From: Markus Buerg Date: Sun, 15 Apr 2012 10:34:48 +0000 (+0000) Subject: Substitute projection-based interpolation on edges by a direct calculation. X-Git-Tag: v8.0.0~2677 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=a34029153ba4d95f2896ccc21b0ff22f1d62618b;p=dealii.git Substitute projection-based interpolation on edges by a direct calculation. git-svn-id: https://svn.dealii.org/trunk@25418 0785d39b-7218-0410-832d-ea1e28bc413d --- diff --git a/deal.II/include/deal.II/numerics/vectors.templates.h b/deal.II/include/deal.II/numerics/vectors.templates.h index dea48e1cb1..8b3dee4557 100644 --- a/deal.II/include/deal.II/numerics/vectors.templates.h +++ b/deal.II/include/deal.II/numerics/vectors.templates.h @@ -2625,7 +2625,7 @@ namespace VectorTools std::vector > tangentials (fe_values.n_quadrature_points); std::vector > values (fe_values.n_quadrature_points, - Vector (dim)); + Vector (cell->get_fe ().n_components ())); // Get boundary function values // at quadrature points. @@ -2648,6 +2648,7 @@ namespace VectorTools { 0, 0, 2, 2 }, { 1, 1, 0, 0 }, { 1, 1, 0, 0 } }; + const FEValuesExtractors::Vector vec (first_vector_component); // The interpolation for the // lowest order edge shape @@ -2679,115 +2680,24 @@ namespace VectorTools tangentials[q_point] /= std::sqrt (tangentials[q_point].square ()); - // Compute the mean value. - dof_values[line * superdegree] - += (fe_values.JxW (q_point) - * (values[q_point] (0) * tangentials[q_point] (0) - + values[q_point] (1) * tangentials[q_point] (1) - + values[q_point] (2) * tangentials[q_point] (2)) - / (jacobians[q_point][0][edge_coordinate_direction[face][line]] - * jacobians[q_point][0][edge_coordinate_direction[face][line]] - + jacobians[q_point][1][edge_coordinate_direction[face][line]] - * jacobians[q_point][1][edge_coordinate_direction[face][line]] - + jacobians[q_point][2][edge_coordinate_direction[face][line]] - * jacobians[q_point][2][edge_coordinate_direction[face][line]])); - } - - // If there are also higher - // order shape functions we - // have still some work left. - if (degree > 0) - { - const FEValuesExtractors::Vector vec (first_vector_component); - FullMatrix assembling_matrix (degree, fe_values.n_quadrature_points); - Vector assembling_vector (fe_values.n_quadrature_points); - - // We set up a linear system - // of equations to get the - // values for the remaining - // degrees of freedom - // associated with the edge. - for (unsigned int q_point = 0; q_point < fe_values.n_quadrature_points; - ++q_point) - { - // The right hand side of - // the corresponding - // problem is the - // tangential components of - // the residual of the - // boundary function and - // the interpolated part - // above. - const Tensor<1, dim> tmp - = - std::sqrt (fe_values.JxW (q_point) - / (jacobians[q_point][0][edge_coordinate_direction[face][line]] - * jacobians[q_point][0][edge_coordinate_direction[face][line]] - + - jacobians[q_point][1][edge_coordinate_direction[face][line]] - * jacobians[q_point][1][edge_coordinate_direction[face][line]] - + - jacobians[q_point][2][edge_coordinate_direction[face][line]] - * jacobians[q_point][2][edge_coordinate_direction[face][line]])) - * tangentials[q_point]; - - const Tensor<1, dim> shape_value - = fe_values[vec].value (cell->get_fe () - .face_to_cell_index (line * superdegree, face), - q_point); - // In the weak form the - // right hand side function - // is multiplicated by the - // higher order shape - // functions. - assembling_vector (q_point) - = ((values[q_point] (0) - - - dof_values[line * superdegree] * shape_value[0]) * tmp[0] - + - (values[q_point] (1) - - - dof_values[line * superdegree] * shape_value[1]) * tmp[1] - + - (values[q_point] (2) - - - dof_values[line * superdegree] * shape_value[2]) * tmp[2]); - - for (unsigned int i = 0; i < degree; ++i) - assembling_matrix (i, q_point) - = fe_values[vec].value (cell->get_fe () - .face_to_cell_index (i + line * superdegree + 1, - face), - q_point) * tmp; - } - - FullMatrix cell_matrix (degree, degree); - - // Create the system matrix - // by multiplying the - // assembling matrix with its - // transposed. - assembling_matrix.mTmult (cell_matrix, assembling_matrix); - - FullMatrix cell_matrix_inv (degree, degree); - // Compute its inverse. - cell_matrix_inv.invert (cell_matrix); - - Vector cell_rhs (degree); - - // Create the system right - // hand side vector by - // multiplying the assembling - // matrix with the assembling - // vector. - assembling_matrix.vmult (cell_rhs, assembling_vector); - - Vector solution (degree); - - cell_matrix_inv.vmult (solution, cell_rhs); - // Store the computed values. - for (unsigned int i = 0; i < degree; ++i) - dof_values[i + line * superdegree + 1] = solution (i); + // Compute the degrees of + // freedom. + for (unsigned int i = 0; i <= degree; ++i) + dof_values[i + line * superdegree] + += (fe_values.JxW (q_point) + * (values[q_point] (first_vector_component) * tangentials[q_point] (0) + + values[q_point] (first_vector_component + 1) * tangentials[q_point] (1) + + values[q_point] (first_vector_component + 2) * tangentials[q_point] (2)) + * (fe_values[vec].value (cell->get_fe ().face_to_cell_index (i + line * superdegree, + face), + q_point) + * tangentials[q_point]) + / std::sqrt (jacobians[q_point][0][edge_coordinate_direction[face][line]] + * jacobians[q_point][0][edge_coordinate_direction[face][line]] + + jacobians[q_point][1][edge_coordinate_direction[face][line]] + * jacobians[q_point][1][edge_coordinate_direction[face][line]] + + jacobians[q_point][2][edge_coordinate_direction[face][line]] + * jacobians[q_point][2][edge_coordinate_direction[face][line]])); } } @@ -2831,7 +2741,7 @@ namespace VectorTools jacobians = fe_values.get_jacobians (); std::vector > - values (fe_values.n_quadrature_points, Vector (dim)); + values (fe_values.n_quadrature_points, Vector (cell->get_fe ().n_components ())); switch (dim) { @@ -2856,6 +2766,7 @@ namespace VectorTools const unsigned int face_coordinate_direction[GeometryInfo::faces_per_cell] = { 1, 1, 0, 0 }; + const FEValuesExtractors::Vector vec (first_vector_component); // The interpolation for // the lowest order face @@ -2891,123 +2802,23 @@ namespace VectorTools shifted_reference_point_2)); tangentials[q_point] /= std::sqrt (tangentials[q_point].square ()); - // Compute the mean - // value. - dof_values[0] - += fe_values.JxW (q_point) - * (values[q_point] (0) - * tangentials[q_point] (0) - + values[q_point] (1) * tangentials[q_point] (1)) - / (jacobians[q_point][0][face_coordinate_direction[face]] - * jacobians[q_point][0][face_coordinate_direction[face]] - + jacobians[q_point][1][face_coordinate_direction[face]] - * jacobians[q_point][1][face_coordinate_direction[face]]); - } - - // If there are also - // higher order shape - // functions we have - // still some work left. - if (degree > 0) - { - const FEValuesExtractors::Vector vec (first_vector_component); - FullMatrix assembling_matrix (degree, - fe_values.n_quadrature_points); - Vector assembling_vector (fe_values.n_quadrature_points); - - // We set up a - // linear system - // of equations to - // get the values - // for the - // remaining degrees - // of freedom - // associated with - // the face. - for (unsigned int q_point = 0; - q_point < fe_values.n_quadrature_points; ++q_point) - { - // The right - // hand side of - // the corresponding - // problem is - // the tangential - // components of - // the residual - // of the boundary - // function and - // the interpolated - // part above. - const Tensor<1, dim> tmp - = std::sqrt (fe_values.JxW (q_point) - / std::sqrt (jacobians[q_point][0][face_coordinate_direction[face]] - * jacobians[q_point][0][face_coordinate_direction[face]] - + jacobians[q_point][1][face_coordinate_direction[face]] - * jacobians[q_point][1][face_coordinate_direction[face]])) - * tangentials[q_point]; - - const Tensor<1, dim> shape_value - = fe_values[vec].value (cell->get_fe () - .face_to_cell_index (0, face), - q_point); - - assembling_vector (q_point) = (values[q_point] (0) - - - dof_values[0] * shape_value[0]) * tmp[0] - + - (values[q_point] (1) - - - dof_values[1] * shape_value[1]) * tmp[1]; - - // In the weak - // form the - // right hand - // side function - // is multiplicated - // by the higher - // order shape - // functions. - for (unsigned int i = 0; i < degree; ++i) - assembling_matrix (i, q_point) - = fe_values[vec].value (cell->get_fe () - .face_to_cell_index (i + 1, face), - q_point) * tmp; - } - - FullMatrix cell_matrix (degree, degree); - - // Create the system - // matrix by multiplying - // the assembling - // matrix with its - // transposed. - assembling_matrix.mTmult (cell_matrix, assembling_matrix); - - FullMatrix cell_matrix_inv (degree, degree); - // Compute its inverse. - cell_matrix_inv.invert (cell_matrix); - - Vector cell_rhs (degree); - - // Create the system - // right hand side - // vector by - // multiplying the - // assembling matrix - // with the assembling - // vector. - assembling_matrix.vmult (cell_rhs, assembling_vector); - - Vector solution (degree); - - cell_matrix_inv.vmult (solution, cell_rhs); - - // Store the computed - // values. - for (unsigned int i = 0; i < degree; ++i) - dof_values[i + 1] = solution (i); + // Compute the degrees + // of freedom. + for (unsigned int i = 0; i <= degree; ++i) + dof_values[i] + += fe_values.JxW (q_point) + * (values[q_point] (first_vector_component) + * tangentials[q_point] (0) + + values[q_point] (first_vector_component + 1) + * tangentials[q_point] (1)) + * (fe_values[vec].value (cell->get_fe ().face_to_cell_index (i, face), + q_point) * tangentials[q_point]) + / std::sqrt (jacobians[q_point][0][face_coordinate_direction[face]] + * jacobians[q_point][0][face_coordinate_direction[face]] + + jacobians[q_point][1][face_coordinate_direction[face]] + * jacobians[q_point][1][face_coordinate_direction[face]]); } - + break; } @@ -3080,7 +2891,7 @@ namespace VectorTools Tensor<1, dim> tmp; for (unsigned int d = 0; d < dim; ++d) - tmp[d] = values[q_point] (d); + tmp[d] = values[q_point] (first_vector_component + d); for (unsigned int i = 0; i < 2; ++i) for (unsigned int j = 0; j <= degree; ++j) @@ -3180,7 +2991,7 @@ namespace VectorTools Tensor<1, dim> tmp; for (unsigned int d = 0; d < dim; ++d) - tmp[d] = values[q_point] (d); + tmp[d] = values[q_point] (first_vector_component + d); for (unsigned int i = 0; i < 2; ++i) for (unsigned int j = 0; j <= degree; ++j) @@ -3267,30 +3078,16 @@ namespace VectorTools // interpolated on each edge. This // gives the values for the degrees // of freedom corresponding to the - // lowest order edge shape - // functions. Then the interpolated - // part of the function is - // subtracted and we project the - // tangential component of the - // residual onto the space of the - // remaining (higher order) edge - // shape functions. This is done by - // building a linear system of - // equations of dimension - // degree. The solution - // gives us the values for the - // degrees of freedom corresponding - // to the remaining edge shape - // functions. Now we are done for - // 2D, but in 3D we possibly have - // also degrees of freedom, which + // edge shape functions. Now we are + // done for 2D, but in 3D we possibly + // have also degrees of freedom, which // are located in the interior of // the faces. Therefore we compute // the residual of the function // describing the boundary values // and the interpolated part, which - // we have computed in the last two - // steps. On the faces there are + // we have computed in the last + // step. On the faces there are // two kinds of shape functions, // the horizontal and the vertical // ones. Thus we have to solve two @@ -3337,13 +3134,18 @@ namespace VectorTools if (dynamic_cast*> (&cell->get_fe ()) != 0) return; - // this is only + // This is only // implemented, if the // FE is a Nedelec - // element - typedef FiniteElement FEL; - AssertThrow (dynamic_cast*> (&cell->get_fe ()) != 0, - typename FEL::ExcInterpolationNotImplemented ()); + // element. If the FE + // is a FESystem, we + // cannot check this. + if (dynamic_cast*> (&cell->get_fe ()) != 0) { + typedef FiniteElement FEL; + AssertThrow (dynamic_cast*> (&cell->get_fe ()) != 0, + + typename FEL::ExcInterpolationNotImplemented ()); + } for (unsigned int dof = 0; dof < dofs_per_face; ++dof) dof_values[dof] = 0.0;