From: Andrew McBride Date: Thu, 23 Feb 2012 17:40:06 +0000 (+0000) Subject: step:44 changes to documentation in cc file (texify); more to come X-Git-Tag: v8.0.0~2852 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=9f22b7e0e05d1de2c8cc632a538962c177625460;p=dealii.git step:44 changes to documentation in cc file (texify); more to come git-svn-id: https://svn.dealii.org/trunk@25158 0785d39b-7218-0410-832d-ea1e28bc413d --- diff --git a/deal.II/examples/step-44/step-44.cc b/deal.II/examples/step-44/step-44.cc index 1b6fc658f7..6c84c4b6d7 100644 --- a/deal.II/examples/step-44/step-44.cc +++ b/deal.II/examples/step-44/step-44.cc @@ -124,8 +124,8 @@ namespace Step44 // @sect4{Geometry} // Make adjustments to the problem geometry and the applied load. // Since the problem modelled here is quite specific, the load -// scale can be altered to specific values to attain results given -// in the literature. +// scale can be altered to specific values to compare with the +// results given in the literature. struct Geometry { unsigned int global_refinement; @@ -211,10 +211,10 @@ namespace Step44 } // @sect4{Linear solver} -// Next, choose both solver and preconditioner settings. +// Next, we choose both solver and preconditioner settings. // The use of an effective preconditioner is critical to ensure // convergence when a large nonlinear motion occurs -// in a Newton increment. +// within a Newton increment. struct LinearSolver { std::string type_lin; @@ -273,7 +273,7 @@ namespace Step44 // @sect4{Nonlinear solver} // A Newton-Raphson scheme is used to // solve the nonlinear system of governing equations. -// Define the tolerances and the maximum number of +// We now define the tolerances and the maximum number of // iterations for the Newton-Raphson nonlinear solver. struct NonlinearSolver { @@ -412,7 +412,7 @@ namespace Step44 // in the deal.II library yet. // We place these common operations // in a separate namespace for convenience. -// We also include some widely used operators +// We also include some widely used operators. namespace AdditionalTools { @@ -525,7 +525,7 @@ namespace Step44 } } -// Define some frequently used +// Now we define some frequently used // second and fourth-order tensors: template class StandardTensors @@ -543,7 +543,7 @@ namespace Step44 // we name the tensor $\mathcal{I}$ static const SymmetricTensor<4, dim> II; // Fourth-order deviatoric such that - // $\textrm{dev}(\bullet) = (\bullet) - (1/3)[(\bullet):\mathbf{I}]\mathbf{I}$ + // $\textrm{dev} \{ \bullet \} = \{ \bullet \} - [1/\textrm{dim}][ \{ \bullet\} :\mathbf{I}]\mathbf{I}$ static const SymmetricTensor<4, dim> dev_P; }; @@ -612,7 +612,7 @@ namespace Step44 const double delta_t; }; -// @sect3{Compressible neo-Hookean material} +// @sect3{Compressible neo-Hookean material within a three-field formulation} // As discussed in the Introduction, Neo-Hookean materials are a type of // hyperelastic materials. The entire domain is assumed to be composed of a @@ -629,7 +629,7 @@ namespace Step44 // That is $\overline{I}_1 :=\textrm{tr}(\overline{\mathbf{b}})$. In this // example the SEF that governs the volumetric response is defined as $ // \Psi_{\text{vol}}(\widetilde{J}) = \kappa \frac{1}{4} [ \widetilde{J}^2 - 1 -// - 2\textrm{ln}\; \widetilde{J} ]$. where $\kappa:= \lambda + 2/3 \mu$ is +// - 2\textrm{ln}\; \widetilde{J} ]$, where $\kappa:= \lambda + 2/3 \mu$ is // the bulk modulus // and $\lambda$ is Lame's first @@ -639,7 +639,7 @@ namespace Step44 // and provides a central point that one would need to modify if one were to // implement a different material model. For it to work, we will store one // object of this type per quadrature point, and in each of these objects -// store the current state (characterized by the values of the three fields) +// store the current state (characterized by the values or measures of the three fields) // so that we can compute the elastic coefficients linearized around the // current state. template @@ -662,37 +662,12 @@ namespace Step44 ~Material_Compressible_Neo_Hook_Three_Field() {} - // The Kirchhoff stress tensor - // $\boldsymbol{\tau}$ is the chosen - // stress measure. Recall that - // $\boldsymbol{\tau} = - // \chi_{*}(\mathbf{S})$, i.e. - // $\boldsymbol{\tau} = \mathbf{F} - // \mathbf{S} \mathbf{F}^{T}$. - // Furthermore, $\boldsymbol{\tau} = 2 - // \mathbf{F} \frac{\partial - // \Psi(\mathbf{C})}{\partial - // \mathbf{C}} \mathbf{F}^{T} = 2 - // \mathbf{b} \frac{\partial - // \Psi(\mathbf{b})}{\partial - // \mathbf{b}}$. Therefore, - // $\boldsymbol{\tau} = 2 \mathbf{b} - // \bigl[ \frac{\partial - // \Psi_{\text{iso}}(\mathbf{b})}{\partial - // \mathbf{b}} + \frac{\partial - // \Psi_{\text{vol}}(J)}{\partial - // J}\frac{\partial J}{\partial - // \mathbf{b}} \bigr] = 2 \mathbf{b} - // \frac{\partial - // \Psi_{\text{iso}}(\mathbf{b})}{\partial - // \mathbf{b}} + J\frac{\partial - // \Psi_{\text{vol}}(J)}{\partial - // J}\mathbf{I} $ - // We update the material model with // various deformation dependent data - // based on $F$ and at the end of the - // function include a safety check for + // based on $F$ and the pressure $\widetilde{p}$ + // and dilatation $\widetilde{J}$, + // and at the end of the + // function include a physical check for // internal consistency: void update_material_data(const Tensor<2, dim> & F, const double p_tilde_in, @@ -741,7 +716,7 @@ namespace Step44 } // Second derivative of the volumetric - // free energy wrt $\widetilde{J}$ We + // free energy wrt $\widetilde{J}$. We // need the following computation // explicitly in the tangent so we make // it public. We calculate @@ -774,7 +749,8 @@ namespace Step44 protected: // Define constitutive model paramaters - // $\kappa$ and the neo-Hookean model + // $\kappa$ (bulk modulus) + // and the neo-Hookean model // parameter $c_1$: const double kappa; const double c_1; @@ -807,7 +783,7 @@ namespace Step44 return AdditionalTools::StandardTensors::dev_P * get_tau_bar(); } - // Then, tetermine the fictitious + // Then, determine the fictitious // Kirchhoff stress // $\overline{\boldsymbol{\tau}}$: SymmetricTensor<2, dim> get_tau_bar() const @@ -890,6 +866,13 @@ namespace Step44 // The first function is used to create // a material object and to initialize // all tensors correctly: + // The second one updates the stored + // values and stresses based on the + // current deformation measure + // $\textrm{Grad}\mathbf{u}_{\textrm{n}}$, + // pressure $\widetilde{p}$ and + // dilation $\widetilde{J}$ field + // values. void setup_lqp (const Parameters::AllParameters & parameters) { material = new Material_Compressible_Neo_Hook_Three_Field(parameters.mu, @@ -897,14 +880,6 @@ namespace Step44 update_values(Tensor<2, dim>(), 0.0, 1.0); } - // The second one updates the stored - // values and stresses based on the - // current deformation measure - // $\textrm{Grad}\mathbf{u}_{\textrm{n}}$, - // pressure $\widetilde{p}$ and - // dilation $\widetilde{J}$ field - // values. - // // To this end, we calculate the // deformation gradient $\mathbf{F}$ // from the displacement gradient @@ -945,17 +920,19 @@ namespace Step44 // The material has been updated so // we now calculate the Kirchhoff - // stress $\mathbf{\tau}$ and the + // stress $\mathbf{\tau}$, the // tangent $J\mathfrak{c}$ + // and the first and second derivatives + // of the volumetric free energy. + // + // Finally, we store the inverse of + // the deformation gradient since + // we frequently use it: tau = material->get_tau(); Jc = material->get_Jc(); dPsi_vol_dJ = material->get_dPsi_vol_dJ(); d2Psi_vol_dJ2 = material->get_d2Psi_vol_dJ2(); - - // Finally, we store the inverse of - // the deformation gradient since - // we frequently use it: F_inv = invert(F); } @@ -1056,7 +1033,7 @@ namespace Step44 // parallelizing work using the // WorkStream object (see the @ref // threads module for more information - // on this.) + // on this). // // We declare such structures for the // computation of tangent (stiffness) @@ -1310,6 +1287,7 @@ namespace Step44 get_error_dilation(); // Print information to screen + // in a pleasing way... static void print_conv_header(); @@ -1340,14 +1318,15 @@ namespace Step44 // discontinuous pressure // and dilatation DOFs. In // an attempt to satisfy - // the LBB conditions, we + // the Babuska-Brezzi or LBB stability + // conditions (see Hughes (2000)), we // setup a $Q_n \times - // DGP_{n-1} \times DGP_{n-1}$ - // system. $Q_2 \times DGP_1 - // \times DGP_1$ elements + // DGPM_{n-1} \times DGPM_{n-1}$ + // system. $Q_2 \times DGPM_1 + // \times DGPM_1$ elements // satisfy this condition, - // while $Q_1 \times DGP_0 - // \times DGP_0$ elements do + // while $Q_1 \times DGPM_0 + // \times DGPM_0$ elements do // not. However, it has // been shown that the // latter demonstrate good @@ -1411,9 +1390,7 @@ namespace Step44 // ...solve the current time step and // update total solution vector - // $\varDelta - // \mathbf{\Xi}_{\textrm{n}} = - // \varDelta + // $\mathbf{\Xi}_{\textrm{n}} = // \mathbf{\Xi}_{\textrm{n-1}} + // \varDelta \mathbf{\Xi}$... solve_nonlinear_timestep(solution_delta); @@ -1732,7 +1709,7 @@ namespace Step44 // @sect4{Solid::make_grid} // On to the first of the private member functions. Here we create the -// triangulation of the domain, for which we choose the unit cube with each +// triangulation of the domain, for which we choose the scaled cube with each // face given a boundary ID number. The grid must be refined at least once // for the indentation problem. // @@ -1758,7 +1735,7 @@ namespace Step44 // the domain and mark them with a // distinct boundary ID number. The // faces we are looking for are on the +y - // surface and will get boundary id 6 + // surface and will get boundary ID 6 // (zero through five are already used // when creating the six faces of the // cube domain): @@ -1831,13 +1808,26 @@ namespace Step44 // In order to perform the static condensation efficiently, // we choose to exploit the symmetry of the the system matrix. - // The global system matrix has the following structure + // The global system matrix initially has the following structure // @f{align*} - // K = \begin{pmatrix} - // K_{con} & K_{up} & 0 \\ K_{pu} & 0 & K_{p}J^{-1} \\ 0 & K_{Jp} & K_{JJ} - // \end{pmatrix}, - // dU = \begin{pmatrix} dU_u \\ dU_p \\ dU_J \end{pmatrix}, - // R = \begin{pmatrix} R_u \\ R_p \\ R_J \end{pmatrix}. + // \underbrace{\begin{bmatrix} + // \mathbf{\mathsf{K}}_{uu} & \mathbf{\mathsf{K}}_{u\widetilde{p}} & \mathbf{0} + // \\ + // \mathbf{\mathsf{K}}_{\widetilde{p}u} & \mathbf{0} & \mathbf{\mathsf{K}}_{\widetilde{p}\widetilde{J}} + // \\ + // \mathbf{0} & \mathbf{\mathsf{K}}_{\widetilde{J}\widetilde{p}} & \mathbf{\mathsf{K}}_{\widetilde{J}\widetilde{J}} + // \end{bmatrix}}_{\mathbf{\mathsf{K}}(\mathbf{\Xi}_{\textrm{i}})} + // \underbrace{\begin{bmatrix} + // d \mathbf{\mathsf{u}}\\ + // d \widetilde{\mathbf{\mathsf{p}}} \\ + // d \widetilde{\mathbf{\mathsf{J}}} + // \end{bmatrix}}_{d \mathbf{\Xi}} + // = + // \underbrace{\begin{bmatrix} + // \mathbf{\mathsf{F}}_{u}(\mathbf{u}_{\textrm{i}}) \\ + // \mathbf{\mathsf{F}}_{\widetilde{p}}(\widetilde{p}_{\textrm{i}}) \\ + // \mathbf{\mathsf{F}}_{\widetilde{J}}(\widetilde{J}_{\textrm{i}}) + //\end{bmatrix}}_{ \mathbf{\mathsf{F}}(\mathbf{\Xi}_{\textrm{i}}) } \, . // @f} // We optimise the sparsity pattern to reflect this structure // and prevent unnecessary data creation for the right-diagonal @@ -1881,7 +1871,7 @@ namespace Step44 // @sect4{Solid::determine_component_extractors} -// We next compute some information from the FE system that describes which local +// Next we compute some information from the FE system that describes which local // element DOFs are attached to which block component. This is used later to // extract sub-blocks from the global matrix. // @@ -1969,7 +1959,7 @@ namespace Step44 // the task across a number of CPU cores. // // To start this, we first we need to obtain the total solution as it stands -// at this Newton increment and then create the initial copy of scratch and +// at this Newton increment and then create the initial copy of the scratch and // copy data objects: template void Solid::update_qph_incremental(const BlockVector & solution_delta) @@ -2278,7 +2268,7 @@ namespace Step44 // @sect4{Solid::get_error_residual} // Determine the true residual error for the problem. That is, determine the -// error in the residual for unconstrained degrees of freedom. Note that to +// error in the residual for the unconstrained degrees of freedom. Note that to // do so, we need to ignore constrained DOFs by setting the residual in these // vector components to zero. template @@ -2432,9 +2422,13 @@ namespace Step44 // the lower half of the local matrix and // copying the values to the upper half. // So we only assemble half of the - // $K_{uu}$, $K_{pp} (= 0)$, $K_{JJ}$ - // blocks, while the whole $K_{pJ}, - // K_{uJ} (=0), K_{up}$ blocks are built. + // $\mathsf{\mathbf{k}}_{uu}$, + // $\mathsf{\mathbf{k}}_{\widetilde{p} \widetilde{p}} = \mathbf{0}$, + // $\mathsf{\mathbf{k}}_{\widetilde{J} \widetilde{J}}$ + // blocks, while the whole $\mathsf{\mathbf{k}}_{\widetilde{p} \widetilde{J}}$, + // $\mathsf{\mathbf{k}}_{\mathbf{u} \widetilde{J}} = \mathbf{0}$, + // $\mathsf{\mathbf{k}}_{\mathbf{u} \widetilde{p}}$ + // blocks are built. // // In doing so, we first extract some // configuration dependent variables from @@ -2467,12 +2461,12 @@ namespace Step44 const unsigned int component_j = fe.system_to_component_index(j).first; const unsigned int j_group = fe.system_to_base_index(j).first.first; - // This is the K_{uu} - // contribution. It comprises of a - // material contribution and a + // This is the $\mathsf{\mathbf{k}}_{\mathbf{u} \mathbf{u}}$ + // contribution. It comprises a + // material contribution, and a // geometrical stress contribution // which is only added along the - // local matrix diagonals + // local matrix diagonals: if ((i_group == j_group) && (i_group == u_dof)) { data.cell_matrix(i, j) += symm_grad_Nx[i] * Jc // The material contribution: @@ -2481,7 +2475,7 @@ namespace Step44 data.cell_matrix(i, j) += grad_Nx[i][component_i] * tau * grad_Nx[j][component_j] * JxW; } - // Next is the K_{pu} contribution + // Next is the $\mathsf{\mathbf{k}}_{ \widetilde{p} \mathbf{u}}$ contribution else if ((i_group == p_dof) && (j_group == u_dof)) { data.cell_matrix(i, j) += N[i] * det_F @@ -2489,8 +2483,8 @@ namespace Step44 * AdditionalTools::StandardTensors::I) * JxW; } - // and lastly the $K_{Jp}$ - // and $K_{JJ}$ + // and lastly the $\mathsf{\mathbf{k}}_{ \widetilde{J} \widetilde{p}}$ + // and $\mathsf{\mathbf{k}}_{ \widetilde{J} \widetilde{J}}$ // contributions: else if ((i_group == J_dof) && (j_group == p_dof)) data.cell_matrix(i, j) -= N[i] * N[j] * JxW; @@ -2645,8 +2639,8 @@ namespace Step44 scratch.fe_face_values_ref.normal_vector(f_q_point); // Using the face normal at - // this quadrature point as - // just retrieved, we specify + // this quadrature point + // we specify // the traction in reference // configuration. For this // problem, a defined pressure @@ -2658,8 +2652,10 @@ namespace Step44 // of the domain. The traction // is defined using the first // Piola-Kirchhoff stress is - // simply t_0 = P*N = (pI)*N = - // p*N. We choose to use the + // simply + // $\mathbf{t} = \mathbf{P}\mathbf{N} + // = [p_0 \mathbf{I}] \mathbf{N} = p_0 \mathbf{N}$ + // We use the // time variable to linearly // ramp up the pressure load. // @@ -2834,7 +2830,8 @@ namespace Step44 // @sect4{Solid::solve_linear_system} // Solving the entire block system is a bit problematic as there are no -// contributions to the $K_{JJ}$ block, rendering it non-invertible. +// contributions to the $\mathsf{\mathbf{k}}_{ \widetilde{J} \widetilde{J}}$ +// block, rendering it non-invertible. // Since the pressure and dilatation variables DOFs are discontinuous, we can // condense them out to form a smaller displacement-only system which // we will then solve and subsequently post-process to retrieve the @@ -2846,12 +2843,52 @@ namespace Step44 // // For the following, recall that // @f{align*} -// K_{store} = \begin{pmatrix} -// K_{con} & K_{up} & 0 \\ K_{pu} & 0 & K_{p}J^{-1} \\ 0 & K_{Jp} & K_{JJ} -// \end{pmatrix}, -// d\Xi = \begin{pmatrix} du \\ dp \\ dJ \end{pmatrix}, -// R = \begin{pmatrix} R_u \\ R_p \\ R_J \end{pmatrix}. +// \mathbf{\mathsf{K}}_{\textrm{store}} +//:= +// \begin{bmatrix} +// \mathbf{\mathsf{K}}_{\textrm{con}} & \mathbf{\mathsf{K}}_{u\widetilde{p}} & \mathbf{0} +// \\ +// \mathbf{\mathsf{K}}_{\widetilde{p}u} & \mathbf{0} & \mathbf{\mathsf{K}}_{\widetilde{p}\widetilde{J}}^{-1} +// \\ +// \mathbf{0} & \mathbf{\mathsf{K}}_{\widetilde{J}\widetilde{p}} & \mathbf{\mathsf{K}}_{\widetilde{J}\widetilde{J}} +// \end{bmatrix} \, . // @f} +// and +// @f{align*} +// d \widetilde{\mathbf{\mathsf{p}}} +// & = \mathbf{\mathsf{K}}_{\widetilde{J}\widetilde{p}}^{-1} \bigl[ +// \mathbf{\mathsf{F}}_{\widetilde{J}} +// - \mathbf{\mathsf{K}}_{\widetilde{J}\widetilde{J}} d \widetilde{\mathbf{\mathsf{J}}} \bigr] +// \\ +// d \widetilde{\mathbf{\mathsf{J}}} +// & = \mathbf{\mathsf{K}}_{\widetilde{p}\widetilde{J}}^{-1} \bigl[ +// \mathbf{\mathsf{F}}_{\widetilde{p}} +// - \mathbf{\mathsf{K}}_{\widetilde{p}u} d \mathbf{\mathsf{u}} +// \bigr] +// \\ +// \Rightarrow d \widetilde{\mathbf{\mathsf{p}}} +// &= \mathbf{\mathsf{K}}_{\widetilde{J}\widetilde{p}}^{-1} \mathbf{\mathsf{F}}_{\widetilde{J}} +// - \underbrace{\bigl[\mathbf{\mathsf{K}}_{\widetilde{J}\widetilde{p}}^{-1} \mathbf{\mathsf{K}}_{\widetilde{J}\widetilde{J}} +// \mathbf{\mathsf{K}}_{\widetilde{p}\widetilde{J}}^{-1}\bigr]}_{\overline{\mathbf{\mathsf{K}}}}\bigl[ \mathbf{\mathsf{F}}_{\widetilde{p}} +// - \mathbf{\mathsf{K}}_{\widetilde{p}u} d \mathbf{\mathsf{u}} \bigr] +// @f} +// and thus +// @f[ +// \underbrace{\bigl[ \mathbf{\mathsf{K}}_{uu} + \overline{\overline{\mathbf{\mathsf{K}}}}~ \bigr] +// }_{\mathbf{\mathsf{K}}_{\textrm{con}}} d \mathbf{\mathsf{u}} +// = +// \underbrace{ +// \Bigl[ +// \mathbf{\mathsf{F}}_{u} +// - \mathbf{\mathsf{K}}_{u\widetilde{p}} \bigl[ \mathbf{\mathsf{K}}_{\widetilde{J}\widetilde{p}}^{-1} \mathbf{\mathsf{F}}_{\widetilde{J}} +// - \overline{\mathbf{\mathsf{K}}}\mathbf{\mathsf{F}}_{\widetilde{p}} \bigr] +// \Bigr]}_{\mathbf{\mathsf{F}}_{\textrm{con}}} +// @f] +// where +// @f[ +// \overline{\overline{\mathbf{\mathsf{K}}}} := +// \mathbf{\mathsf{K}}_{u\widetilde{p}} \overline{\mathbf{\mathsf{K}}} \mathbf{\mathsf{K}}_{\widetilde{p}u} \, . +// @f] template std::pair Solid::solve_linear_system(BlockVector & newton_update) @@ -2862,18 +2899,19 @@ namespace Step44 unsigned int lin_it = 0; double lin_res = 0.0; - // In the first step of this function, we solve for the incremental displacement $du$. + // In the first step of this function, we solve for the incremental displacement $d\mathbf{u}$. // To this end, we perform static condensation to make - // $K_{con} = K_{uu} + K_{\bar b}$, and put - // $K_pJ^{-1}$ in the original $K_pJ$ block. - // That is, we make $K_{store}$. + // $\mathbf{\mathsf{K}}_{\textrm{con}} + // = \bigl[ \mathbf{\mathsf{K}}_{uu} + \overline{\overline{\mathbf{\mathsf{K}}}}~ \bigr]$ + // and put + // $\mathsf{\mathbf{k}}^{-1}_{\widetilde{p} \widetilde{J}}$ + // in the original $\mathsf{\mathbf{k}}_{\widetilde{p} \widetilde{J}}$ block. + // That is, we make $\mathbf{\mathsf{K}}_{\textrm{store}}$. { + // ToDo: fixed notation to here assemble_sc(); - // $K_{con} du = F_{con}$ with $F_{con} = F_u + - // K_{up} [- K_Jp^{-1} F_j + K_{bar} F_p]$. - // Assemble the RHS vector to solve for - // $du A_J = K_pJ^{-1} F_p$ + // $A_J = K_pJ^{-1} F_p$ tangent_matrix.block(p_dof, J_dof).vmult(A.block(J_dof), system_rhs.block(p_dof)); // $B_J = K_{JJ} K_pJ^{-1} F_p$.