From: wolf Date: Sat, 17 Apr 2004 16:21:38 +0000 (+0000) Subject: . X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=a16625b8da700b5169fdacbcc1fc02690ede64f2;p=dealii-svn.git . git-svn-id: https://svn.dealii.org/trunk@9040 0785d39b-7218-0410-832d-ea1e28bc413d --- diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-15.data/intro.tex b/deal.II/doc/tutorial/chapter-2.step-by-step/step-15.data/intro.tex index fca1c7b553..6d90c2ac7a 100644 --- a/deal.II/doc/tutorial/chapter-2.step-by-step/step-15.data/intro.tex +++ b/deal.II/doc/tutorial/chapter-2.step-by-step/step-15.data/intro.tex @@ -214,12 +214,12 @@ equation \eqref{eq:equation}, we may be tempted to consider the following expression for refinement of cell $K$: \begin{eqnarray} \label{eq:error-estimate} - \eta_K^2 =& + \eta_K^2 &=& h^2 \left\| (x-u_h^3) (u_h')^4 \left\{ u_h^2 (u_h')^2 + 5(x-u_h^3)u_h'' + 2u_h'(1-3u_h^2u_h') \right\} \right\|^2_K \notag \\ - & + + && + h \left| (x-u_h^3)^2 [(u_h')^5] \right|^2_{\partial K}, \end{eqnarray} where $[\cdot]$ is the jump of a quantity across an intercell boundary, and