroke +-274 26 2046 1696 2 MP stroke +-220 63 2046 1495 2 MP stroke +-122 96 2046 1294 2 MP stroke +0 106 2046 1093 2 MP stroke +0 192 2301 3909 2 MP stroke +80 174 2301 3708 2 MP stroke +145 114 2301 3507 2 MP stroke +181 46 2301 3306 2 MP stroke +181 -47 2301 3105 2 MP stroke +145 -114 2301 2903 2 MP stroke +81 -173 2301 2702 2 MP stroke +0 -192 2301 2501 2 MP stroke +-80 -174 2301 2300 2 MP stroke +-145 -115 2301 2099 2 MP stroke +-181 -46 2301 1897 2 MP stroke +-180 47 2301 1696 2 MP stroke +-145 114 2301 1495 2 MP stroke +-80 173 2301 1294 2 MP stroke +0 191 2301 1093 2 MP stroke +0 239 2556 3909 2 MP stroke +33 216 2556 3708 2 MP stroke +59 142 2556 3507 2 MP stroke +74 58 2556 3306 2 MP stroke +74 -59 2556 3105 2 MP stroke +59 -142 2556 2903 2 MP stroke +33 -216 2556 2702 2 MP stroke +0 -239 2556 2501 2 MP stroke +-33 -216 2556 2300 2 MP stroke +-59 -143 2556 2099 2 MP stroke +-73 -58 2556 1897 2 MP stroke +-73 58 2556 1696 2 MP stroke +-59 142 2556 1495 2 MP stroke +-32 216 2556 1294 2 MP stroke +0 239 2556 1093 2 MP stroke +0 239 2811 3909 2 MP stroke +-33 216 2811 3708 2 MP stroke +-59 143 2811 3507 2 MP stroke +-73 58 2811 3306 2 MP stroke +-73 -59 2811 3105 2 MP stroke +-59 -142 2811 2903 2 MP stroke +-32 -216 2811 2702 2 MP stroke +0 -239 2811 2501 2 MP stroke +33 -216 2811 2300 2 MP stroke +59 -143 2811 2099 2 MP stroke +74 -58 2811 1897 2 MP stroke +74 58 2811 1696 2 MP stroke +59 143 2811 1495 2 MP stroke +33 216 2811 1294 2 MP stroke +0 239 2811 1093 2 MP stroke +0 192 3066 3909 2 MP stroke +-80 174 3066 3708 2 MP stroke +-144 114 3066 3507 2 MP stroke +-180 46 3066 3306 2 MP stroke +-180 -47 3066 3105 2 MP stroke +-144 -114 3066 2903 2 MP stroke +-80 -173 3066 2702 2 MP stroke +0 -192 3066 2501 2 MP stroke +81 -174 3066 2300 2 MP stroke +145 -115 3066 2099 2 MP stroke +181 -46 3066 1897 2 MP stroke +181 47 3066 1696 2 MP stroke +145 114 3066 1495 2 MP stroke +81 173 3066 1294 2 MP stroke +0 191 3066 1093 2 MP stroke +0 107 3321 3909 2 MP stroke +-122 96 3321 3708 2 MP stroke +-219 64 3321 3507 2 MP stroke +-274 26 3321 3306 2 MP stroke +-274 -26 3321 3105 2 MP stroke +-219 -63 3321 2903 2 MP stroke +-121 -96 3321 2702 2 MP stroke +0 -106 3321 2501 2 MP stroke +122 -96 3321 2300 2 MP stroke +220 -64 3321 2099 2 MP stroke +274 -25 3321 1897 2 MP stroke +274 26 3321 1696 2 MP stroke +220 64 3321 1495 2 MP stroke +122 96 3321 1294 2 MP stroke +0 106 3321 1093 2 MP stroke +3577 3909 PD +-135 0 3577 3708 2 MP stroke +-243 0 3577 3507 2 MP stroke +-303 0 3577 3306 2 MP stroke +-303 0 3577 3105 2 MP stroke +-244 0 3577 2903 2 MP stroke +-135 0 3577 2702 2 MP stroke +3577 2501 PD +134 0 3577 2300 2 MP stroke +243 0 3577 2099 2 MP stroke +302 0 3577 1897 2 MP stroke +302 0 3577 1696 2 MP stroke +242 0 3577 1495 2 MP stroke +134 0 3577 1294 2 MP stroke +3577 1093 PD +0 -106 3832 3909 2 MP stroke +-122 -96 3832 3708 2 MP stroke +-220 -64 3832 3507 2 MP stroke +-274 -26 3832 3306 2 MP stroke +-274 25 3832 3105 2 MP stroke +-220 64 3832 2903 2 MP stroke +-122 96 3832 2702 2 MP stroke +0 106 3832 2501 2 MP stroke +121 96 3832 2300 2 MP stroke +219 63 3832 2099 2 MP stroke +274 26 3832 1897 2 MP stroke +274 -26 3832 1696 2 MP stroke +219 -64 3832 1495 2 MP stroke +122 -96 3832 1294 2 MP stroke +0 -107 3832 1093 2 MP stroke +0 -191 4087 3909 2 MP stroke +-81 -173 4087 3708 2 MP stroke +-145 -114 4087 3507 2 MP stroke +-181 -47 4087 3306 2 MP stroke +-181 46 4087 3105 2 MP stroke +-145 115 4087 2903 2 MP stroke +-81 174 4087 2702 2 MP stroke +0 192 4087 2501 2 MP stroke +80 173 4087 2300 2 MP stroke +144 114 4087 2099 2 MP stroke +180 47 4087 1897 2 MP stroke +180 -46 4087 1696 2 MP stroke +144 -114 4087 1495 2 MP stroke +80 -174 4087 1294 2 MP stroke +0 -192 4087 1093 2 MP stroke +0 -239 4342 3909 2 MP stroke +-33 -216 4342 3708 2 MP stroke +-59 -143 4342 3507 2 MP stroke +-74 -58 4342 3306 2 MP stroke +-74 58 4342 3105 2 MP stroke +-59 143 4342 2903 2 MP stroke +-33 216 4342 2702 2 MP stroke +0 239 4342 2501 2 MP stroke +32 216 4342 2300 2 MP stroke +59 142 4342 2099 2 MP stroke +73 59 4342 1897 2 MP stroke +73 -58 4342 1696 2 MP stroke +59 -143 4342 1495 2 MP stroke +33 -216 4342 1294 2 MP stroke +0 -239 4342 1093 2 MP stroke +0 -239 4597 3909 2 MP stroke +32 -216 4597 3708 2 MP stroke +59 -142 4597 3507 2 MP stroke +73 -58 4597 3306 2 MP stroke +73 58 4597 3105 2 MP stroke +59 143 4597 2903 2 MP stroke +33 216 4597 2702 2 MP stroke +0 239 4597 2501 2 MP stroke +-33 216 4597 2300 2 MP stroke +-59 142 4597 2099 2 MP stroke +-74 59 4597 1897 2 MP stroke +-74 -58 4597 1696 2 MP stroke +-59 -142 4597 1495 2 MP stroke +-33 -216 4597 1294 2 MP stroke +0 -239 4597 1093 2 MP stroke +0 -191 4852 3909 2 MP stroke +80 -173 4852 3708 2 MP stroke +145 -114 4852 3507 2 MP stroke +180 -47 4852 3306 2 MP stroke +181 46 4852 3105 2 MP stroke +145 115 4852 2903 2 MP stroke +80 174 4852 2702 2 MP stroke +0 192 4852 2501 2 MP stroke +-81 173 4852 2300 2 MP stroke +-145 114 4852 2099 2 MP stroke +-181 47 4852 1897 2 MP stroke +-181 -46 4852 1696 2 MP stroke +-145 -114 4852 1495 2 MP stroke +-80 -174 4852 1294 2 MP stroke +0 -192 4852 1093 2 MP stroke +0 -106 5107 3909 2 MP stroke +122 -96 5107 3708 2 MP stroke +220 -63 5107 3507 2 MP stroke +274 -26 5107 3306 2 MP stroke +274 26 5107 3105 2 MP stroke +220 64 5107 2903 2 MP stroke +122 96 5107 2702 2 MP stroke +0 106 5107 2501 2 MP stroke +-122 96 5107 2300 2 MP stroke +-220 63 5107 2099 2 MP stroke +-274 26 5107 1897 2 MP stroke +-274 -25 5107 1696 2 MP stroke +-220 -63 5107 1495 2 MP stroke +-122 -96 5107 1294 2 MP stroke +0 -107 5107 1093 2 MP stroke +5362 3909 PD +135 0 5362 3708 2 MP stroke +243 0 5362 3507 2 MP stroke +303 0 5362 3306 2 MP stroke +303 0 5362 3105 2 MP stroke +243 0 5362 2903 2 MP stroke +135 0 5362 2702 2 MP stroke +5362 2501 PD +-135 0 5362 2300 2 MP stroke +-243 0 5362 2099 2 MP stroke +-303 0 5362 1897 2 MP stroke +-303 0 5362 1696 2 MP stroke +-243 0 5362 1495 2 MP stroke +-135 0 5362 1294 2 MP stroke +5362 1093 PD +1791 3909 PD +-45 12 45 11 1881 3697 3 MP stroke +-80 21 80 21 1954 3486 3 MP stroke +-100 26 100 26 1994 3280 3 MP stroke +-100 26 100 26 1994 3079 3 MP stroke +-80 21 80 20 1954 2883 3 MP stroke +-45 12 45 11 1881 2691 3 MP stroke +1791 2501 PD +45 -12 -45 -11 1701 2311 3 MP stroke +80 -21 -80 -20 1628 2119 3 MP stroke +100 -26 -100 -26 1588 1923 3 MP stroke +100 -26 -100 -26 1588 1722 3 MP stroke +80 -21 -80 -21 1628 1516 3 MP stroke +45 -12 -45 -11 1701 1305 3 MP stroke +1791 1093 PD +-14 -35 -15 35 2061 3981 3 MP stroke +-53 -21 27 42 2141 3762 3 MP stroke +-81 -2 64 40 2202 3530 3 MP stroke +-94 15 87 32 2233 3299 3 MP stroke +-87 32 94 15 2226 3064 3 MP stroke +-64 40 81 -2 2185 2842 3 MP stroke +-27 42 53 -21 2115 2627 3 MP stroke +15 35 14 -35 2032 2430 3 MP stroke +54 21 -27 -42 1951 2246 3 MP stroke +82 2 -64 -40 1890 2075 3 MP stroke +94 -15 -87 -33 1859 1904 3 MP stroke +87 -32 -94 -15 1866 1737 3 MP stroke +64 -39 -82 2 1908 1556 3 MP stroke +27 -42 -54 21 1978 1369 3 MP stroke +-14 -35 -15 35 2061 1164 3 MP stroke +-26 -63 -27 63 2328 4038 3 MP stroke +-50 -51 2 65 2379 3817 3 MP stroke +-63 -25 32 50 2414 3571 3 MP stroke +-66 0 53 31 2429 3321 3 MP stroke +-53 31 66 0 2416 3058 3 MP stroke +-32 50 63 -25 2383 2814 3 MP stroke +-3 64 51 -50 2331 2579 3 MP stroke +27 64 26 -64 2275 2373 3 MP stroke +50 51 -2 -65 2223 2191 3 MP stroke +64 26 -32 -50 2188 2034 3 MP stroke +67 0 -54 -31 2174 1882 3 MP stroke +53 -31 -66 0 2187 1743 3 MP stroke +32 -50 -64 25 2220 1584 3 MP stroke +3 -64 -50 50 2271 1417 3 MP stroke +-26 -63 -27 63 2328 1221 3 MP stroke +-33 -79 -33 79 2589 4069 3 MP stroke +-41 -68 -19 74 2608 3850 3 MP stroke +-39 -42 -1 52 2616 3597 3 MP stroke +-32 -13 16 26 2614 3338 3 MP stroke +-16 26 32 -13 2598 3059 3 MP stroke +1 52 39 -42 2576 2803 3 MP stroke +19 74 40 -69 2549 2555 3 MP stroke +33 79 33 -79 2523 2341 3 MP stroke +41 68 19 -74 2504 2158 3 MP stroke +39 42 0 -52 2497 2008 3 MP stroke +32 13 -16 -26 2499 1865 3 MP stroke +16 -25 -32 13 2515 1741 3 MP stroke +0 -52 -39 41 2536 1596 3 MP stroke +-19 -74 -40 69 2564 1441 3 MP stroke +-33 -79 -33 79 2589 1253 3 MP stroke +-33 -79 -33 79 2844 4069 3 MP stroke +-19 -74 -41 68 2819 3856 3 MP stroke +0 -53 -39 42 2791 3608 3 MP stroke +16 -26 -32 13 2770 3351 3 MP stroke +32 13 -16 -26 2754 3072 3 MP stroke +39 42 0 -52 2752 2813 3 MP stroke +40 69 19 -74 2760 2560 3 MP stroke +33 79 33 -79 2778 2341 3 MP stroke +19 74 41 -68 2803 2152 3 MP stroke +1 52 39 -42 2831 1998 3 MP stroke +-16 26 32 -13 2853 1852 3 MP stroke +-32 -12 16 25 2869 1729 3 MP stroke +-39 -42 -1 52 2871 1586 3 MP stroke +-40 -68 -19 74 2863 1436 3 MP stroke +-33 -79 -33 79 2844 1253 3 MP stroke +-26 -63 -27 63 3093 4038 3 MP stroke +2 -65 -50 51 3036 3831 3 MP stroke +32 -50 -63 25 2985 3596 3 MP stroke +53 -31 -66 -1 2952 3353 3 MP stroke +66 0 -53 -31 2939 3089 3 MP stroke +63 25 -32 -50 2954 2839 3 MP stroke +51 50 -3 -64 2989 2593 3 MP stroke +27 64 26 -64 3040 2373 3 MP stroke +-3 65 51 -51 3096 2177 3 MP stroke +-32 51 63 -26 3148 2010 3 MP stroke +-53 31 66 0 3181 1851 3 MP stroke +-66 0 53 31 3194 1712 3 MP stroke +-63 -25 32 50 3179 1559 3 MP stroke +-51 -50 3 64 3144 1403 3 MP stroke +-26 -63 -27 63 3093 1221 3 MP stroke +-14 -35 -15 35 3336 3981 3 MP stroke +27 -42 -54 21 3253 3783 3 MP stroke +63 -40 -81 3 3183 3568 3 MP stroke +87 -32 -94 -15 3141 3347 3 MP stroke +94 -15 -87 -32 3134 3111 3 MP stroke +81 2 -63 -40 3165 2880 3 MP stroke +53 21 -27 -42 3227 2648 3 MP stroke +15 35 14 -35 3307 2430 3 MP stroke +-27 42 53 -21 3390 2225 3 MP stroke +-64 40 81 -2 3460 2037 3 MP stroke +-86 32 93 15 3502 1857 3 MP stroke +-94 15 86 32 3509 1690 3 MP stroke +-81 -2 64 40 3477 1519 3 MP stroke +-53 -21 26 42 3417 1348 3 MP stroke +-14 -35 -15 35 3336 1164 3 MP stroke +1 0 3576 3909 2 MP stroke +44 -11 -44 -12 3486 3720 3 MP stroke +80 -21 -80 -21 3414 3528 3 MP stroke +100 -26 -100 -26 3374 3332 3 MP stroke +100 -26 -100 -26 3374 3131 3 MP stroke +81 -21 -81 -21 3414 2924 3 MP stroke +44 -11 -44 -12 3486 2714 3 MP stroke +3577 2501 PD +-44 11 44 12 3667 2288 3 MP stroke +-81 21 81 21 3739 2078 3 MP stroke +-100 26 100 26 3779 1871 3 MP stroke +-100 26 100 26 3779 1670 3 MP stroke +-80 21 80 21 3739 1474 3 MP stroke +-44 11 44 12 3667 1282 3 MP stroke +-1 0 3577 1093 2 MP stroke +14 35 15 -35 3817 3838 3 MP stroke +53 21 -26 -42 3736 3654 3 MP stroke +81 2 -64 -40 3676 3483 3 MP stroke +94 -15 -86 -32 3644 3312 3 MP stroke +86 -32 -93 -15 3651 3145 3 MP stroke +64 -40 -81 2 3693 2965 3 MP stroke +27 -42 -53 21 3763 2777 3 MP stroke +-15 -35 -14 35 3846 2572 3 MP stroke +-53 -21 27 42 3926 2354 3 MP stroke +-81 -2 63 40 3988 2122 3 MP stroke +-94 15 87 32 4019 1891 3 MP stroke +-87 32 94 15 4012 1655 3 MP stroke +-63 40 81 -3 3970 1434 3 MP stroke +-27 42 54 -21 3900 1219 3 MP stroke +14 35 15 -35 3817 1021 3 MP stroke +26 63 27 -63 4060 3781 3 MP stroke +51 50 -3 -64 4009 3599 3 MP stroke +63 25 -32 -50 3974 3443 3 MP stroke +66 0 -53 -31 3959 3290 3 MP stroke +53 -31 -66 0 3972 3151 3 MP stroke +32 -51 -63 26 4005 2992 3 MP stroke +3 -65 -51 51 4057 2825 3 MP stroke +-27 -64 -26 64 4113 2629 3 MP stroke +-51 -50 3 64 4164 2409 3 MP stroke +-63 -25 32 50 4199 2163 3 MP stroke +-66 0 53 31 4214 1913 3 MP stroke +-53 31 66 1 4201 1649 3 MP stroke +-32 50 63 -25 4168 1406 3 MP stroke +-2 65 50 -51 4117 1171 3 MP stroke +26 63 27 -63 4060 964 3 MP stroke +33 79 33 -79 4309 3749 3 MP stroke +40 68 19 -74 4290 3566 3 MP stroke +39 42 1 -52 4282 3416 3 MP stroke +32 12 -16 -25 4284 3273 3 MP stroke +16 -26 -32 13 4300 3150 3 MP stroke +-1 -52 -39 42 4322 3004 3 MP stroke +-19 -74 -41 68 4350 2850 3 MP stroke +-33 -79 -33 79 4375 2661 3 MP stroke +-40 -69 -19 74 4393 2442 3 MP stroke +-39 -42 0 52 4401 2189 3 MP stroke +-32 -13 16 26 4399 1930 3 MP stroke +-16 26 32 -13 4383 1651 3 MP stroke +0 53 39 -42 4362 1394 3 MP stroke +19 74 41 -68 4334 1146 3 MP stroke +33 79 33 -79 4309 933 3 MP stroke +33 79 33 -79 4564 3749 3 MP stroke +19 74 40 -69 4589 3561 3 MP stroke +0 52 39 -41 4617 3406 3 MP stroke +-16 25 32 -13 4638 3261 3 MP stroke +-32 -13 16 26 4654 3137 3 MP stroke +-39 -42 0 52 4656 2994 3 MP stroke +-41 -68 -19 74 4649 2844 3 MP stroke +-33 -79 -33 79 4630 2661 3 MP stroke +-19 -74 -40 69 4604 2447 3 MP stroke +-1 -52 -39 42 4577 2199 3 MP stroke +16 -26 -32 13 4555 1943 3 MP stroke +32 13 -16 -26 4539 1664 3 MP stroke +39 42 1 -52 4537 1405 3 MP stroke +41 68 19 -74 4545 1152 3 MP stroke +33 79 33 -79 4564 933 3 MP stroke +26 63 27 -63 4825 3781 3 MP stroke +-3 64 50 -50 4882 3585 3 MP stroke +-32 50 64 -25 4933 3418 3 MP stroke +-53 31 66 0 4966 3259 3 MP stroke +-67 0 54 31 4979 3120 3 MP stroke +-64 -26 32 50 4965 2968 3 MP stroke +-50 -51 2 65 4930 2811 3 MP stroke +-27 -64 -26 64 4878 2629 3 MP stroke +3 -64 -51 50 4822 2423 3 MP stroke +32 -50 -63 25 4770 2188 3 MP stroke +53 -31 -66 0 4737 1944 3 MP stroke +66 0 -53 -31 4724 1681 3 MP stroke +63 25 -32 -50 4739 1431 3 MP stroke +50 51 -2 -65 4774 1185 3 MP stroke +26 63 27 -63 4825 964 3 MP stroke +14 35 15 -35 5092 3838 3 MP stroke +-27 42 54 -21 5175 3633 3 MP stroke +-64 39 82 -2 5245 3446 3 MP stroke +-87 32 94 15 5287 3265 3 MP stroke +-94 15 87 33 5294 3098 3 MP stroke +-82 -2 64 40 5263 2927 3 MP stroke +-54 -21 27 42 5202 2756 3 MP stroke +-15 -35 -14 35 5121 2572 3 MP stroke +27 -42 -53 21 5038 2375 3 MP stroke +64 -40 -81 2 4968 2160 3 MP stroke +87 -32 -94 -15 4927 1938 3 MP stroke +94 -15 -87 -32 4920 1703 3 MP stroke +81 2 -64 -40 4951 1472 3 MP stroke +53 21 -27 -42 5012 1240 3 MP stroke +14 35 15 -35 5092 1021 3 MP stroke +5362 3909 PD +-45 12 45 11 5452 3697 3 MP stroke +-80 21 80 21 5525 3486 3 MP stroke +-100 26 100 26 5565 3280 3 MP stroke +-100 26 100 26 5565 3079 3 MP stroke +-80 21 80 20 5525 2883 3 MP stroke +-45 12 45 11 5452 2691 3 MP stroke +5362 2501 PD +45 -12 -45 -11 5272 2311 3 MP stroke +80 -21 -80 -20 5199 2119 3 MP stroke +100 -26 -100 -26 5159 1923 3 MP stroke +100 -26 -100 -26 5159 1722 3 MP stroke +80 -21 -80 -21 5199 1516 3 MP stroke +45 -12 -45 -11 5272 1305 3 MP stroke +5362 1093 PD +gr + +%%IncludeResource: font Helvetica +/Helvetica /ISOLatin1Encoding 168 FMSR + +2300 208 mt +(Vector-field plot of FE-solution E) s +%%IncludeResource: font Helvetica +/Helvetica /ISOLatin1Encoding 132 FMSR + +4779 292 mt +(h) s +%%IncludeResource: font Helvetica +/Helvetica /ISOLatin1Encoding 120 FMSR + +3546 4902 mt +(x) s + 573 2532 mt -90 rotate +(y) s +90 rotate + +end + +eplot +%%EndObject + +epage +end + +showpage + +%%Trailer +%%EOF + +%%EndDocument + @endspecial 758 5020 a(Figure)f(5:)41 b(V)-8 b(ector-\014eld)32 +b(plot)d(of)i(the)f(FE-solution)g(of)g(example)h(\(32\).)1949 +5719 y(20)p eop +%%Page: 21 21 +21 20 bop 28 232 a Fw(References)69 414 y Fz([1])45 b(A.)d(Alonso)f +(and)h(A.)g(V)-7 b(alli.)79 b(An)42 b(optimal)f(domain)g(decomp)r +(osition)h(preconditioner)e(for)h(lo)n(w-frequency)f(time-)202 +514 y(harmonic)27 b(Maxw)n(ell)g(equations.)36 b Fm(Math.)31 +b(Comp.)p Fz(,)e(68\(226\):607{631,)22 b(1999.)69 663 +y([2])45 b(W.)29 b(Bangerth,)f(R.)h(Hartmann,)f(and)h(G.)g(Kansc)n +(hat.)38 b Fd(deal.II)28 b Fm(Di\013er)l(ential)j(Equations)g(A)n +(nalysis)g(Libr)l(ary,)i(T)-6 b(e)l(ch-)202 763 y(nic)l(al)31 +b(R)l(efer)l(enc)l(e)p Fz(.)36 b(IWR,)29 b(Univ)n(ersit\177)-42 +b(at)27 b(Heidelb)r(erg.)36 b Fd(http://www.deali)o(i.o)o(rg)o +Fz(.)69 912 y([3])45 b(F.)33 b(Brezzi)e(and)h(M.)h(F)-7 +b(ortin.)51 b Fm(Mixe)l(d)34 b(and)h(Hybrid)g(Finite)g(Element)f(Metho) +l(ds)p Fz(,)h(v)n(olume)c(15)h(of)g Fm(Springer)j(Series)f(in)202 +1012 y(Computational)d(Mathematics)p Fz(.)39 b(Springer-V)-7 +b(erlag,)25 b(New)j(Y)-7 b(ork,)27 b(1991.)69 1162 y([4])45 +b(V.)34 b(Girault)f(and)g(P)-7 b(.-A.)33 b(Ra)n(viart.)52 +b Fm(Finite)36 b(Element)f(Appr)l(oximation)h(of)g(the)f(Navier-Stokes) +h(Equations)p Fz(,)f(v)n(olume)202 1261 y(749)26 b(of)i +Fm(L)l(e)l(ctur)l(e)h(Notes)g(in)h(Mathematics)p Fz(.)39 +b(Springer-V)-7 b(erlag,)25 b(Berlin,)i(Heidelb)r(erg,)g(1979,)f(1981.) +69 1411 y([5])45 b(R.)40 b(Hiptmair.)72 b(Finite)41 b(elemen)n(ts)e(in) +h(computational)e(electromagnetism.)71 b(In)40 b Fm(A)l(cta)g(Numeric)l +(a)p Fz(,)j(pages)c(1{103.)202 1510 y(Cam)n(bridge)26 +b(Univ)n(ersit)n(y)h(press,)g(2002.)69 1660 y([6])45 +b(P)-7 b(.)19 b(Monk.)k(Analysis)c(of)h(a)f(\014nite)h(elemen)n(t)f +(metho)r(d)h(for)f(Maxw)n(ell's)g(equations.)j Fm(SIAM)g(J.)g(Numer.)g +(A)n(nal)p Fz(,)g(29:714{729,)202 1759 y(1992.)69 1909 +y([7])45 b(P)-7 b(.)38 b(Monk.)67 b(A)38 b(simple)g(pro)r(of)g(for)f +(an)h(edge)f(elemen)n(t)h(discretization)f(of)h(Maxw)n(ell's)f +(equations.)67 b(Submitted)39 b(for)202 2008 y(publication.)28 +b(Do)n(wnload)e(v)n(ersion)g(a)n(v)-5 b(ailable)27 b(on)g(Monk's)g(w)n +(ebpage:)36 b(www.math.udel.edu./)28 b(monk,)f(2001.)69 +2158 y([8])45 b(J.)28 b(C.)f(N)n(\023)-39 b(ed)n(\023)g(elec.)35 +b(Mixed)28 b(\014nite)g(elemen)n(ts)f(in)h Fr(R)1701 +2128 y Fp(3)1745 2158 y Fz(.)36 b Fm(Numer.)30 b(Math.)p +Fz(,)f(35:315{341,)23 b(1980.)69 2307 y([9])45 b(J.)27 +b(C.)g(N)n(\023)-39 b(ed)n(\023)g(elec.)33 b(Elemen)n(ts)27 +b(\014nis)g(mixtes)f(incompressibles)g(p)r(our)h(l')n(\023)-39 +b(equation)25 b(de)i(Stok)n(es)f(dans)g Fr(R)3322 2277 +y Fp(3)3365 2307 y Fz(.)36 b Fm(Numer.)29 b(Math.)p Fz(,)202 +2407 y(39:97{112,)24 b(1982.)28 2556 y([10])44 b(J.)28 +b(C.)f(N)n(\023)-39 b(ed)n(\023)g(elec.)35 b(A)28 b(new)g(family)f(of)h +(mixed)g(\014nite)g(elemen)n(ts)f(in)h Fr(R)2303 2526 +y Fp(3)2346 2556 y Fz(.)37 b Fm(Numer.)30 b(Math.)p Fz(,)f(50:57{81,)24 +b(1986.)28 2706 y([11])44 b(W.)24 b(Rac)n(ho)n(wicz)e(and)i(L.)f(Demk)n +(o)n(wicz.)30 b(A)24 b(t)n(w)n(o-dimensional)e(hp-adaptiv)n(e)g +(\014nite)i(elemen)n(t)g(pac)n(k)-5 b(age)22 b(for)h(electromag-)202 +2805 y(netics)30 b(\(2Dhp90)p 758 2805 25 4 v 30 w(EM\).)44 +b(Ticam)29 b(Rep)r(ort)h(98{16,)f(TICAM,)h(1998.)42 b(Do)n(wnload)29 +b(v)n(ersion)g(a)n(v)-5 b(ailable)28 b(on)i(Demk)n(o)n(wicz')202 +2905 y(w)n(ebpage:)36 b(www.ticam.utexas.edu/)27 b(Leszek.)28 +3054 y([12])44 b(W.)39 b(Rac)n(ho)n(wicz)e(and)h(L.)h(Demk)n(o)n(wicz.) +68 b(A)39 b(three-dimensional)f(hp-adaptiv)n(e)f(\014nite)i(elemen)n(t) +g(pac)n(k)-5 b(age)37 b(for)h(elec-)202 3154 y(tromagnetics)31 +b(\(3Dhp90)p 1019 3154 V 29 w(EM\).)50 b(Ticam)31 b(Rep)r(ort)h +(00-04.2000,)d(TICAM,)j(2000.)48 b(Do)n(wnload)31 b(v)n(ersion)f(a)n(v) +-5 b(ailable)31 b(on)202 3254 y(Demk)n(o)n(wicz')c(w)n(ebpage:)36 +b(www.ticam.utexas.edu/)26 b(Leszek.)1949 5719 y Fk(21)p +eop +%%Page: 22 22 +22 21 bop 28 231 a Fw(A)134 b Fv(Construction)36 b(of)i(solutions)e(in) +h(2d)28 413 y Fz(W)-7 b(e)28 b(presen)n(t)g(ho)n(w)g(div)n +(ergence-free)e(solutions)i(of)g(the)h(mo)r(del)f(problem)g(\(1\))h(on) +f(a)g(domain)g(\012)c Fs(\032)g Fr(R)3203 383 y Fp(2)3275 +413 y Fz(with)k(p)r(erfectly)h(con-)28 513 y(ducting)e(b)r(oundary)g +(can)g(b)r(e)h(constructed)g(from)f(solutions)g(of)g(the)h(scalar)e +(Laplace)h(equation.)28 812 y Fn(Pr)n(oposition)g Fz(9)45 +b Fm(L)l(et)28 b Fz(\012)g Fm(b)l(e)h(a)g(su\016ciently)g(smo)l(oth)g +(domain)h(in)e Fr(R)2196 782 y Fp(2)2239 812 y Fm(,)i +Fx(')p Fz(\()p Fx(x;)14 b(y)s Fz(\))29 b Fm(a)g(su\016c)l(ently)f(smo)l +(oth)h(sc)l(alar)h(function)e(on)28 911 y Fz(\012)h Fm(and)h(the)g(c)l +(o)l(e\016cient)h Fx(c)23 b(>)f Fz(0)30 b Fm(glob)l(al)t(ly)h(c)l +(onstant.)28 1011 y(L)l(et)e Fx(w)j Fm(b)l(e)e(a)g(solution)g(of)h(the) +f(sc)l(alar)g(e)l(quation)1513 1188 y Fs(\000)p Fz(\001)p +Fx(w)21 b Fz(+)d Fx(c)c(w)25 b Fz(=)e Fx(')85 b Fz(in)g(\012)1680 +1313 y Fx(n)p 1680 1326 50 4 v 19 w Fs(\001)18 b(r)p +Fx(w)26 b Fz(=)d(0)84 b(on)h Fx(@)5 b Fz(\012)14 b Fx(:)3814 +1252 y Fz(\(34\))28 1505 y Fm(Then,)30 b Fx(E)p 269 1518 +67 4 v 29 w Fz(:=)22 b Fs(r)538 1474 y Fh(?)594 1505 +y Fx(w)33 b Fm(is)d(a)g(solution)g(of)h(the)f(mo)l(del)g(e)l(quation) +1452 1682 y Fz(curl)p 1452 1695 139 4 v 14 w(curl)13 +b Fx(E)p 1757 1695 67 4 v 24 w Fz(+)18 b Fx(c)c(E)p 1975 +1695 V 28 w Fz(=)22 b Fx(f)p 2151 1712 50 4 v 94 w Fz(in)85 +b(\012)14 b Fx(;)1773 1818 y(E)p 1773 1831 67 4 v 24 +w Fs(^)19 b Fx(n)p 1932 1831 50 4 v 23 w Fz(=)j(0)85 +b(on)f Fx(@)5 b Fz(\012)14 b Fx(;)28 2010 y Fm(with)30 +b(right)g(hand)h(side)g Fx(f)p 780 2039 V 31 w Fz(:=)23 +b Fs(r)1032 1979 y Fh(?)1088 2010 y Fx(')p Fm(.)28 2171 +y(We)29 b(use)h(the)g(notation)g Fs(r)863 2141 y Fh(?)919 +2171 y Fx(')23 b Fz(:=)g Fj(R)q Fs(r)p Fx(')g Fz(=)1414 +2054 y Fl(\022)1550 2120 y Fx(@)1594 2132 y Fq(y)1634 +2120 y Fx(')1517 2220 y Fs(\000)p Fx(@)1626 2232 y Fq(x)1667 +2220 y Fx(')1763 2054 y Fl(\023)1824 2171 y Fm(.)28 2428 +y Fn(Pr)n(oof.)58 b Fz(W)-7 b(e)34 b(\014rst)g(sho)n(w)e(the)i(corresp) +r(ondence)e(of)h(the)h(b)r(oundary)f(conditions.)54 b(With)34 +b(the)g(de\014nition)g Fx(E)p 3466 2441 67 4 v 38 w Fz(:=)e +Fs(r)3754 2398 y Fh(?)3811 2428 y Fx(w)k Fz(it)28 2528 +y(holds)1285 2628 y Fx(E)p 1285 2641 V 24 w Fs(^)18 b +Fx(n)p 1443 2641 50 4 v 23 w Fz(=)23 b Fx(E)p 1604 2641 +67 4 v 24 w Fs(\001)18 b Fx(t)p 1730 2641 30 4 v 23 w +Fz(=)23 b Fs(r)p Fx(w)2002 2591 y Fq(T)2054 2628 y Fj(R)2127 +2591 y Fq(T)2179 2628 y Fj(R)15 b Fx(n)p 2266 2641 50 +4 v 22 w Fz(=)23 b Fs(r)p Fx(w)e Fs(\001)e Fx(n)p 2617 +2641 V 14 w(:)28 2777 y Fz(It)35 b(remains)f(to)g(sho)n(w)g(that)h +Fx(E)p 950 2790 67 4 v 40 w Fz(solv)n(es)e(the)i(mo)r(del)g(problem)f +(for)h(an)f(appropriate)f(righ)n(t)h(hand)h(side.)58 +b(First,)36 b(note)f(that)28 2877 y Fx(E)p 28 2890 V +38 w Fz(is)d(div)n(ergence-free:)45 b Fs(r)22 b(\001)g(r)1028 +2846 y Fh(?)1085 2877 y Fx(w)34 b Fz(=)d(0)i(for)f(all)g +Fx(w)r Fz(.)54 b(Hence,)34 b(the)f(iden)n(tit)n(y)g(curl)p +2475 2890 139 4 v 13 w(curl)14 b Fx(E)p 2780 2890 67 +4 v 37 w Fz(=)31 b Fs(r)p Fz(\()p Fs(r)23 b(\001)f Fx(E)p +3212 2890 V 5 w Fz(\))g Fs(\000)f Fz(\001)p Fx(E)p 3487 +2890 V 38 w Fz(reduces)32 b(to)28 2976 y(curl)p 28 2989 +139 4 v 13 w(curl)13 b Fx(E)p 332 2989 67 4 v 30 w Fz(=)24 +b Fs(\000)p Fz(\001)p Fx(E)p 646 2989 V 5 w Fz(.)39 b(The)28 +b(observ)-5 b(ation)27 b(that)i(for)f(smo)r(oth)g(data)g +Fs(r)2249 2946 y Fh(?)2305 2976 y Fx(w)j Fz(solv)n(es)c(the)i(Laplace)e +(equation)h(\(34\))g(with)h(righ)n(t)28 3076 y(hand)e(side)h +Fs(r)471 3046 y Fh(?)527 3076 y Fx(')g Fz(concludes)f(the)h(pro)r(of.) +3897 3250 y Fg(\003)28 3449 y Fn(Example)f Fz(5)g(\(Solutions)h(from)f +(eigenfunctions)g(of)h(the)g(Laplacian\))44 b Fm(Cho)l(ose)h +Fx(w)h Fm(to)d(b)l(e)g(a)h(solution)f(of)i(the)e(eigenvalue)28 +3549 y(pr)l(oblem)1642 3726 y Fs(\000)p Fz(\001)p Fx(w)25 +b Fz(=)e Fx(\025)14 b(w)88 b Fz(in)d(\012)1597 3851 y +Fx(n)p 1597 3864 50 4 v 18 w Fs(\001)18 b(r)p Fx(w)26 +b Fz(=)d(0)84 b(on)h Fx(@)5 b Fz(\012)14 b Fx(;)28 4034 +y Fm(and)30 b(set)f Fx(')24 b Fz(=)e(\()p Fx(\025)d Fz(+)f +Fx(c)p Fz(\))c Fx(w)r Fm(.)28 4134 y(As)28 b(an)h(example,)h(take)f +Fz(\012)23 b(=)f([)p Fs(\000)p Fz(1)p Fx(;)14 b Fz(1])1190 +4104 y Fp(2)1255 4134 y Fm(and)29 b Fx(\025)23 b Fz(=)g(2)p +Fx(\031)1666 4104 y Fp(2)1703 4134 y Fm(.)38 b(Then,)30 +b Fx(w)c Fz(=)d(cos)13 b Fx(\031)s(x)h Fz(cos)f Fx(\031)s(y)32 +b Fm(is)d(an)g(eigenfunction)g(and)g(we)g(c)l(ompute)724 +4366 y Fx(f)p 724 4396 V 31 w Fz(=)23 b(\(2)p Fx(\031)1008 +4332 y Fp(2)1064 4366 y Fz(+)18 b Fx(c)p Fz(\))p Fx(\031)1279 +4249 y Fl(\022)1421 4316 y Fz(cos)13 b Fx(\031)s(x)h +Fz(sin)g Fx(\031)s(y)1382 4415 y Fs(\000)g Fz(sin)f Fx(\031)s(x)h +Fz(cos)g Fx(\031)s(y)1948 4249 y Fl(\023)2037 4366 y +Fx(;)183 b(E)p 2243 4379 67 4 v 29 w Fz(=)22 b Fx(\031)2484 +4249 y Fl(\022)2626 4316 y Fz(cos)13 b Fx(\031)s(x)h +Fz(sin)h Fx(\031)s(y)2587 4415 y Fs(\000)f Fz(sin)f Fx(\031)s(x)h +Fz(cos)g Fx(\031)s(y)3153 4249 y Fl(\023)3242 4366 y +Fx(:)28 4621 y Fn(Example)27 b Fz(6)g(\(Solutions)h(from)f(an)n(y)g +(scalar)f(function)i(satiesfying)f(the)h(b)r(oundary)e(condition\))46 +b Fm(T)-6 b(ake)22 b(again)g Fz(\012)h(=)g([)p Fs(\000)p +Fz(1)p Fx(;)14 b Fz(1])3942 4591 y Fp(2)3978 4621 y Fm(.)28 +4720 y(We)34 b(have)h(to)f(\014nd)g(a)g(sc)l(alar)h(function)g +Fx(w)h Fm(which)g(saties\014es)e(the)h(homo)l(gene)l(ous)g(Neumann)e(b) +l(oundary)i(c)l(ondition.)52 b(T)-6 b(ake)28 4820 y(for)30 +b(example)h Fx(w)r Fz(\()p Fx(x;)14 b(y)s Fz(\))25 b(=)e(\(1)18 +b Fs(\000)g Fx(x)1067 4790 y Fp(2)1105 4820 y Fz(\))1137 +4790 y Fp(2)1174 4820 y Fz(\(1)h Fs(\000)f Fx(y)1394 +4790 y Fp(2)1431 4820 y Fz(\))1463 4790 y Fp(2)1500 4820 +y Fm(,)31 b(for)g(which)g(we)f(have)h Fx(n)p 2236 4833 +50 4 v 19 w Fs(\001)18 b(r)p Fx(w)27 b Fz(=)c(0)29 b +Fm(on)h Fx(@)5 b Fz([)p Fs(\000)p Fz(1)p Fx(;)14 b Fz(1])3060 +4790 y Fp(2)3095 4820 y Fm(.)40 b(The)31 b(right)f(hand)h(side)g(is)28 +4920 y(then)e Fx(')24 b Fz(=)e Fs(\000)p Fz(\001)p Fx(w)f +Fz(+)d Fx(cw)r Fm(.)1949 5719 y Fk(22)p eop +%%Page: 23 23 +23 22 bop 28 231 a Fw(A)134 b Fv(Time-harmonic)35 b(Maxw)m(ell's)i +(equations)h(with)e(lo)m(w-frequency)i(appro)m(ximation)28 +413 y Fz(W)-7 b(e)32 b(sho)n(w,)h(ho)n(w)f(the)h(mo)r(del)g(problem)f +(can)g(b)r(e)h(deriv)n(ed)f(from)g(the)h(time-harmonic)e(Maxw)n(ell's)h +(equations)g(in)g(the)h(lo)n(w-)28 513 y(frequency)27 +b(case.)36 b(W)-7 b(e)28 b(follo)n(w)f(the)h(outline)f(of)h([1)o(]:)28 +613 y(W)-7 b(e)28 b(consider)e(the)i(follo)n(wing)f(primal)g(form)n +(ulation)f(of)i(Maxw)n(ell's)f(equations:)1644 834 y +Fx(")1693 778 y(@)5 b Fs(E)p 1693 815 100 4 v 1704 891 +a Fx(@)g(t)1825 834 y Fz(=)23 b(curl)13 b Fs(H)20 b(\000)e +Fx(\033)s Fs(E)j Fx(;)1613 1038 y(\026)1673 982 y(@)5 +b Fs(H)p 1673 1019 120 4 v 1693 1095 a Fx(@)g(t)1825 +1038 y Fz(=)23 b Fs(\000)14 b Fz(curl)f Fs(E)21 b Fx(;)3814 +929 y Fz(\(35\))28 1248 y(where)31 b Fs(E)39 b Fz(and)31 +b Fs(H)i Fz(are)d(the)i(electric)g(and)f(magnetic)g(\014eld.)50 +b Fx(")p Fz(\()p Fx(x)p Fz(\))p Fx(;)14 b(\026)p Fz(\()p +Fx(x)p Fz(\))33 b(are)e(the)h(dielectric)f(and)h(magnetic)f(p)r +(ermeabilit)n(y)28 1348 y(co)r(e\016cien)n(ts,)36 b(and)e +Fx(\033)s Fz(\()p Fx(x)p Fz(\))i(denotes)f(the)g(electric)f +(conductivit)n(y)-7 b(.)58 b Fx(")p Fz(\()p Fx(x)p Fz(\))p +Fx(;)14 b(\026)p Fz(\()p Fx(x)p Fz(\))37 b(and)d Fx(\033)s +Fz(\()p Fx(x)p Fz(\))i(are)e(assumed)g(to)h(b)r(e)g(symmetric)28 +1448 y(matrices)29 b(in)h Fx(L)519 1417 y Fh(1)589 1448 +y Fz(\(\012\))713 1417 y Fq(d)p Fh(\002)p Fq(d)839 1448 +y Fz(,)h(and)f Fx(")p Fz(\()p Fx(x)p Fz(\))h(and)f Fx(\026)p +Fz(\()p Fx(x)p Fz(\))h(are)e(p)r(ositiv)n(e)h(de\014nite.)45 +b Fx(\033)s Fz(\()p Fx(x)p Fz(\))32 b(is)e(p)r(ositiv)n(e)f(de\014nite) +i(in)g(a)e(conductor)g(and)28 1547 y(v)-5 b(anishes)27 +b(in)h(an)f(insulator.)28 1776 y Fo(Time-harmonic,)33 +b(lo)m(w-frequency)i(case)28 1930 y Fz(W)-7 b(e)28 b(assume)e(that)i +Fs(E)7 b Fz(\()p Fx(x;)14 b(t)p Fz(\))29 b(and)f Fs(H)q +Fz(\()p Fx(x;)14 b(t)p Fz(\))28 b(are)f Fm(time-harmonic)p +Fz(,)i(i.)f(e.)f(they)h(can)f(b)r(e)h(represen)n(ted)f(as)1467 +2111 y Fs(E)7 b Fz(\()p Fx(x;)14 b(t)p Fz(\))24 b(=)f(Re)14 +b(\()p Fx(E)5 b Fz(\()p Fx(x)p Fz(\))14 b(exp)q(\()p +Fx(i!)s(t)p Fz(\)\))28 b Fx(;)1447 2236 y Fs(H)q Fz(\()p +Fx(x;)14 b(t)p Fz(\))24 b(=)f(Re)14 b(\()p Fx(H)7 b Fz(\()p +Fx(x)p Fz(\))14 b(exp)q(\()p Fx(i!)s(t)p Fz(\)\))27 b +Fx(:)28 2419 y Fz(Here,)g Fx(E)5 b Fz(\()p Fx(x)p Fz(\))p +Fx(;)14 b(H)7 b Fz(\()p Fx(x)p Fz(\))29 b(are)e(complex-v)-5 +b(alued)27 b(v)n(ector)f(\014elds)i(and)f Fx(!)f Fs(6)p +Fz(=)c(0)28 b(is)f(a)g(giv)n(en)g(angular)f(frequency)-7 +b(.)28 2594 y Fn(Remark)28 b Fz(8)45 b Fm(F)-6 b(or)30 +b(example,)h(a)f(monofr)l(e)l(quent)f(laser)i(c)l(an)f(b)l(e)f(describ) +l(e)l(d)j(by)e(the)g(time-harmonic)h(Maxwel)t(l's)g(e)l(quations.)28 +2768 y Fz(In)c(the)g(time-harmonic)f(case)g(the)h(space)f(and)h(time)g +(v)-5 b(ariables)26 b(decouple)g(and)h(w)n(e)g(can)f(eliminate)h(the)g +(time)h(dep)r(endency)-7 b(.)28 2868 y(F)g(or)28 b(this,)i(w)n(e)f(ask) +f Fx(E)5 b Fz(\()p Fx(x)p Fz(\))14 b(exp)q(\()p Fx(i!)s(t)p +Fz(\))29 b(and)g Fx(H)7 b Fz(\()p Fx(x)p Fz(\))14 b(exp\()p +Fx(i!)s(t)p Fz(\))30 b(to)f(satiesfy)f(\(35\).)42 b(By)28 +b(then)i(inserting)f(the)g(second)g(equation)f(of)28 +2967 y(\(35\))f(in)n(to)g(the)h(\014rst)g(one,)f(w)n(e)g(can)g +(eliminate)h(the)g(magnetic)f(\014eld)h Fx(H)7 b Fz(\()p +Fx(x)p Fz(\).)38 b(This)27 b(yields)1331 3150 y(curl\()p +Fx(\026)1552 3116 y Fh(\000)p Fp(1)1655 3150 y Fz(curl)14 +b Fx(E)5 b Fz(\))18 b Fs(\000)g Fx(!)2062 3116 y Fp(2)2099 +3150 y Fx("E)24 b Fz(+)18 b Fx(i!)s(\033)s(E)27 b Fz(=)c(0)28 +3333 y(In)30 b(the)g Fm(low-fr)l(e)l(quency)j(c)l(ase)k +Fz(where)29 b Fs(j)p Fx(!)s Fs(j)h Fz(is)g(small,)g(it)h(is)f(kno)n(wn) +f(that)h(for)g(general)f(materials)f(the)j(material)e(parameters)28 +3432 y(are)d(suc)n(h)h(that)1527 3532 y Fx(!)1582 3498 +y Fp(2)1619 3532 y Fx(")c Fs(\034)g Fx(\026)1837 3498 +y Fh(\000)p Fp(1)1940 3532 y Fx(;)97 b(!)2115 3498 y +Fp(2)2152 3532 y Fx(")23 b Fs(\034)g Fx(!)s(\033)17 b(:)28 +3681 y Fz(Hence,)28 b(neglecting)f(the)i(expression)d +Fx(!)1289 3651 y Fp(2)1326 3681 y Fx("E)5 b Fz(\()p Fx(x)p +Fz(\))29 b(is)f(reasonable)e(and)h(it)i(brings)e(us)h(to)f(the)i(lo)n +(w-frequency)d(appro)n(ximation)28 3781 y(of)h(the)h(time-harmonic)f +(Maxw)n(ell's)f(equations:)1480 3964 y(curl\()p Fx(\026)1701 +3929 y Fh(\000)p Fp(1)1804 3964 y Fz(curl)14 b Fx(E)5 +b Fz(\))18 b(+)h Fx(i!)s(\033)s(E)27 b Fz(=)c(0)28 4146 +y(W)-7 b(e)30 b(consider)f(this)i(equation)e(in)i(a)f(conductor)f(\012) +h(\()p Fx(\033)s Fz(\()p Fx(x)p Fz(\))i(p)r(os.)e(def.\))46 +b(and)30 b(a)g(imp)r(ose)g(Diric)n(hlet)g(b)r(oundary)g(condition)g(on) +28 4246 y(the)e(tangen)n(tial)e(trace)h(of)h(the)g(\014eld:)1605 +4346 y Fx(E)c Fs(^)19 b Fx(n)k Fz(=)f(\010)83 b(on)g +Fx(@)5 b Fz(\012)14 b Fx(:)1430 b Fz(\(36\))28 4495 y(Pro)r(ceeding)26 +b(as)h(in)h([1)o(],)g(w)n(e)g(assume)f(that)h(a)f(v)n(ector)f(funciton) +2046 4474 y(~)2027 4495 y Fx(E)33 b Fz(is)27 b(kno)n(wn,)g(satiesfying) +g(\(36\),)h(and)f(w)n(e)h(end)g(up)g(with)g(the)28 4595 +y(follo)n(wing)e(b)r(oundary)h(v)-5 b(alue)27 b(problem)h(for)f +Fx(u)p 1417 4608 48 4 v 22 w Fz(=)c Fx(E)g Fs(\000)1762 +4574 y Fz(~)1742 4595 y Fx(E)1299 4774 y Fz(curl\()p +Fx(\026)1520 4740 y Fh(\000)p Fp(1)1623 4774 y Fz(curl)14 +b Fx(u)p Fz(\))k(+)g Fx(i!)s(\033)s(u)k Fz(=)h Fx(F)95 +b Fz(in)83 b(\012)14 b Fx(;)1948 4899 y(u)k Fs(^)h Fx(n)k +Fz(=)g(0)82 b(on)h Fx(@)5 b Fz(\012)14 b Fx(:)3814 4837 +y Fz(\(37\))28 5082 y(Although)23 b(problem)g(\(37\))h(is)f(complex-v) +-5 b(alued,)24 b(\014nding)f(a)g(\014nite)i(elemen)n(t)e(metho)r(d)h +(to)g(appro)n(ximate)e(\(37\))h(basically)f(b)r(oils)28 +5182 y(do)n(wn)27 b(to)g(\014nding)h(a)f(\014nite)h(elemen)n(t)g(metho) +r(d)g(for)f(the)h(real)f(v)-5 b(alued)27 b(mo)r(del)h(problem)f(\(1\).) +1949 5719 y Fk(23)p eop +%%Trailer +end +userdict /end-hook known{end-hook}if +%%EOF diff --git a/deal.II/doc/reports/nedelec/node1.html b/deal.II/doc/reports/nedelec/node1.html new file mode 100644 index 0000000000..169abda394 --- /dev/null +++ b/deal.II/doc/reports/nedelec/node1.html @@ -0,0 +1,1018 @@ + + + + + +1 The model problem and the space + + + + + + + + + + + + + + + +Subsections + + + +
    + +

    +1 The model problem and the space +$ H(\mathop {\rm curl};\Omega )$ +

    +

    +Consider the vector-valued model problem in a Lipschitz domain +$ \Omega \in \mathbb{R}^d$, $ d=2,3$: +

    +
    + + + + +
    $\displaystyle \mathop{\rm curl}\mathop{\rm curl}\underline u + c(x) \underline u = \underline f \quad \mathrm{in} \quad \Omega \,,$ +(1)
    +

    +with right hand side +$ \underline f \in L^2(\Omega )^d$. +
    +We assume a homogeneous Dirichlet boundary condition on the tangential trace +

    +
    + + + + +
    $\displaystyle \underline u \wedge \underline n = 0$ +(2)
    +

    +on the boundary +$ \partial \Omega $ of $ \Omega $. +
    +The coefficient $ c(x)$ is assumed to be bounded and uniform positive definite. +
    +This type of problem typically arises in particular settings of +Maxwell`s equations. The boundary condition (2) then applies to a perfectly conducting boundary. +For a derivation of the model problem (1), refer to Appendix A. +
    +

    +The subject of this section is to give an appropriate setting for a variational formulation of (1). +
    +A more detailed treatment of the following notions and proofs can be found in [4]. +
    +

    + +

    +1.1 Definitions +

    +

    +

    +

    CONVENTION 1   +In the following, the vector +$ \underline t$ will denote the unit tangent vector w. r. t. an edge of a triangle or quadrilateral, + oriented counterclockwise with respect to the corresponding triangle or quadrilateral. + (In 3d, the considered triangles or quadrilaterals will always be faces of a polyhedron, and the counterclockwise orientation has to be + understood as induced by "outward unit normal of the face, plus right hand rule" ).

    + +

    +Let us first consider the case of $ d=2$. For +$ \underline v = \left(\begin{array}{c} v_1(x,y) \\  v_2(x,y)\end{array} \right) \in [\mathcal{D}(\overline{\Omega })]^2$ +and +$ \varphi \in \mathcal{D}(\overline{\Omega })$ we define the scalar- and the +vector-valued curl-operators: + +

    +
    +$\displaystyle \mathop{\rm curl}\underline v := \partial _x v_2 - \partial _y v_...
+...in{array}{c} \partial _y\varphi \\  -\partial _x\varphi \end{array}\right) \,.
+$ +

    +We note that the +$ \mathop{\rm curl}\mathop{\rm curl}$-operator in two dimensions has to be understood as +$ \mathop{\underline{\rm curl}}\mathop{\rm curl}$. +

    +

    REMARK 1   +In the two dimensional case, the +$ \mathop{\rm curl}$ operator is simply the divergence of the rotated field +$ \underline v$. Similarly, the +$ \mathop{\underline{\rm curl}}$ operator is +the rotated gradient field of $ \varphi $. Setting + +

    +
    +$\displaystyle \boldsymbol{R} = \left(\begin{array}{cc}
+0 & 1 \\
+-1 & 0
+\end{array}\right) \,,
+$ +

    +we have + +

    +
    +$\displaystyle \mathop{\rm curl}\underline v = \mathrm{div} \left(\boldsymbol{R} \underline v\right)
+$ +

    +and + +

    +
    +$\displaystyle \mathop{\underline{\rm curl}}\varphi = \boldsymbol{R} \nabla\varphi \,.
+$ +

    +We further note that the tangential vector +$ \underline t$ is just the rotated outward unit normal vector + +$ \underline t = \boldsymbol{R}^T\underline n$. This will enable us to derive statements for the +$ \mathop{\rm curl}$-operators in two dimensions from statements for the +divergence and gradient operators in two dimensions.

    + +

    +For the case of $ d=3$ and a vector field +$ \underline v \in [\mathcal{D}(\overline{\Omega })]^3$ we write + +

    +
    +$\displaystyle \mathop{\rm curl}\underline v := \nabla \wedge \underline v := \l...
+... - \partial _x v_3 \\
+\partial _x v_2 - \partial _y v_1
+\end{array} \right)
+$ +

    +

    DEFINITION 1   +For $ d=2,3$ we write +$ \tilde{d}=1$ if $ d=2$ and +$ \tilde{d}=3$ if $ d=3$, and we define + +

    +
    +$\displaystyle H(\mathop{\rm curl}; \Omega ) := \{ \underline v \in [L^2(\Omega )]^d: \mathop{\rm curl}\underline v \in [L^2(\Omega )]^{\tilde{d}} \}
+$ +

    + + +$ H(\mathop {\rm curl};\Omega )$ endowed with the inner product + +

    +
    +$\displaystyle (\underline v, \underline u)_{H(\mathop{\rm curl};\Omega )} := (\...
+... (\mathop{\rm curl}\underline v, \mathop{\rm curl}\underline u)_{L^2(\Omega )}
+$ +

    +is a Hilbert space. +
    +

    + +

    +1.2 Trace theorem, integration by parts +

    +The space +$ H(\mathop {\rm curl};\Omega )$ will be the appropriate Sobolev space for a weak formulation of the model problem. +In this section we provide a notion of trace of a +$ H(\mathop {\rm curl};\Omega )$-function onto the boundary +$ \partial \Omega $ and we define intergation by parts on the +space +$ H(\mathop {\rm curl};\Omega )$. + +

    +

    +

    THEOREM 1 (Approximation Property)   +For $ d=2,3$, +$ [\mathcal{D}(\overline{\Omega })]^d$ is dense in +$ H(\mathop {\rm curl};\Omega )$.

    + +See [4] p.13, p.20 for the proof in the 2d-case and p.20 for a reference to the proof in 3d proposed in Duvaut & Lions, 1971. +
    +

    +Equipped with this approximation property of smooth functions to elements of +$ H(\mathop {\rm curl};\Omega )$, we can state + +

    +

    +

    THEOREM 2 (Green's Formula)   +For the 2d case, let +$ \underline u$ be in +$ [H(\mathop{\rm curl};\Omega )]^2$ and $ \varphi $ be a test function in +$ H^1(\Omega )$. We have + +

    +
    +$\displaystyle \int_{\Omega } \mathop{\rm curl}\underline u \,\,\varphi \,dx = \...
+...+ \int_{\partial \Omega } (\underline u\cdot \underline t) \, \varphi \,ds \:,
+$ +

    + +

    +For the 3d case, let +$ \underline u$ be in +$ [H(\mathop{\rm curl};\Omega )]^3$ and +$ \underline v$ be a test function in +$ [H^1(\Omega )]^3$. We then have + +

    +
    +$\displaystyle \int_{\Omega } \underline v \cdot \mathop{\rm curl}\underline u \...
+...\partial \Omega } (\underline v\wedge \underline n) \cdot \underline u\,ds \:,
+$ +

    +The boundary integrals are understood as duality pairings in +$ [H^{-\frac{1}{2}}(\partial \Omega )]^{\tilde{d}} \times H^{\frac{1}{2}}(\partial \Omega )$ . +

    +PROOF. For smooth functions, it is easy to see that the above Green's formula holds. In the 2d case this follows just +from Gauss' divergence theorem and remark 1. +
    +For the 3d case we use the identity +
    +

    +
    +$\displaystyle \mathrm{div}\, (\underline u \wedge \underline v) = \underline v ...
+...thop{\rm curl}\underline u - \underline u \cdot \mathop{\rm curl}\underline v
+$ +

    +together with Gauss' Divergence Theorem and the properties of the mixed product +$ (\underline a\wedge\underline b)\cdot \underline c$ to obtain + +

    +
    +$\displaystyle \int_{\Omega } \underline v\cdot \mathop{\rm curl}\underline u - ...
+...rtial \Omega } (\underline v \wedge \underline n)\cdot \underline u \,ds \,\,.
+$ +

    + The extention to a pairing of + +$ H(\mathop{\rm curl})$ and +$ H^1(\Omega )$ functions follows with Theorem 1 by a density argument and is a result of the proof of the + Trace Theorem. See [4] p.21 for details. + + +

    +

    +

    THEOREM 3 (Trace Theorem)   +For $ d=3$, let +$ \underline n$ denote the outward unit normal to the boundary +$ \partial \Omega $. For $ d=2$, let +$ \underline t$ be as in convention 1 +
    +For $ d=2$ the mapping + +

    +
    +$\displaystyle \gamma: \quad \underline v \mapsto \gamma(\underline v) \cdot \underline t
+$ +

    +and for $ d=3$ the mapping + +

    +
    +$\displaystyle \gamma: \quad \underline v \mapsto \gamma(\underline v) \wedge \underline n
+$ +

    +is contiuous and linear from +$ H(\mathop {\rm curl};\Omega )$ to +$ [H^{-\frac{1}{2}}(\partial \Omega )]^{\tilde{d}}$.

    + +

    +Note, that the trace of a +$ H(\mathop {\rm curl};\Omega )$-function is only defined in tangential direction. Its trace is in the dual space + of traces of +$ [H^1(\Omega )]^{\tilde{d}}$ functions. Recall that traces of such functions +are defined in every direction and are functions in +$ [H^{\frac{1}{2}}(\partial \Omega )]^{\tilde{d}}$. +
    +

    +PROOF. +The proof of the trace theorem follows from Green's formula stated in theorem 2 applied to smooth functions +and then by density arguments. See [4] p.21 for details. + + +

    +Due to the Trace Theorem it makes sense to define a space of +$ H(\mathop{\rm curl})$-functions with vanishing tangential components on the boundary. +

    +

    DEFINITION 2   + +

    +
    +$\displaystyle H_0(\mathop{\rm curl};\Omega ) := \left\{ \underline v \in H(\mat...
+...nderline v\wedge \underline n = 0 \:\:\mathrm{on}\:\: \partial \Omega \right\}
+$ +

    + +

    +

    +

    REMARK 2   +For $ d=2,3$, +$ [\mathcal{D}(\Omega )]^d$ is dense in +$ H_0(\mathop{\rm curl};\Omega )$. +

    + +

    +A consequence of Green's formula is the following important regularity property of +$ H(\mathop {\rm curl};\Omega )$-functions: + +

    +

    +

    PROPOSITION 1   +Let $ K_-$ and $ K_+$ be two polygonal (resp. polyhedral) Lipschitz domains in +$ \mathbb{R}^d$, with a common edge (resp. common edge or face) + +$ e = \partial K_-\cap\partial K_+ \neq \emptyset$ and + denote by +$ \Omega = \partial K_-\cup\partial K_+$ their union. A function $ v$ is in +$ H(\mathop {\rm curl};\Omega )$ if and only if the restricion $ v_-$ of $ v$ to $ K_-$ + is in +$ H(\mathop{\rm curl}; K_-)$, the restricion $ v_+$ of $ v$ to $ K_+$ is in +$ H(\mathop{\rm curl}; K_+)$ and the tangential jump over $ e$ vanishes: +$ v_-\wedge n_- + v_+\wedge n_+ = 0$ on $ e$. +

    + + PROOF. + The proposition follows from choosing an appropriate test function and integrating by parts (global and local). + In order to localise the result of the Trace Theorem, we must choose a testfunction from the space +$ H^{\frac{1}{2}}_{00}(e)$. These + functions vanish at the endpoints of $ e$ and can therefore be extended by zero to a +$ H^{\frac{1}{2}}(\partial \Omega )$-function. From the comparison + of local (on $ K_-$ and $ K_+$ separately) and global (on $ \Omega $) integration by parts it followas then that the tangential jump vanishes in the + dual space of +$ H^{\frac{1}{2}}_{00}(e)$. By densitiy properties of +$ H^{\frac{1}{2}}_{00}(e)$ it follows that the tangential traces vanish in + the "correct space" as well. The "correct space" would be +$ H^{-\frac{1}{2}}(e)$ if we have no further regularity of +$ \underline v_-$ and +$ \underline v_+$, and it + would be $ L^2(e)$ if +$ \underline v$ is elementwise in $ H^1$ (e. g.  for piecewise polynomial +$ \underline v$). + + +

    + +

    +1.3 Variational formulation of the model problem +

    +In the previous sections we introduced the space +$ H(\mathop {\rm curl};\Omega )$, an integration-by-parts formula and the notion of trace for an + +$ H(\mathop {\rm curl};\Omega )$-function. In this framework, the variational formulation of the model problem (1) reads: +
    +
    +
    Find +$ \underline u \in H_0(\mathop{\rm curl};\Omega )$ such that for all test functions +$ \underline v \in H_0(\mathop{\rm curl};\Omega )$ holds +

    +
    + + + + +
    $\displaystyle \int_{\Omega } \mathop{\rm curl}\underline u\, \mathop{\rm curl}\...
+..., \cdot \underline v\,dx = \int_{\Omega } \underline f\, \cdot \underline v\,dx$ +(3)
    +

    +
    +
    +With our assumptions on the data, the forms +

    +
    + + + + +
    \begin{displaymath}\begin{split}a(\underline u,\underline v) &:= \int_{\Omega } ...
+...int_{\Omega } \underline f\, \cdot \underline v\,dx \end{split}\end{displaymath} +   
    +

    +are continuous and the bilinear form +$ a(\cdot,\cdot)$ is coercive on + +$ H_0(\mathop{\rm curl};\Omega )\times H_0(\mathop{\rm curl};\Omega )$. By the Lax-Milgram lemma it follows, that there exists a unique solution + +$ \underline u \in H_0(\mathop{\rm curl};\Omega )$ of (3). + +

    +
    + +2003-04-30 +
    + + diff --git a/deal.II/doc/reports/nedelec/node2.html b/deal.II/doc/reports/nedelec/node2.html new file mode 100644 index 0000000000..247c296367 --- /dev/null +++ b/deal.II/doc/reports/nedelec/node2.html @@ -0,0 +1,4050 @@ + + + + + +2 Nédélec's elements of first type for + + + + + + + + + + + + + + + +Subsections + + + +
    + +

    +2 Nédélec's elements of first type for +$ H(\mathop {\rm curl};\Omega )$ +

    + In this section we will present present +$ H(\mathop {\rm curl};\Omega )$-conforming vector-valued finite elements, + the Nédélec elements of first type (cf. [8]), which can be used to discretize the variational problem (3). +
    +

    +In order to define a finite element we must specify +

    +
    the geometry
    +
    We choose a reference element $ \hat{K}$ and a change of variables +$ F_K(\hat{x})$, the element map. + We set +$ K = F_K(\hat{K})$. + +
    +
    a function space
    +
    We need a finite dimensional function space $ \hat{R}$, typically a space of polynomials, on the reference + cell, plus a transformation of $ \hat{R}$ to a function space $ R_K$ on a general cell $ K$. + +
    +
    dofs
    +
    We have to define a set of dofs +$ \mathcal{A} = \{\alpha_i(\cdot)\}_{i=1}^N$. These are linear functionals on + $ \hat{R}$ and +$ N < \infty$ is the dimension of $ \hat{R}$. +$ \mathcal{A}$ should be unisolvent, that is, the dofs +$ \alpha_i(\cdot)$ + are linearly independent. + +
    +
    +

    +First, we observe that for a conforming discretization of (3) we cannot take vector-valued finite elements + that are build by taking the standard nodal finite element spaces of globally continuous functions for each vector component. + For +$ H(\mathop {\rm curl};\Omega )$-functions, the only continuity condition is the continuity of the tangential component over cell boundaries. + This fact will motivate the choice of appropriate degrees of freedom (abbreviated by dofs in the following). +
    +We will give an outline of the construction of the finite element spaces described by Nédélec in [8]. In literature, they are also referred to as + Nédélec's elements of first type. +
    +

    + +

    +2.1 Construction of Nédélec elements on tetrahedral grids +

    +

    +In this section, we denote by $ \hat{K}$ the standard triangular or tetrahedral reference element. + +

    + +

    +2.1.1 Polynomial spaces on the reference element +

    + In [8], Nédélec introduces the function spaces +$ \hat{R} = \mathcal{R}^k$, on which his finite element will be based. These spaces are subject to this + section. + For more details, consult [8]. +
    +We denote by +$ \mathbb{P}_k(\hat{\Sigma})$ the space of polynomials of degree $ k$ on +$ \hat{\Sigma}$, where +$ \hat{\Sigma}$ is an edge, a + face of or the reference element itself.. The space +$ \tilde{\mathbb{P}}_k$ of homogeneous + polynomials of degree $ k$ is the span of monomials of total degree $ k$ in $ d$ variables on $ \hat{K}$. +
    +

    +

    +

    DEFINITION 3   +We define the auxiliary space +

    +
    + + + + +
    $\displaystyle \mathcal{S}^k := \{\, \underline p \in (\tilde{\mathbb{P}}_k)^d :...
+...ine p \cdot \hat{\underline x} = \sum_{i=1}^{d} p_i\,\hat{x}_i \equiv 0 \,\}\,,$ +(4)
    +

    +with +$ \hat{x} \in \hat{K}$. +
    +The dimension of this space is $ k$ in the case $ d=2$ and $ k(k+2)$ for $ d=3$. +

    + +

    +Nédélec's first family of +$ H(\mathop {\rm curl};\Omega )$-conforming finite elements is based on the polynomial spaces +

    +

    DEFINITION 4   +

    +
    + + + + +
    $\displaystyle \mathcal{R}^k = \left(\mathbb{P}_{k-1}(\hat{K}) \right)^d \oplus \mathcal{S}^k\,.$ +(5)
    +

    +These spaces have dimension +

    +
    + + + + +
    \begin{displaymath}\begin{split}\mathrm{dim} (\mathcal{R}^k) &= k(k+2) \qquad \t...
+...ac{(k+3)(k+2)k}{2} \qquad \textrm{for} \quad d=3\,. \end{split}\end{displaymath} +   
    +

    + +

    +In the two-dimensional case, an equivalent characterization of the space +$ \mathcal{R}^k$ is + +

    +

    +
    + + + + +
    $\displaystyle \mathcal{R}^k = \left(\mathbb{P}_{k-1}(\hat{K}) \right)^2 \oplus ...
+..._{k-1}\, \left(\begin{array}{cc} \hat{x}_2 \\  -\hat{x}_1 \end{array}\right)\,.$ +(6)
    +

    + This can be seen by noting that for $ d=2$ + +

    +
    +$\displaystyle \tilde{\mathbb{P}}_{k-1}\, \left(\begin{array}{cc} \hat{x}_2 \\  ...
+...ilde{p} \left(\begin{array}{cc} x_2 \\ -x_1 \end{array}\right)\,,\, \tilde{p}
+$ +

    + obviously holds. + Moreover, the dimension of the space +$ \tilde{\mathbb{P}}_{k-1}$ of homogeneous polynomials of degree $ k-1$ in two variables is $ k$ and this is + also the dimension +$ \mathcal{S}^k$. This proves the stated equivalent representation of the space +$ \mathcal{S}^k$. +
    +
    +We illustrate these definitions with some examples. We start with the case $ d=2$ and consider the spaces of polynomials of degree + $ k=1$ and $ k=2$: +
    +

    +

    +

    EXAMPLE 1   + +

    +

    +
    + + + + +
    $\displaystyle \mathcal{R}^1 = \left\langle \left(\begin{array}{cc} 1 \\  0 \end...
+...eft(\begin{array}{cc} \hat{x}_2 \\  -\hat{x}_1 \end{array}\right) \right\rangle$ +(7)
    +

    + +

    + +

    +
    +$\displaystyle \mathcal{R}^2 = \left(\mathbb{P}_{1}(\hat{K}) \right)^2 \oplus
+\...
+...{cc} {\hat{x}_2}^2 \\  -\hat{x}_1\,\hat{x}_2 \end{array}\right)
+\right\rangle
+$ +

    + +

    +

    + +

    +To illustrate a case for $ d=3$, we consider the lowest polynomial degree $ k=1$: +

    +

    EXAMPLE 2   +We have to specify a basis for +$ \mathcal{S}^1$: +
    +Let +$ \underline p$ be a polynomial in +$ (\mathbb{P}_{1}(\hat{K}))^3$ with componentwise representation + +

    +
    +$\displaystyle p_i = \sum_{j=1}^3 a_{ij} \hat{x}_j\,, \qquad i=1,2,3\,.
+$ +

    +The condition for +$ \underline p$ being in +$ \mathcal{S}^1$ is + +

    +
    +$\displaystyle \underline p \cdot \hat{\underline x} =
+\sum_{i=1}^3 a_{ii}\hat{...
+...um_{\substack{i,j=1 \\  j>i}}^3 (a_{ij}+a_{ji})\hat{x}_i \hat{x}_j \equiv 0\,.
+$ +

    +This leads to the condition on the coefficients of a polynomial in +$ \mathcal{S}^1$: +

    +
    + + + + +
    \begin{displaymath}\begin{split}&a_{11}=a_{22}=a_{33} = 0 \\  &a_{12}= - a_{21}\,,\quad a_{13}= - a_{31}\,,\quad a_{23}= - a_{32}\,. \end{split}\end{displaymath} +   
    +

    + +

    +With the basis of +$ \mathcal{S}^1$ which is obtained by choosing +$ a_{ij} = 1$, $ i=1,2,3$, $ j>i$ and setting all the other + coefficients to zero, we get +

    +
    + + + + +
    $\displaystyle \mathcal{R}^1 = \left(\mathbb{P}_{0}(\hat{K}) \right)^3 \oplus \l...
+...egin{array}{ccc} \hat{x}_2 \\  \hat{x}_1 \\  0 \end{array}\right) \right\rangle$ +   
    +

    + +

    +

    + +

    +We remark at this point that the spaces +$ \mathcal{R}^k$ do not span the whole +$ (\mathbb{P}_{k}(\hat{K}) )^d$. + An +$ H(\mathop {\rm curl};\Omega )$-conforming FEM based on full polynomial spaces, the so called + Nédélec elements of second type, was introduced in 1986 by Nédélec in [10]. + +

    +

    +

    REMARK 3   +The original, rather technical, representation of the spaces +$ \mathcal{R}^k$ is given in Definition 2 in [8]. + Nédélec uses this representation in most of his proofs. We will not refer to it here. +

    + +

    + +

    + +
    +2.1.2 Degrees of freedom on the reference element +

    + In this section we define the set +$ \mathcal{A}$ of dofs, which is a set of linear functionals on +$ \mathcal{R}^k$. +

    +

    REMARK 4   +Recall that the dimension of the spaces of polynomials of degree $ k$ in $ n$ variables is +$ n+k+2 \choose n$. +

    + +

    +

    +

    DEFINITION 5   +Let $ \hat{K}$ be the reference triangle and +$ \hat{\underline t}$ the tangent as defined in convention 1. + The set of degrees of freedom +$ \mathcal{A}$ on +$ \mathcal{R}^k$ in the 2d case consists of the linear functionals +
    +
    edge dofs
    +

    +
    + + + + +
    $\displaystyle \hat{\alpha}(\hat{\underline u}) := \int_{\hat{e}} (\hat{\underli...
+...arphi }\,d\hat{s} \quad \forall \hat{\varphi } \in \mathbb{P}_{k-1}(\hat{e})\,,$ +   
    +

    +for every edge $ \hat{e}$ of $ \hat{K}$. We have a total of $ 3k$ of edge dofs. + +

    +

    +
    inner dofs
    +

    +
    + + + + +
    $\displaystyle \hat{\alpha}(\hat{\underline u}) := \int_{\hat{K}} \hat{\underlin...
+...x} \quad \forall \hat{\underline \varphi } \in (\mathbb{P}_{k-2}(\hat{K}))^2\,.$ +   
    +

    +We have a total of $ k(k-1)$ of inner dofs. + +

    +

    +

    + +

    +

    +

    DEFINITION 6   +Let $ \hat{K}$ be the reference tetrahedron, +$ \hat{\underline t}$ the tangent to an edge as defined in convention 1 + and +$ \hat{\underline n}$ the outward unit normal vector to a face. + The set of degrees of freedom +$ \mathcal{A}$ on +$ \mathcal{R}^k$ in the 3d case consists of the linear functionals +
    +
    edge dofs
    +

    +
    + + + + +
    $\displaystyle \hat{\alpha}(\hat{\underline u}) := \int_{\hat{e}} (\hat{\underli...
+...arphi }\,d\hat{s} \quad \forall \hat{\varphi } \in \mathbb{P}_{k-1}(\hat{e})\,,$ +   
    +

    +for every edge $ \hat{e}$ of the tetrahedron $ \hat{K}$. We have a total of $ 6k$ of edge dofs. + +

    +

    +
    face dofs
    +

    +
    + + + + +
    $\displaystyle \hat{\alpha}(\hat{\underline u}) := \int_{\hat{f}} (\hat{\underli...
+... }\,d\hat{a} \quad \forall \hat{\varphi } \in (\mathbb{P}_{k-2}(\hat{f}) )^2\,,$ +   
    +

    +for every face $ \hat{f}$ of the tetrahedron $ \hat{K}$. We have a total of $ 4k(k-1)$ of face dofs. + +

    +

    +
    inner dofs
    +

    +
    + + + + +
    $\displaystyle \hat{\alpha}(\hat{\underline u}) := \int_{\hat{K}} \hat{\underlin...
+...x} \quad \forall \hat{\underline \varphi } \in (\mathbb{P}_{k-3}(\hat{K}))^3\,.$ +   
    +

    +We have a total of +$ \frac{k(k-1)(k-2)}{2}$ of inner dofs. + +
    +

    + +

    +We note that in the case of lowest order elements, i. e. $ k=1$, only edge dofs occur. This is not so for higher order elements. For + $ k=2$ we additionally have inner dofs in the 2d case and face dofs in the 3d case. For $ k\leq3$ we have all types of dofs in both + cases. +
    +We also note that the total number of dofs equals the dimension of the spaces +$ \mathcal{R}^k$, as it should be. +
    +The representation of the interface dofs, that is edge dofs in 2d, edge and face dofs in 3d, is motivated by the continuity + condition on +$ H(\mathop {\rm curl};\Omega )$-functions stated in proposition 1. +
    +

    +

    +

    PROPOSITION 2   +The set +$ \mathcal{A}$ of dofs befined above is unisolvent on +$ \mathcal{R}^k$. + +$ \hat{\underline u}\in \mathcal{R}^k$ is uniquely defined by the moments +$ \hat{\alpha}(\hat{\underline u})$. +

    + + PROOF. See [8], proof of theorem 1 and preceeding lemmas. + +

    +

    +

    EXAMPLE 3 (Reference shape functions of lowest order for Nédélec elements on triangular meshes)   +Let the reference element be the triangle + +$ \hat{K} = \left\{ (\hat{x},\hat{y})\in\mathbb{R}^2:\quad 0\leq \hat{x}\leq 1\,,\,\, 0\leq \hat{y}\leq 1-\hat{x} \right\}$. + Label the edges couterclockwise startung with +$ \hat{e}_0 = \overline{(0,0),(1,0)}$. + The tangential vectors to the edges are (oriented counterclockwise) + +

    +
    +$\displaystyle \hat{\underline t}_0 = \left(\begin{array}{cc} 1 \\  0 \end{array...
+...
+\hat{\underline t}_2 = \left(\begin{array}{cc} 0 \\  -1 \end{array}\right)\,.
+$ +

    +The underlying function space for lowest order Nédélec elements on a triangular mesh is +$ \mathcal{R}^1$ from ([*]). +
    +In the case of $ k=1$ only egde-dofs occur. On $ \hat{K}$ we have dofs of the type + +$ \int_{\hat{e}_i} (\hat{\underline t}\cdot \hat{\underline u})\, \hat{\varphi }\,d\hat{s}\,, \forall \hat{\varphi } \in \mathbb{P}_{0}(\hat{e}_i)$. + More precisely, since +$ \varphi \equiv 1$ is a basis for +$ \mathbb{P}_{0}(\hat{e}_i)$ we have the three dofs +

    +
    + + + + +
    $\displaystyle \hat{\alpha}_i(\hat{\underline u}) = \int_{\hat{e}_i} (\hat{\underline t}\cdot \hat{\underline u})\,d\hat{s} \quad i=0,1,2\,.$ +   
    +

    +In order to construct a FE-basis +$ \hat{\underline N}_0,\hat{\underline N}_1,\hat{\underline N}_2$ for +$ \mathcal{R}^1$ with respect to these dofs, we require + +$ \hat{\alpha}_i(\hat{\underline N}_j) = \delta_{ij}$. This leads to a linear system for + the coefficients of the +$ \hat{\underline N}_i$ in a general basis of +$ \mathcal{R}^1$. In the case of lowest order elements, it is easy to + verify that we have +

    +
    + + + + +
    $\displaystyle \hat{\underline N}_0 = \left(\begin{array}{cc} 1-\hat{y} \\  \hat...
+...ine N}_2 = \left(\begin{array}{cc} -\hat{y} \\  \hat{x}-1 \end{array}\right)\,.$ +(8)
    +

    + +

    + +

    +
    +2.1.3 Piola transformation +

    + An affine triangle or tetrahedron $ K$ is described by the affine element map + +

    +
    +$\displaystyle K \ni x = F_K(\hat{x}) = B_K \hat{x} + b_K
+$ +

    +

    +In standard +$ H^1(\Omega )$-conforming FEM, the shape functions $ N_i$ on a general cell $ K$ are obtained from the reference shape functions + $ \hat{N}_i$ on the reference element $ \hat{K}$ by the pull-back +

    +
    + + + + +
    $\displaystyle N_i(x) = \left( \hat{N}_i \circ F_K^{-1} \right)(x)$ +   
    +

    + In the case of +$ H(\mathop {\rm curl};\Omega )$-conforming Nédélec FEM we cannot transforme our shape function in this way. The pull-back of a + +$ H(\mathop{\rm curl};\hat{K})$-function needs not to be in +$ H(\mathop{\rm curl}; K)$. In addition, the pull-back is not an +$ \mathcal{R}^k$-isomorphism and it + does not lead to an +$ H(\mathop {\rm curl};\Omega )$-conforming method if prescribing the dofs by definitions 5 or [*]. +
    +In Nédélec's FEM (or, more general, in +$ H(\mathop {\rm curl};\Omega )$-conforming FEM), the shape functions are transformed by the following covariant + transformation for vector-fields: +
    +

    +

    +
    +
    The element shape functions +$ \underline N_i(x)$ on the element +$ K = F_K(\hat{K})$ are obtained + from the reference shape functions by +

    +
    + + + + +
    $\displaystyle \underline N_i(x) = \mathcal{P}_K (\hat{\underline N}_i) = \left(\hat{D}F_K^{-T} \hat{\underline N}_i\right) \circ F_K^{-1} (x)\,,$ +(9)
    +

    +where +$ \hat{D}F_K$ is the jacobian +$ \frac{d}{d\hat{x}}F_K(\hat{x})$ of the element map. + +
    +
    +

    +In literature, an equivalent to this transformation for +$ H(\mathop{\rm div}; \Omega )$-conforming FEM (which in that case is a contravariant map) + is referred to as Piola transformation, cf. [3] pp. 97. +
    +Here, we will refer to the transformation (9) of the vector field also as Piola transformation. +
    +We note that the gradients of scalar nodal +$ H^1(\Omega )$-conforming finite elements transform according to the Piola + transformation (9). +
    +

    +In the case of tetrahedral elements and affine element map +$ F_K(\hat{x}) = B_K \hat{x} + b_k$, the jacobian +$ \hat{D}F_K$ + is just the constant matrix $ B_K$ and we have +

    +
    + + + + +
    $\displaystyle \underline v(x) = \mathcal{P}_K (\hat{\underline v}) = B_K^{-T} \left(\hat{\underline v} \circ F_K^{-1} \right)(x)\,,$ +(10)
    +

    +

    + +

    + +
    +2.1.4 Transformation of the curl in 2d +

    + For +$ \Omega \subset\mathbb{R}^2$, we noted in remark 1 that vector fields in +$ H(\mathop {\rm curl};\Omega )$ can be represented as + rotated +$ H(\mathop{\rm div}; \Omega )$ vector fields. + Moreover, it is easy to verify that +

    +
    + + + + +
    $\displaystyle B_K^{-T} = \det B_K^{-1}\,R^T B_K\,R \,,$ +(11)
    +

    + where $ R$ is the rotation matrix from remark 1. + Therefore, the properties of the Piola transformation (10) in the 2d case can be derived directly + from the properties + of the +$ H(\mathop{\rm div}; \Omega )$-Piola transformation stated in [3] pp. 97. + +

    +

    +

    THEOREM 4 (Some properties of 2d Piola transformation for affine element map)   +Let +$ \underline v(x) = \mathcal{P}_K(\hat{\underline v})$, +$ \varphi (x) = \left( \hat{\varphi }\circ F_K^{-1} \right)(x)$, +$ \hat{x} =
+F_K^{-1}(x)$, with affine element map $ F_K$. +
    +
    (i)
    +
    The gradient +$ D\underline v$ transforms according to +

    +
    + + + + +
    $\displaystyle D\underline v = B_K^{-T}\, \hat{D}\hat{\underline v}\, B_K^{-1}\, .$ +(12)
    +

    + +
    +
    (ii)
    +
    The curl transforms according to +

    +
    + + + + +
    $\displaystyle \mathop{\rm curl}\underline v = \det B_K^{-1} \widehat{\mathop{\rm curl}} \hat{\underline v}\, .$ +(13)
    +

    +As a consequence we see that +$ H(\mathop{\rm curl}; K)$ is isomorphic to +$ H(\mathop{\rm curl};\hat{K})$ under the Piola transformation + (10). + +
    +

    + +

    +PROOF. +

    +
    (i)
    +
    Chain rule + +
    +
    (ii)
    +
    We use that the 2d +$ \mathop{\rm curl}$ operator is just the trace of the rotated jacobian $ R\,Dv$. By remark 11, + we can replace $ B_K^{-T}$ and we get that $ R\,Dv$ is affine-equivalent to +$ \det B_K^{-1}\,R\,\hat{D}\hat{v}$, + which proves (ii). + +
    +
    + + +

    +

    +

    COROLLARY 1   +From (ii) in theorem 4 we deduce +

    +
    + + + + +
    $\displaystyle \int_{K} \mathop{\rm curl}\underline v\, \varphi \, dx = \int_{\h...
+...}} \widehat{\mathop{\rm curl}}\hat{\underline v}\, \hat{\varphi } \,d\hat{x}\,,$ +   
    +

    +and we have, together with (ii) from theorem 4 +

    +
    + + + + +
    $\displaystyle \int_{K} \mathop{\rm curl}\underline v\, \mathop{\rm curl}\underl...
+...hat{\underline v}\, \widehat{\mathop{\rm curl}}\hat{\underline u} \,d\hat{x}\,.$ +   
    +

    + +

    + +

    + +

    + +
    +2.1.5 Transformation of the curl in 3d +

    + In three dimensions, we cannot identify the curl-operator with the rotated + gradient or with the divergence of a rotated vector field. We cannot, as in 2d, derive a transformation formula for the curl from the + transformatin formula of the divergence. +
    +By the chain rule, we obtain the transformation of the gradient of a vector field +$ \underline v$, defined by the Piola transformation ([*]) of a reference field +$ \hat{\underline v}$: +

    +
    + + + + +
    $\displaystyle D\underline v = B_K^{-T}\, \hat{D}\hat{\underline v}\, B_K^{-1}\, .$ +(14)
    +

    +

    +We introduce the skew symmetric matrix +$ \mathop{\rm Curl}v$ as +

    +
    + + + + +
    $\displaystyle \left({\mathop{\rm Curl}v}\right)_{ij} = \frac{\partial v_j}{\partial x_i} - \frac{\partial v_i}{\partial x_j}$ +(15)
    +

    +

    +We see that +$ \mathop{\rm Curl}v = D\underline v^T - D\underline v$ and therefore by (14) +

    +
    + + + + +
    $\displaystyle \mathop{\rm Curl}v = B_K^{-T} \widehat{\mathop{\rm Curl}}\,\hat{v} \,B_K^{-1}$ +(16)
    +

    +

    +

    +

    PROPOSITION 3 (Transformation of the curl in 3d)   +Let $ \hat{K}$ be the reference tetrahedron and +$ K = F_K(\hat{K})$ an affine image of it. + The curl of a vector field +$ \underline v(x)$ on $ K$, defined by the Piola transformation of a reference field +$ \hat{\underline v}(\hat{x})$ + transforms according to +

    +
    + + + + +
    $\displaystyle \left(\mathop{\rm curl}\underline v\right)_i(x) = \det \mathrm{M_i}(x) \,, \qquad i= 1,2,3\,$ +(17)
    +

    +We obtain the matrix +$ \mathrm{M_i}$ by replacing i-th column of the (constant) jacobian +$ D(F_K^{-1}) = B_K^{-1}$ + by the vector +$ (\widehat{\mathop{\rm curl}}\,\hat{\underline v}\circ F_K^{-1})(x)$: +

    +
    + + + + +
    $\displaystyle \left(\mathrm{M_i}\right)_{kl}(x) := \left\{ \begin{array}{ll} (\...
+...} \quad l=i \\  (B_K^{-1})_{kl} & \textrm{if} \quad l\neq i \end{array} \right.$ +   
    +

    + (Note: an alternative, equivalent, transformation formula for the curl in 3d is given in proposition 4). +

    + +

    +PROOF. + It holds +

    +
    + + + + +
    $\displaystyle \mathop{\rm curl}\underline v = \left( \begin{array}{ccc} ({\math...
+...\mathop{\rm Curl}v})_{31} \\  ({\mathop{\rm Curl}v})_{12} \end{array}\right)\,.$ +(18)
    +

    + We demonstrate the statement of the proposition for the first component of the curl, which is +$ (\mathop{\rm curl}\underline v)_1 = {\mathop{\rm Curl}v}_{23}$. + Using the transformation (16), implicit summation over equal indices and the + abbreviation +$ b_{ij} := (B_K^{-1})_{ij}$, we have + +

    +
    +$\displaystyle ({\mathop{\rm Curl}v})_{23} = b_{k2}\, (\widehat{\mathop{\rm Curl}}\, \hat{v})_{kl}\,b_{l3}
+$ +

    + Writing this out and recalling that +$ \mathop{\rm Curl}v$ is skew symmetric, yields + +

    +
    +$\displaystyle ({\mathop{\rm Curl}v})_{23} = (b_{12}b_{23} - b_{22}b_{13})(\wide...
+...
++(b_{22}b_{33} - b_{32}b_{23})(\widehat{\mathop{\rm Curl}}\, \hat{v})_{23}\,,
+$ +

    + and with (18) this is equal to the determinant of + +

    +
    +$\displaystyle \mathrm{M_1} := \left(\begin{array}{ccc} (\widehat{\mathop{\rm cu...
+...
+(\widehat{\mathop{\rm curl}}\, v)_3 & b_{32} & b_{33}
+\end{array}\right) \,.
+$ +

    + The proof for the other components follows analogously. + + +

    +In the next proposition, we state an alternative, equivalent, formula for the transformation of the curl + (e. g. used by Demkovicz in [12]) +

    +

    PROPOSITION 4   +For a vector field +$ \underline v$ on the tetrahedron +$ K = F_K(\hat{K})$, defined by the Piola transformation (10) of a reference + field +$ \hat{\underline v}$ on $ \hat{K}$, we have +

    +
    + + + + +
    $\displaystyle \mathop{\rm curl}\underline v = \frac{1}{\det B_K}\,B_K\,(\widehat{\mathop{\rm curl}}\,\hat{\underline v} \circ F_K^{-1})\,.$ +(19)
    +

    + +

    +PROOF. + The transformation formula (19) can be proven componentwise, and + we will only carry out the proof for the first vector component +$ (\mathop{\rm curl}\underline v)_1$. The proofs for the other components + follow analogously. +
    +The identity (19) reads for the first vector component +

    +
    + + + + +
    $\displaystyle (\mathop{\rm curl}\underline v)_1 = \frac{1}{\det B_K} (B_K)_{1j} ((\widehat{\mathop{\rm curl}}\,\hat{\underline v})_j \circ F^{-1})\,.$ +(20)
    +

    + Referring to (17), we show that the right hand side of (20) equals + +$ \det \mathrm{M_1}$. + For this, we expand +$ \det \mathrm{M_1}$ to + +

    +
    +$\displaystyle \det \mathrm{M_1} = (\widehat{\mathop{\rm curl}}\, \hat{\underlin...
+...ehat{\mathop{\rm curl}}\, \hat{\underline v})_3 \det\mathcal{B}^{inv}_{31} \,,
+$ +

    + where +$ \mathcal{B}^{inv}_{ij}$ is the +$ 2 \times 2$-matrix arising from $ B_K^{-1}$ when cancelling its i-th row and its j-th column. +
    +We recall the formula for the inverse of a matrix +$ A \in \mathbb{R}^{3\times 3}$ +

    +
    + + + + +
    $\displaystyle (A^{-1})_{ij} = \frac{1}{\det A} (-1)^{i+j} \det \mathcal{A}_{ji} \,,$ +(21)
    +

    + where +$ \mathcal{A}_{ij}$ is the +$ 2 \times 2$-matrix arising from $ A$ when cancelling its i-th row and its j-th column. +
    +Replacing $ B_K$ in the right hand side of (19) by the expression (21) + for +$ A = B_K^{-1}$, we get +
    +

    +
    +$\displaystyle \frac{1}{\det B_K}\,\frac{1}{\det B_K^{-1}} (-1)^{1+j} \det \math...
+...l}}\, \hat{\underline v})_3 \det \mathcal{B}^{inv}_{31} = \det \mathrm{M_1}\,.
+$ +

    + + +

    + +

    +
    +2.2 Nédélec Elements on affine quadrilateral or hexahedral grids +

    + We want to present the ingredients for Nédélec's finite elements of first type on + grids consisiting of parallelograms (in 2d) or the respective objects in 3d, so called parallelotops (cf. section + FE built on cubes in [8]). Such grids consist + of elements $ C$ that are affine images of the square or cubic reference element +$ \hat{C} = [0,1]^d$: + +

    +
    +$\displaystyle C = F_C(\hat{C}) \quad C \ni x = B_C \hat{x} + \underline b_C \,, \hat{x} \in \hat{C}\,.
+$ +

    +

    + +

    +2.2.1 Polynomial spaces on the reference element +

    +

    +In order to introduce the function spaces needed for the construction of Nédélec's finite elements, + let us define some spaces of vector-valued polynomials +

    +

    DEFINITION 7   + +$ \mathcal{Q}_{l,m}$ are the spaces of polynomials on the reference square $ \hat{C}$ with maximal degree $ l$ in $ \hat{x}_1$ and + $ m$ in $ \hat{x}_2$. +
    +$ \mathcal{Q}_{l,m,n}$ are the spaces of polynomials on the reference cube $ \hat{C}$ with maximal degree $ l$ + in $ \hat{x}_1$, $ m$ in $ \hat{x}_2$ and $ n$ in $ \hat{x}_3$. +

    + +

    +The spaces $ \hat{R}$ for the reference shape functions now are in 2d +

    +
    + + + + +
    $\displaystyle \mathcal{P}^k = \left\{ \hat{\underline u} = \left(\begin{array}{...
+...t{u}_1 \in \mathcal{Q}_{k-1,k}\,, \hat{u}_2 \in \mathcal{Q}_{k,k-1} \right\}\,,$ +(22)
    +

    + +

    +and in 3d +

    +
    + + + + +
    $\displaystyle \mathcal{P}^k = \left\{ \hat{\underline u} = \left(\begin{array}{...
+...}_2 \in \mathcal{Q}_{k,k-1,k}\,, \hat{u}_3 \in \mathcal{Q}_{k,k,k-1}\right\}\,.$ +(23)
    +

    + +

    +We renounce an example, since it is quite evident, what these spaces look like for a specific $ k$. + +

    + +

    + +
    +2.2.2 Degrees of freedom on the reference element +

    + We start with the degrees of freedoms on the reference square +$ \hat{C}\subset \mathbb{R}^2$: +

    +

    DEFINITION 8   +Let $ \hat{C}$ denote the reference square and +$ \hat{\underline t}$ the tangent as defined in convention 1. + The set of degrees of freedom +$ \mathcal{A}$ on +$ \mathcal{P}^k$ in the 2d case consists of the linear functionals +
    +
    edge dofs
    +

    +
    + + + + +
    $\displaystyle \hat{\alpha}(\hat{\underline u}) := \int_{\hat{e}} (\hat{\underli...
+... }\,d\hat{s}\,, \quad \forall\, \hat{\varphi } \in \mathbb{P}_{k-1}(\hat{e})\,,$ +   
    +

    +for every edge $ \hat{e}$ of $ \hat{C}$. We have a total of $ 4k$ of edge dofs. + +

    +

    +
    inner dofs
    +

    +
    + + + + +
    $\displaystyle \hat{\alpha}(\hat{\underline u}) := \int_{\hat{C}} \hat{\underlin...
+... }_1\in\mathcal{Q}_{k-2,k-1}\,,\quad\hat{\varphi }_2\in\mathcal{Q}_{k-1,k-2}\,.$ +   
    +

    +We have a total of $ 2k(k-1)$ of inner dofs. + +

    +

    +

    + +

    +

    +

    DEFINITION 9   +Let $ \hat{C}$ denote the reference cube, +$ \hat{\underline t}$ the tangent to an edge as defined in convention 1 + and +$ \hat{\underline n}$ the outward unit normal vector to a face. + The set of degrees of freedom +$ \mathcal{A}$ on +$ \mathcal{P}^k$ in the 3d case consists of the linear functionals +
    +
    edge dofs
    +

    +
    + + + + +
    $\displaystyle \hat{\alpha}(\hat{\underline u}) := \int_{\hat{e}} (\hat{\underli...
+... }\,d\hat{s}\,, \quad \forall\, \hat{\varphi } \in \mathbb{P}_{k-1}(\hat{e})\,,$ +   
    +

    +for every edge $ \hat{e}$ of $ \hat{C}$. We have a total of $ 12k$ of edge dofs. + +

    +

    +
    face dofs
    +

    +
    + + + + +
    $\displaystyle \hat{\alpha}(\hat{\underline u}) := \int_{\hat{f}} (\hat{\underli...
+..._{k-2,k-1}(\hat{f})\,,\quad\hat{\varphi }_2\in\mathcal{Q}_{k-1,k-2}(\hat{f})\,.$ +   
    +

    +for every face $ \hat{f}$ of $ \hat{C}$. We have a total of +$ 6\cdot 2k(k-1)$ of face dofs. + +

    +

    +
    inner dofs
    +

    +
    + + + + +
    $\displaystyle \hat{\alpha}(\hat{\underline u}) := \int_{\hat{C}} \hat{\underlin...
+...athcal{Q}_{k-2,k-1,k-2}\,, \quad\hat{\varphi _3}\in\mathcal{Q}_{k-2,k-2,k-1}\,.$ +   
    +

    +We have a total of $ 3k(k-1)^2$ of inner dofs. + +
    +

    + +

    +

    +

    EXAMPLE 4   +Proceeding the same way as in example 3 for a triangular reference element, we obtain +the reference shape functions of lowest +order on the square $ [0,1]^2$. For the unit tangents as in convention 1 + +

    +
    +$\displaystyle \hat{\underline t}_0 = \left(\begin{array}{cc} 1 \\  0 \end{array...
+...
+\hat{\underline t}_3 = \left(\begin{array}{cc} 0 \\  -1 \end{array}\right)\,,
+$ +

    +they read +

    +
    + + + + +
    $\displaystyle \hat{\underline N}_0 = \left(\begin{array}{cc} 1-\hat{y} \\  0 \e...
+...\underline N}_3 = \left(\begin{array}{cc} 0 \\  \hat{x}-1 \end{array}\right)\,.$ +(24)
    +

    + +

    + +

    +2.2.3 Transformation of the vector field +

    +Since the elements of the considered grids are still affine images of the reference element, we can use the Piola transformation +(10) to transform vector fields and the results stated in sections +2.1.3 - 2.1.5 can be carried over one to one. + +

    +2.3 Construction of Nédélec elements on bi- or trilinear elements +

    + We now want to consider grids that are composed of elements that are a bi- resp. trilinear images +$ F_C(\hat{C})$ of the reference + element +$ \hat{C} = [0,1]^d$. + The main difference here is, that the jacobian +$ \hat{D}F_C(\hat{x})$ of the element map $ F_C$ is not + constant, and we have to use Piola transformation (9) to + transform vector fields. +
    +

    + +

    +2.3.1 Bilinear elements in 2d +

    + The polynomial spaces +$ \mathcal{P}^k$ and the dofs remain the same as in the case of affine quadrilateral elements. +
    +A transformed vector field on a general element is now defined by the Piola transformation (9) +
    +

    +
    +$\displaystyle \underline v(x) = (\hat{D}F_C^{-T} \hat{\underline v}_i) \circ F_C^{-1} (x)$ +

    of a vector field on the reference element. Note that + the jacobian +$ \hat{D}F_C(\hat{x})$ is not constant in this case. In contrast to the case of affine elements, the gradient +$ D\underline v$ does not transform according to + formula (12). Non-vanishing second derivatives of +$ \hat{D}F_C(\hat{x})$ appear in the transformation rule + for gradients of vector fields. + This requires a new approach to express +$ \mathop{\rm curl}\underline v$ in terms of + +$ \widehat{\mathop{\rm curl}}\,\hat{\underline v}$. + Nevertheless, it can be shown that the curl of a vector field transforms analogously to the case of affine elements. + +

    +

    +

    PROPOSITION 5   +Let $ \hat{C}$ be the reference element $ [0,1]^2$ and $ C$ a bilinear image of $ \hat{C}$. If the vector field +$ \underline v(x)$ + transforms according to the Piola transformation (9), then the transformation of the curl obeys +

    +
    + + + + +
    $\displaystyle \mathop{\rm curl}\underline v(x) = (\det \hat{D}F)^{-1} \widehat{\mathop{\rm curl}}\, \hat{\underline v}(\hat{x})\,, \qquad x = F(\hat{x})\,,$ +   
    +

    +as in the affine case. +

    + +

    +PROOF. + In this proof, the mapped element $ C$ will be fixed, so for simplicity we write $ F$ for $ F_C$. +
    +First note that +$ (\hat{D}F(F^{-1}(x)))^{-1} = D(F^{-1})(x)$. We use the notation +$ D(F^{-1})_{ij}(x)=
+\frac{\partial \hat{x}_i}{\partial x_j}(x)$ and imlicit summation to rewrite the Piola transformation of the vector field componentwise +
    +

    +
    +$\displaystyle v_i(x) = \frac{\partial \hat{x}_j}{\partial x_i}(x) \,\hat{\underline v}_j (F^{-1}(x)) \,, \qquad i=1,2\,.
+$ +

    + In the case of affine elements, i. e. for constant jacobian, we have + +

    +

    +
    + + + + +
    \begin{displaymath}\begin{split}\frac{\partial v_2}{\partial x_1} &= \frac{\part...
+... }{\partial x_2}\hat{\underline v}_i(F^{-1}(x)) \,, \end{split}\end{displaymath} +   
    +

    +

    +whereas for non-constant jacobian we have + +

    +

    +
    + + + + +
    \begin{displaymath}\begin{split}\frac{\partial v_2}{\partial x_1} &= \frac{\part...
+... }{\partial x_2}\hat{\underline v}_i(F^{-1}(x)) \,. \end{split}\end{displaymath} +   
    +

    +

    +We see that in both cases we have + +

    +
    +$\displaystyle \mathop{\rm curl}\underline v = \frac{\partial v_2}{\partial x_1}...
+...ial x_1}(x) \,\frac{\partial }{\partial x_2}\hat{\underline v}_i(F^{-1}(x)) \,
+$ +

    + that is, the second derivatives cancel out in the expression for the curl and the curl in the non-affine case transforms equally + to the curl in the affine case. + + +

    + +

    +2.3.2 Trilinear elements in 3d +

    + The polynomial spaces +$ \mathcal{P}^k$ and the dofs remain the same as in the case of affine hexahedral elements. +
    +The + vector field on a genereal element is defined by the Piola transformation (9). +
    +The problem of the non-vanishing second derivatives of the jacobian +$ D(F_C^{-1})(x)$ arises again, and we cannot generalize the results + from the affine case straight away. +
    +But analogously to the 2d case, one can check that in in the transformation rule for expressions + +$ \frac{\partial v_i}{\partial x_j} - \frac{\partial v_j}{\partial x_i}$, +$ i,j = 1,2,3$, + which define the curl-operator, the terms containing second derivatives vanish. We have therefore again the transformation rule + (16) for the skew matrix +$ \mathop{\rm Curl}v = Dv^T - Dv$: +
    +

    +
    +$\displaystyle \mathop{\rm Curl}v (x) = ((\hat{D}F_C^{-T} \widehat{\mathop{\rm C...
+...x)\, (\widehat{\mathop{\rm Curl}}\,\hat{v}\circ F_C^{-1})(x)\,DF_C^{-1}(x) \,.
+$ +

    +

    +It follows that the following proposition can be proved analogously to the case of affine elements (replace there $ B_C$ by + +$ \hat{D}F_C(\hat(x))$). +

    +

    PROPOSITION 6   +Let the vector field +$ \underline v(x)$ on a trilinear image +$ C = F_C(\hat{C})$ be defined by the Piola transformation of a + reference field +$ \hat{\underline v}(\hat{x})$ on $ \hat{C}$. The transformation formula for the curl then reads +

    +
    + + + + +
    $\displaystyle \mathop{\rm curl}\underline v = \left(\frac{1}{\det \hat{D}F_C}\,...
+...F_C\, \widehat{\mathop{\rm curl}}\,\hat{\underline v} \right) \circ F_C^{-1}\,.$ +   
    +

    + +

    + +

    +2.4 Construction of global shape functions +

    + In the previous sections we have introduced function spaces and degrees of freedom, which, together with the Piola transformation, + will allow us to define an +$ H(\mathop {\rm curl};\Omega )$-conforming finite element method. + Indeed, in [8], Nédélec shows the invariance of the spaces + +$ \mathcal{R}^k$ and +$ \mathcal{Q}^k$ under Piola transformation of the vector field, as well as the unisolvence of the set of + degrees of freedom +$ \mathcal{A}$ from sections 2.1.2 and 2.2.2 + (for details, see [8], Section 1.2, Theorem 1 and Section 2, Theorem 5). + This leads to the fact that +$ H(\mathop {\rm curl};\Omega )$-conforming global shape functions can be defined by mapping elementwise the reference + shape functions with the Piola transformation +$ \mathcal{P}_K$. + However, we must pay some care to the orientation of an interface on which the moments defining the degrees of freedom are based. + For the 2d case, we will illustrate in this section how we must take into account the orientation of an edge + in the definition of the respective element edge shape function, in order to get an +$ H(\mathop {\rm curl};\Omega )$-conforming finite element space + of global shape functions. + +
    +

    +Let +$ K=F(\hat{K})$ be an affine or bilinear image of a reference element, $ e$ one of its edges and $ \hat{e}$ the + corresponding edge on the reference element. +
    +Let further +$ [0,\vert e\vert] \ni s \mapsto \underline x(s) \in e$ and +$ [0,\vert\hat{e}\vert] \ni \hat{s} \mapsto \hat{\underline x}(\hat{s}) \in \hat{e}$ be parametrizations + with respect to the arc length of $ e$ and $ \hat{e}$ respectively. We can assume that these parametrizations endow the edges with a + counterclockwise orientation. Then, the unit tangent vectors +$ \underline t$ and +$ \hat{\underline t}$ are given by + +$ \frac{d \underline x}{ds}$ and +$ \frac{d \hat{\underline x}}{d\hat{s}}$. +
    +

    +

    +

    LEMMA 1   +Let +$ \hat{\underline v}(\hat{x})$ be a vector field on the reference element and +$ \underline v(x)$ be the corresponding vector field on $ K$, defined by the + Piola transformation (9). It then holds +

    +
    + + + + +
    $\displaystyle \underline v\cdot \underline t = \frac{\vert\hat{e}\vert}{\vert e\vert} (\hat{\underline v}\cdot \hat{\underline t})\,,$ +(25)
    +

    +where $ \vert\hat{e}\vert$ and $ \vert e\vert$ denote the length of the edges $ \hat{e}$ and $ e$. +

    + +

    +PROOF. + With + +

    +
    +$\displaystyle (\underline v(x))_i = (D(F^{-1})^T \hat{\underline v})_i = \frac{\partial \hat{x}_j}{\partial x_i}(x) \hat{\underline v}_j(\hat{x})\,
+$ +

    + and +$ \hat{x}_j = \hat{x}_j(\underline x(s))$ and +$ \hat{x}_j = \hat{x}_j(\hat{s}(s))$ on the edges, we have + +

    +
    +$\displaystyle \underline v\cdot \underline t= \underline v \cdot \frac{d \under...
+...t{s}}{ds}
+= (\hat{\underline v}\cdot \hat{\underline t}) \frac{d\hat{s}}{ds}
+$ +

    + and with +$ \frac{d\hat{s}}{ds}=\frac{\vert\hat{e}\vert}{\vert e\vert}$ the lemma follows. + + +

    +As a consequence, we have + +

    +

    +

    PROPOSITION 7 (Invariance of the edge dofs)   +Let the vector field +$ \underline v(x)$ on $ K$ be defined by the Piola transformation (9) of a reference vector field + +$ \hat{\underline v}(\hat{x})$ on $ \hat{K}$. Then, the functionals (edge dofs) + +$ \alpha^{[K]}(\underline u) := \int_e (\underline v\cdot \underline t)\varphi \,ds$ are invariant in the sense of + +

    +
    +$\displaystyle \alpha^{[K]}(\underline u) = \int_e (\underline v\cdot \underline...
+...{e})\,, \quad \varphi = \hat{\varphi } \circ F^{-1} \in \mathbb{P}_{k-1}(e)\,.
+$ +

    + +

    +Let now +$ K_- = F_-(\hat{K})$ and +$ K_+ = F_+(\hat{K})$ be two neighbouring triangles with common edge $ e$. Let +$ \underline N$ be the global edge shape + function that 'lives' on $ e$. By +$ \underline N_-$ and +$ \underline N_+$ we denote the restriction of +$ \underline N$ to $ K_+$ and $ K_-$ respectively. + Let +$ e_+ =F_+(\hat{e}_i)$ and +$ e_- =F_-(\hat{e}_j)$. + We write +$ \underline t_+ $ for the tangential unit vector to $ e$, oriented + counterclockwise with respect to $ K_+$ and +$ \underline t_- = -\underline t_+$ + for the respective from $ K_-$. For line integrals over the edge $ e$ we write +$ \int_{e_+}$ if we chose the orientation induced by + +$ \underline t_+ $ and +$ \int_{e_-}$ for the orientation of $ e$ induced by +$ \underline t_-$. +
    +In order to obtain an +$ H(\mathop {\rm curl};\Omega )$-conforming method, proposition 1 tells us that we must ensure the continuity of the + tangential components of the global shape functions, that is +

    +
    + + + + +
    $\displaystyle \underline N_+\cdot\underline t_+ + \underline N_-\cdot\underline t_- = 0\,.$ +(26)
    +

    + The following lemma will justify the choice of the moments describing the edge dofs. A consequence of the lemma will be, + that the matching of the local edge dofs +$ \alpha^{[K_+]}$ and +$ \alpha^{[K_-]}$ guarantees + the pointwise condition (26). +

    +

    LEMMA 2   +Let $ \hat{K}$ denote the reference triangle and $ \hat{e}$ one of its edges, parametrized by +$ \hat{e} \ni \hat{x}(s) := \underline a +
+s\, \hat{\underline t}$. + Let +$ \hat{\underline p} \in \mathcal{S}^k$, +$ \mathcal{S}^k$ as defined in (4). It then holds + +

    +
    +$\displaystyle (\hat{\underline p}\cdot \hat{\underline t})\vert _{\hat{e}} \in \mathbb{P}_{k-1}(\hat{e})\,.
+$ +

    + +

    +PROOF. + +

    +
    +$\displaystyle \hat{\underline p} \in \mathcal{S}^k \quad \Longrightarrow \quad ...
+...{j=1}^3 \hat{x}_j^{k_{ij}}\,, \quad
+\textrm{where } \sum_{j=1}^3 k_{ij} = k\,.
+$ +

    + Hence, with the parametrization of $ \hat{e}$ by +$ \hat{x}(s)$ + +

    +
    +$\displaystyle \hat{p}_i(\hat{x}(s)) = \prod_{j=1}^3 (a_j + s\,\hat{t}_j)^{k_{ij}} = s^k\,\prod_{j=1}^3 \hat{t}_j^{k_{ij}} +
+\hat{\varphi }_{k-1}(s)\,,
+$ +

    + with +$ \hat{\varphi }_{k-1}(s) \in \mathbb{P}_{k-1}(\hat{e})$, + and + +

    +
    +$\displaystyle (\hat{\underline p}\cdot \hat{\underline t})\vert _{\hat{e}} = s^...
+...t}_i\left(\prod_{j=1}^3 \hat{t}_j^{k_{ij}}\right) +
+\hat{\varphi }_{k-1}(s)\,.
+$ +

    + We observe that the coefficient of $ s^k$ is exactly +$ \hat{\underline p}(\hat{\underline t}) \cdot \hat{\underline t}$. By the definition of the space + +$ \mathcal{S}^k$, this expression must vanish. + + +

    +

    +

    REMARK 5   +In the case of $ \hat{K}$ being a quadrilateral, we have +$ \hat{R} = \mathcal{P}^k$. By the definition of +$ \mathcal{P}^k$ we see + immediately that here also +$ (\hat{\underline v}\cdot \hat{\underline t})\vert _{\hat{e}} \in \mathbb{P}_{k-1}(\hat{e})$. +

    + +

    +The next proposition tells us how exactly to define element shape functions on a mapped element $ K$ in order to get + +$ H(\mathop {\rm curl};\Omega )$-conforming global shape functions. +

    +

    PROPOSITION 8   +Condition (26) is satiesfied, if we define the element shape functions +$ \underline N_+$ and +$ \underline N_-$ + by the Piola transformation (10) and take into account the orientation of the edge $ e$: +

    +
    + + + + +
    $\displaystyle \underline N_+ := \mathcal{P}_+(\hat{\underline N}_i) = \hat{D}F_...
+...\,\mathcal{P}_-(\hat{\underline N}_j) = -\hat{D}F_-^{-T}\hat{\underline N}_j\,.$ +(27)
    +

    + +

    +PROOF. + Let $ \hat{K}$ be the reference element and $ K$ its affine or bilinear image. + Let +$ \underline v := \mathcal{P}_K(\hat{\underline v})$ be a vector field on $ K$, defined by the Piola transformation of a reference vector field + +$ \hat{\underline v} \in \hat{R}$. Let $ e$ be one of the edges of $ K$ and +$ \underline t$ + the tangent according to convention 1. +
    +In the case of $ \hat{K}$ being a triangle, we have +$ \hat{R} = \mathcal{R}^k$. + By the definition of the space +$ \mathcal{R}^k$, lemma 2 and 1 we can + conclude that +$ (\underline v\cdot \underline t)\vert _{e} \in \mathbb{P}_{k-1}(e)$. +
    +If $ \hat{K}$ is a quadrilateral, the previous remark and + 1 also tell us that +$ (\underline v\cdot \underline t)\vert _{e} \in \mathbb{P}_{k-1}(e)$. +
    +Hence the condition +
    +

    +
    +$\displaystyle \int_{e_+} \left((\underline N_+\cdot \underline t_+) + (\underli...
+...ne t_-)\right)\,\varphi \,ds\,, \qquad \forall\,\varphi \in\mathbb{P}_{k-1}(e)
+$ +

    + on the edge moments + is sufficient for the global edge shape functions to satiesfy (26). + Note that +
    +$ \int_{e_+}(\underline N_-\cdot \underline t_-)\,\varphi \,ds = -\int_{e_-}(\underline N_-\cdot \underline t_-)\,\varphi \,ds$. + So, by the definition (27) of the element shape functions on $ K_+$ resp. on $ K_-$, + by the invariance of the dofs (proposition 7) and by the definition of the + reference shape functions (example 3) we have +

    +
    + + + + +
    $\displaystyle \int_{e_+} (\underline N_+ \cdot \underline t_+)\varphi \,ds = \i...
+...\hat{\underline N}_j\cdot \hat{\underline t}_j)\hat{\varphi }\,d\hat{s} = -1\,.$ +   
    +

    + + +

    +To close this section, let us make a note on the interpretation of the dofs on an element $ K$ in the case of lowest order polynomial + degree. In this case, all dofs are edge dofs, the degrees of freedom are +$ \hat{\alpha}_j(\hat{\underline
+v}) = \int_{\hat{e}_j} \hat{\underline v} \cdot \hat{\underline t}_j\,d\hat{s}$ and the tangential traces of shape functions are constant on each edge. + Since we require +$ \hat{\alpha}_j(\hat{\underline N}_i) = \delta_{ij}$ for the reference shape functions, we have + +

    +
    +$\displaystyle v_j = \hat{\alpha}_j(\hat{\underline v}) = (\hat{\underline N}_j ...
+...\hat{e}_j\vert = ({\underline N}_j \cdot {\underline t}_j)\, \vert e_j\vert\,,
+$ +

    + where for the last equality we have used lemma 1. We see that + the dof +$ \alpha_j(\underline v)$ 'sitting' on the edge $ e_j$ is the value of the scaled tangential component + +$ \vert e_j\vert\left(\underline v\cdot \underline t_j\right)\vert _e$. +

    +

    REMARK 6   +For the invariance of the edge dofs it is essential that the moments +$ \alpha^{[K]}$ on $ K$ are defined by using the + unit tangent + vector +$ \underline t = \frac{\vert\hat{e}\vert}{\vert e\vert}\,(\hat{D}F)\,\hat{\underline t}$ on $ K$. If not, e. g. if we + just used the tangent +$ \tilde{\underline t} = (\hat{D}F)\,\hat{\underline t}$, we would lose the invariance of the dofs. In that case the dofs would + scale by a factor depending on the size of the edge or face ([8], remark on p. 326). +

    + +

    + +

    +2.5 Approximation and convergence results +

    + Without going into details, we will cite here some results on approximation properties and convergence of Nédélec FEM of first type. + +
    +We are in the setting of a + conforming FEM and have quasi-optimal approximation properties of the FE-spaces +$ V_h \subset H(\mathop{\rm curl};\Omega )$ +
    +

    +
    +$\displaystyle \Vert \underline u - \Pi_h^k \underline u\Vert _{H(\mathop{\rm cu...
+...V_h}\Vert \underline u - \underline w\Vert _{H(\mathop{\rm curl}; \Omega )}\,,
+$ +

    + where +$ \Pi_h^k \underline u \in \mathcal{R}^k$ or +$ \Pi_h^k \underline u \in \mathcal{P}^k$ respectively, + denotes the interpolate of +$ \underline u$ with regard to the Nédélec dofs: +$ \alpha(\underline u) = \alpha(\Pi_h^k \underline u)$ for all dofs $ \alpha$. + The interpolation operator $ \Pi_h^k$ is defined for sufficiently smooth vector fields, namely for all +$ \underline v\in H^r(\mathop{\rm curl})$ + for any +$ r>\frac{1}{2}$ (see [1], Lemma 5.1., [7] and references therein). +
    +For Nédélec's FEM of first type we state (without proof) the following optimal estimate in the curl-norm: +

    +

    THEOREM 5   +If +$ \mathcal{T}_h$, $ h>0$, is a regular family of triangulations on $ \Omega $ and +$ r>\frac{1}{2}$, then there exists a constant $ C>0$, + depending on $ r$ but not on $ h$ or +$ \underline v$, such that +

    +
    + + + + +
    $\displaystyle \Vert \underline v - \Pi_h^k \underline v\Vert _{H(\mathop{\rm cu...
+... C\,h^{\min\{r,k\}} \Vert\underline v\Vert _{H^r(\mathop{\rm curl};\Omega )}\,,$ +(28)
    +

    +for all +$ \underline v\in H^r(\mathop{\rm curl};\Omega )$. +

    + + The result in (28) was obtained by Alonso and Valli in [1], extending earlier interpolation + results by Nédélec in [8] and Monk in [6]. +
    +Optimal convergence in the +$ H(\mathop {\rm curl};\Omega )$-norm for the error of the FE-approximation of the model + problem (3) by Nédélec's elements of first type follows from (28) by Céa's lemma. + This result has been verified in numerical experiments with a MATLAB code, which uses lowest + order Nédélec elements on affine triangular meshes for 2d problems, as well as with a deal.II code, which uses lowest order + Nédélec elements on bilinear resp. trilinear meshes for 2d resp. 3d problems. +
    +As for the +$ L^2(\Omega )$-approximation properties of FE spaces based on +$ \mathcal{R}^k$ or +$ \mathcal{P}^k$, we could hope for a better order + than +$ \mathcal{O}(h^k)$ at first sight: still, we have +$ [\mathbb{P}^{k-1}(K)]^d \subseteq \mathcal{R}^k(K)$. However, Nédélec shows in [8] + that only suboptimality can be expected: +

    +
    + + + + +
    $\displaystyle \Vert \underline v - \Pi_h^k \underline v\Vert _{L^2(\Omega )} \leq C h^k \vert\underline v\vert _{H^k(\Omega )}\,.$ +(29)
    +

    + Nédélec uses a standard scaling and Bramble-Hilbert argument to derive (29). Since + +$ [\mathbb{P}^{k-1}(K)]^d \subseteq \mathcal{R}^k(K) \subsetneq [\mathbb{P}^k(K)]^d$, the Bramble-Hilbert argument only guarantees an elementwise + approximation of order $ k$ of $ H^k(K)$-functions from the space +$ \mathcal{R}^k(K)$. +
    +However, in a recent paper Hiptmair uses a duality technique to state optimal convergence of the + +$ L^2(\Omega )$-error +$ \Vert \underline u - \underline u_h\Vert _{L^2(\Omega )}$ + for the 3d case and Nédélec's elements of first type of order $ k$ on tetrahedral meshes + (see Section 5.3, Theorem 5.8 in [5]): +

    +

    THEOREM 6   +There is an +$ s>\frac{1}{2}$ such that +

    +
    + + + + +
    $\displaystyle \Vert \underline u - \underline u_h\Vert _{L^2(\Omega )} \leq C h^s \Vert \underline u - \underline u_h\Vert _{H(\mathop{\rm curl}; \Omega )}\,.$ +(30)
    +

    +Under the assumption that the boundary +$ \partial \Omega $ is smooth or convex, $ s=1$ can be chosen. +

    + + Several key arguments of the proof in [5] make explicitely use of features that are limited to 3d problems and the + family of finite elements based on tetrahedrons. + They cannot be modified trivially to apply to 2d problems or 3d problems on hexahedral meshes. Even worse, it is suggested by the results of + numerical experiments that one cannot hope to obtain a result similar to (30). +
    +A possibility to overcome this deficiency of convergence is to use Nédélec elements of second type, where the full +$ [\mathbb{P}_k]^d$ + are used as polynomial spaces (see [10]). +
    +

    + +


    +
    + +2003-04-30 +
    + + diff --git a/deal.II/doc/reports/nedelec/node3.html b/deal.II/doc/reports/nedelec/node3.html new file mode 100644 index 0000000000..221339e7cd --- /dev/null +++ b/deal.II/doc/reports/nedelec/node3.html @@ -0,0 +1,720 @@ + + + + + +3 Numerical results + + + + + + + + + + + + + + + +

    +3 Numerical results +

    + The numerical results in this section provide some samples of the quality of the +$ H(\mathop {\rm curl};\Omega )$-conforming FEM + with Nédélec elements of first type and lowest order (polynomial degree $ k=1$). +
    +We considered the model problem (1) in +$ \Omega = [-1,1]^d$, $ d=2,3$, + with homogeneous Dirichlet boundary condition (2). +
    +The first few results for the two-dimensional problem have been obtained by a MATLAB code. + For the first example we used the data +

    +
    + + + + +
    $\displaystyle c\equiv 1 \,, \qquad \underline f(x,y) = \left(\begin{array}{cc} 3 - y^2 \\  3 - x^2 \end{array}\right)\,.$ +(31)
    +

    + For the second example we have followed the outlines from Appendix A and taken the data from example 5 +

    +
    + + + + +
    $\displaystyle c\equiv 1 \,, \qquad \underline f(x,y) = (2\pi^2 + 1)\left(\begin{array}{cc} \cos\pi x\sin\pi y \\  -\sin\pi x\cos\pi y \end{array}\right)\,.$ +(32)
    +

    + The finite element solution has been computed using Nédélec elements of first type and of polynomial degree $ k=1$ on a family of + affine triangular grids. + The initial coarse grid consisted of $ 2^5$ triangles. The finest grid with $ 2^{13}$ triangles results after five global refinements. +
    +In Table 1 we see that for both examples we have + optimal convergence in the +$ H(\mathop {\rm curl};\Omega )$-semiorm, as we would expect from the theoretical results of the + previous section. As for the +$ L^2(\Omega )$-norm, it appears that in both examples the convergence + of the numerical solution is not optimal for our choice of finite elements. In the case of Nédélec elements of first + type and of polynomial degree $ k=1$, we got only +$ \mathcal{O}(h)$-convergence of the $ L^2$-error. However, this order of + convergence is consistent with the result (29) obtained by Nédélec in [8]. +
    +

    +

    +
    + + + +
    Table 1: +Errors and convergence rates in the +$ L^2(\Omega )$-norm and +$ H(\mathop{\rm curl};\Omega )$-seminorm for the two MATLAB examples.
    +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
     grid$ \char93 $ cells +$ H(\mathop{\rm curl})$-error$ L^2$-error
     1326.66e-01-4.66e-01-
     21283.33e-011.002.35e-010.98
    example 135121.66e-011.001.17e-010.99
     420488.33e-021.005.89e-020.99
     581924.17e-021.002.95e-020.99
     1323.05e+00-6.48e-01-
     21281.61e+000.913.22e-011.00
    example 235120.81e-010.971.60e-011.00
     420480.41e-010.998.02e-021.00
     581922.05e-010.994.01e-021.00
    +
    +
    +

    +
    +

    + +

    +
    + + + +
    Figure 1: +Convergence of the FE-approximation to the smooth solution of the MATLAB example (31) + in the +$ L^2(\Omega )$-norm and the +$ H(\mathop{\rm curl};(\Omega ))$-seminorm
    +
    + +% latex2html id marker 4265
+\includegraphics[width=9.5cm, height=7cm]{example1_errors.eps} + +
    +

    + +

    + +

    +
    + + + +
    Figure 2: +Convergence of the FE-approximation to the smooth solution of the MATLAB example (32) + in the +$ L^2(\Omega )$-norm and the +$ H(\mathop{\rm curl};(\Omega ))$-seminorm
    +
    + +% latex2html id marker 4271
+\includegraphics[width=9.5cm, height=7cm]{example2_errors.eps} + +
    +

    + +

    +

    +

    REMARK 7   +The mesh generation and refinement was done by PDE-toolbox commands. Since the PDE-toolbox does not support three + dimensional grids, we restricted ourselves to 2d problems, and we have so far no numerical results for the case of + tetrahedral grids in 3d. +

    + +

    +As for meshes with quadrilateral cells, numerical results were obtained with a deal.II code, + using the finite element class fe/fenedelec.cc. This class provides + Nédélec's +$ H(\mathop {\rm curl};\Omega )$-conforming element of first type and lowest order in two and three space dimensions, on + bilinear quadrilateral, resp. trilinear hexahedral grids. For details about deal.II, see [2]. + In the following results were obtained for the model problem (1) in two dimensions using the + data (32). + We computed the solution on five successive + non-affine bilinear grids ( figure 3), each of which was obtained by global refinement of the previous one. + +

    + +

    +
    + + + +
    Figure 3: +Non-affine bilinear grid used in the deal.II code, after one refinement step.
    +
    + +\includegraphics[width=5.5cm, height=5.5cm]{grid.eps} + +
    +

    + +

    +Again, in Table 2 we can observe optimal convergence of order +$ \mathcal{O}(h)$ in the +$ H(\mathop {\rm curl};\Omega )$-norm. +The same order of convergence is obtained for the error in the +$ L^2(\Omega )$-norm. +
    +

    +

    +
    + + + +
    Table 2: +Errors and convergence rates in the +$ H(\mathop{\rm curl};\Omega )$- and +$ L^2(\Omega )$-norm for the 2d-example solved with deal.II. +
    +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    grid$ \char93 $ cells +$ H(\mathop{\rm curl})$-error$ L^2$-error
    146.112e+00-1.442e+00-
    2163.688e+000.736.765e-011.09
    3641.991e+000.893.280e-011.04
    42561.015e+000.971.617e-011.02
    510245.098e-010.998.049e-021.01
    +
    +
    +

    +
    +

    +With deal.II, we are also able to treat 3d problems on hexahedral grids. For our type of problem, +Nédélec's +$ H(\mathop {\rm curl};\Omega )$-conforming elements of first type and lowest order, based on a cubic reference element, are available. +
    +We computed an approximation to the model problem (1) in 3d using the data +

    +
    + + + + +
    $\displaystyle c\equiv 1 \,, \qquad \underline f(x,y,z) = \left(\begin{array}{cc...
+... + (1-y^2)(2-x^2-z^2) \\  yz(1 - x^2)(1-y^2) + 2yz(1-x^2) \end{array}\right)\,.$ +(33)
    +

    +In a first experiment, the finite element solution was computed on five successive globally refined affine grids. In a second +computation, we approximated the solution of the same problem on five successive globally refined non-affine trilinear grids. +
    +We see in Table 3 that in both cases we observe again convergence of order +$ \mathcal{O}(h)$ in the + +$ H(\mathop {\rm curl};\Omega )$- and the +$ L^2(\Omega )$-norm. +
    +

    +

    +
    + + + +
    Table 3: +Errors and convergence rates in the +$ H(\mathop{\rm curl};\Omega )$- and +$ L^2(\Omega )$-norm for the 3d-example solved with deal.II. The first data +set is for the computation on a family of affine grids, the second set of data is for non-affine trilinear grids.
    +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
     grid$ \char93 $ cells +$ H(\mathop{\rm curl})$-error$ L^2$-error
     187.696e-01-6.609e-01-
     2644.088e-010.912.943e-011.17
    affine grids35122.075e-010.981.408e-011.06
     440961.041e-010.996.955e-021.02
     5327685.210e-021.003.467e-021.00
     187.716e-01-6.611e-01-
     2644.108e-010.912.955e-011.16
    non-affine grids35122.085e-010.981.413e-011.06
     440961.046e-010.996.982e-021.02
     5327685.237e-021.003.480e-021.00
    +
    +
    +

    +
    +The conclusion that can be drawn from these numerical experiments is, that the restriction to three-dimensional tetrahedral grids +of Hiptmair's result on the $ L^2$-convergence of the error (6) cannot be relaxed. +
    +

    +Finally, here are some pretty pictures: the vector field plots from the MATLAB computations. + +

    + +

    +
    + + + +
    Figure 4: +Vector-field plot of the FE-solution of example (31).
    +
    + +\includegraphics[width=9.5cm, height=7cm]{field1.eps} + +
    +

    + +

    + +

    +
    + + + +
    Figure 5: +Vector-field plot of the FE-solution of example (32).
    +
    + +\includegraphics[width=9.5cm, height=7cm]{field2.eps} + +
    +

    + + +

    + +

    +


    +
    + +2003-04-30 +
    + + diff --git a/deal.II/doc/reports/nedelec/node4.html b/deal.II/doc/reports/nedelec/node4.html new file mode 100644 index 0000000000..5c75f9284a --- /dev/null +++ b/deal.II/doc/reports/nedelec/node4.html @@ -0,0 +1,139 @@ + + + + + +Bibliography + + + + + + + + + + + + + + + +

    +Bibliography +

    1 +
    +A. Alonso and A. Valli. +
    An optimal domain decomposition preconditioner for low-frequency + time-harmonic Maxwell equations. +
    Math. Comp., 68(226):607-631, 1999. + +

    2 +
    +W. Bangerth, R. Hartmann, and G. Kanschat. +
    deal.II Differential Equations Analysis Library, + Technical Reference. +
    IWR, Universität Heidelberg. +
    http://www.dealii.org. + +

    3 +
    +F. Brezzi and M. Fortin. +
    Mixed and Hybrid Finite Element Methods, volume 15 of Springer Series in Computational Mathematics. +
    Springer-Verlag, New York, 1991. + +

    4 +
    +V. Girault and P.-A. Raviart. +
    Finite Element Approximation of the Navier-Stokes Equations, + volume 749 of Lecture Notes in Mathematics. +
    Springer-Verlag, Berlin, Heidelberg, 1979, 1981. + +

    5 +
    +R. Hiptmair. +
    Finite elements in computational electromagnetism. +
    In Acta Numerica, pages 1-103. Cambridge University press, + 2002. + +

    6 +
    +P. Monk. +
    Analysis of a finite element method for Maxwell's equations. +
    SIAM J. Numer. Anal, 29:714-729, 1992. + +

    7 +
    +P. Monk. +
    A simple proof for an edge element discretization of Maxwell's + equations. +
    Submitted for publication. Download version available on Monk's + webpage: www.math.udel.edu./ monk, 2001. + +

    8 +
    +J. C. Nédélec. +
    Mixed finite elements in +$ \mathbb{R}^3$. +
    Numer. Math., 35:315-341, 1980. + +

    9 +
    +J. C. Nédélec. +
    Elements finis mixtes incompressibles pour l'équation de Stokes + dans +$ \mathbb{R}^3$. +
    Numer. Math., 39:97-112, 1982. + +

    10 +
    +J. C. Nédélec. +
    A new family of mixed finite elements in +$ \mathbb{R}^3$. +
    Numer. Math., 50:57-81, 1986. + +

    11 +
    +W. Rachowicz and L. Demkowicz. +
    A two-dimensional hp-adaptive finite element package for + electromagnetics (2Dhp90_EM). +
    Ticam Report 98-16, TICAM, 1998. +
    Download version available on Demkowicz' webpage: + www.ticam.utexas.edu/ Leszek. + +

    12 +
    +W. Rachowicz and L. Demkowicz. +
    A three-dimensional hp-adaptive finite element package for + electromagnetics (3Dhp90_EM). +
    Ticam Report 00-04.2000, TICAM, 2000. +
    Download version available on Demkowicz' webpage: + www.ticam.utexas.edu/ Leszek. +
    + +

    +
    + +2003-04-30 +
    + + diff --git a/deal.II/doc/reports/nedelec/node5.html b/deal.II/doc/reports/nedelec/node5.html new file mode 100644 index 0000000000..7568b72569 --- /dev/null +++ b/deal.II/doc/reports/nedelec/node5.html @@ -0,0 +1,332 @@ + + + + + +A. Construction of solutions in 2d + + + + + + + + + + + + + + + +

    +A. Construction of solutions in 2d +

    +

    +We present how divergence-free solutions of the model problem (1) on a domain +$ \Omega \subset\mathbb{R}^2$ with perfectly + conducting boundary + can be constructed from solutions of the scalar Laplace equation. +
    +

    +

    +

    PROPOSITION 9   +Let $ \Omega $ be a sufficiently smooth domain in +$ \mathbb{R}^2$, +$ \varphi (x,y)$ a sufficently smooth scalar function on $ \Omega $ and the coefficient $ c>0$ + globally constant. +
    +Let $ w$ be a solution of the scalar equation +

    +
    + + + + +
    \begin{displaymath}\begin{split}-\Delta w + c\, w &= \varphi \quad \mathrm{in} \...
+... w &= 0 \quad \mathrm{on} \quad \partial \Omega \,. \end{split}\end{displaymath} +(34)
    +

    +Then, +$ \underline E := \nabla^{\perp} w$ is a solution of the model equation +

    +
    + + + + +
    \begin{displaymath}\begin{split}\underline \mathop{\rm curl}\mathop{\rm curl}\un...
+...e n = 0 \quad \mathrm{on} \quad \partial \Omega \,, \end{split}\end{displaymath} +   
    +

    +with right hand side +$ \underline f := \nabla^{\perp} \varphi $. +
    +We use the notation +$ \nabla^{\perp} \varphi := \boldsymbol{R}\nabla\varphi = \left(\begin{array}{cc} \partial _y\varphi \\  -\partial _x\varphi
+\end{array}\right)$. +

    + +

    +PROOF. + We first show the correspondence of the boundary conditions. With the definition +$ \underline E := \nabla^{\perp} w$ it holds + +

    +
    +$\displaystyle \underline E \wedge \underline n = \underline E \cdot \underline ...
+...boldsymbol{R}^T\boldsymbol{R}\, \underline n = \nabla w \cdot \underline n \,.
+$ +

    + It remains to show that +$ \underline E$ solves the model problem for an appropriate right hand side. + First, note that +$ \underline E$ is divergence-free: + +$ \nabla\cdot\nabla^{\perp}w = 0$ for all $ w$. Hence, the identity +$ \underline \mathop{\rm curl}\mathop{\rm curl}\underline E = \nabla(\nabla\cdot\underline E) - \Delta\underline E$ + reduces to +$ \underline \mathop{\rm curl}\mathop{\rm curl}\underline E = - \Delta\underline E$. The observation that for smooth data +$ \nabla^{\perp}w$ solves the Laplace equation + (34) with right hand side +$ \nabla^{\perp} \varphi $ concludes the proof. + + +

    +

    +

    EXAMPLE 5 (Solutions from eigenfunctions of the Laplacian)   +Choose $ w$ to be a solution of the eigenvalue problem +

    +
    + + + + +
    \begin{displaymath}\begin{split}-\Delta w &= \lambda \, w \quad \mathrm{in} \qua...
+... w &= 0 \quad \mathrm{on} \quad \partial \Omega \,, \end{split}\end{displaymath} +   
    +

    +and set +$ \varphi = (\lambda + c)\,w$. +
    +As an example, take +$ \Omega = [-1,1]^2$ and +$ \lambda = 2\pi^2$. Then, +$ w = \cos\pi x\cos\pi y$ is an eigenfunction and we compute + +

    +
    +$\displaystyle \underline f = (2\pi^2 + c)\pi \left(\begin{array}{cc} \cos\pi x\...
+...in{array}{cc} \cos\pi x\sin\pi y \\  -\sin\pi x\cos\pi y \end{array}\right)\,.
+$ +

    + +

    +

    +

    EXAMPLE 6 (Solutions from any scalar function satiesfying the boundary condition)   +Take again +$ \Omega = [-1,1]^2$. We have to find a scalar function $ w$ which satiesfies the homogeneous Neumann boundary condition. Take + for example +$ w(x,y) = (1-x^2)^2(1-y^2)^2$, for which we have +$ \underline n \cdot \nabla w = 0$ on +$ \partial [-1,1]^2$. The right hand side is then + +$ \varphi = -\Delta w + c w$. +

    + +

    + + +


    +
    + +2003-04-30 +
    + + diff --git a/deal.II/doc/reports/nedelec/node6.html b/deal.II/doc/reports/nedelec/node6.html new file mode 100644 index 0000000000..423df4c2fa --- /dev/null +++ b/deal.II/doc/reports/nedelec/node6.html @@ -0,0 +1,310 @@ + + + + + +A. Time-harmonic Maxwell's equations with low-frequency approximation + + + + + + + + + + + + + + + +Subsections + + + +
    + +

    + +
    +A. Time-harmonic Maxwell's equations with low-frequency approximation +

    +We show, how the model problem can be derived from the time-harmonic Maxwell's equations in the low-frequency case. +We follow the outline of [1]: +
    +We consider the following primal formulation of Maxwell's equations: +

    +
    + + + + +
    \begin{displaymath}\begin{split}\varepsilon \frac{\partial \mathcal{E}}{\partial...
+...}}{\partial t} & = -\mathop{\rm curl}\mathcal{E}\,, \end{split}\end{displaymath} +(35)
    +

    +where +$ \mathcal{E}$ and +$ \mathcal{H}$ are the electric and magnetic field. + +$ \varepsilon (x), \mu(x)$ are the dielectric and magnetic permeability coefficients, and $ \sigma(x)$ denotes the electric conductivity. + +$ \varepsilon (x), \mu(x)$ and $ \sigma(x)$ are assumed to be symmetric matrices in +$ L^{\infty}(\Omega )^{d\times d}$, and +$ \varepsilon (x)$ and $ \mu(x)$ are +positive definite. $ \sigma(x)$ is positive definite in a conductor and vanishes in an insulator. + +

    + +

    +Time-harmonic, low-frequency case +

    +We assume that +$ \mathcal{E}(x,t)$ and +$ \mathcal{H}(x,t)$ are time-harmonic, i. e. they can be represented as +

    +
    + + + + +
    \begin{displaymath}\begin{split}\mathcal{E}(x,t) &= \mathrm{Re} \left(E(x) \exp(...
+...= \mathrm{Re} \left(H(x) \exp(i\omega t)\right) \,. \end{split}\end{displaymath} +   
    +

    +Here, +$ E(x), H(x)$ are complex-valued vector fields and +$ \omega\neq 0$ is a given angular frequency. +

    +

    REMARK 8   +For example, a monofrequent laser can be described by the time-harmonic Maxwell's equations.

    + +

    +In the time-harmonic case the space and time variables decouple and we can eliminate the time dependency. For this, we ask + +$ E(x) \exp(i\omega t)$ and +$ H(x) \exp(i\omega t)$ to satiesfy (35). +By then inserting the second equation of (35) into the first one, we can eliminate the magnetic field $ H(x)$. This yields + +

    +
    +$\displaystyle \mathop{\rm curl}(\mu^{-1} \mathop{\rm curl}E) - \omega^2\varepsilon E + i\omega\sigma E = 0
+$ +

    +In the low-frequency case where $ \vert\omega\vert$ is small, it is known that for general materials the material parameters are such that + +

    +
    +$\displaystyle \omega^2\varepsilon \ll \mu^{-1} \,,\quad \omega^2\varepsilon \ll \omega\sigma \,.
+$ +

    +Hence, neglecting the expression +$ \omega^2\varepsilon E(x)$ is reasonable and it brings us to the low-frequency approximation of the +time-harmonic Maxwell's equations: + +

    +
    +$\displaystyle \mathop{\rm curl}(\mu^{-1} \mathop{\rm curl}E) + i\omega\sigma E = 0
+$ +

    +

    +We consider this equation in a conductor $ \Omega $ ($ \sigma(x)$ pos. def.) and a impose Dirichlet boundary condition on the tangential trace +of the field: +

    +
    + + + + +
    $\displaystyle E \wedge n = \Phi \quad \mathrm{on} \quad \partial \Omega \,.$ +(36)
    +

    +Proceeding as in [1], we assume that a vector funciton $ \tilde{E}$ is known, +satiesfying (36), and we end up with the following boundary value problem for +$ \underline u = E - \tilde{E}$ +

    +
    + + + + +
    \begin{displaymath}\begin{split}\mathop{\rm curl}(\mu^{-1} \mathop{\rm curl}u) +...
+... n &= 0 \quad \mathrm{on} \quad \partial \Omega \,. \end{split}\end{displaymath} +(37)
    +

    +Although problem (37) is complex-valued, finding a finite element method to approximate (37) +basically boils down to finding a finite element method for the real valued model problem (1). + +

    +


    +
    + +2003-04-30 +
    + + diff --git a/deal.II/doc/toc.html b/deal.II/doc/toc.html index 0397686d23..2403d584ec 100644 --- a/deal.II/doc/toc.html +++ b/deal.II/doc/toc.html @@ -204,7 +204,8 @@   MinRes linear solver.
  • Anna Schneebeli: - Help and advice for Nedelec elements. + Help and advice for Nedelec elements, writing the excellent + report on Nedelec elements.
  • Jan Schrage: Initial parts of the tutorial.