From: Guido Kanschat Date: Thu, 29 Jun 2000 20:00:22 +0000 (+0000) Subject: Quadrature inherits Subscriptor X-Git-Tag: v8.0.0~20319 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=a515ed006a10d32e6d94f02a06cb0dd2b4b42489;p=dealii.git Quadrature inherits Subscriptor git-svn-id: https://svn.dealii.org/trunk@3104 0785d39b-7218-0410-832d-ea1e28bc413d --- diff --git a/deal.II/base/include/base/quadrature.h b/deal.II/base/include/base/quadrature.h index 63d4bca1de..d0d74bbfcc 100644 --- a/deal.II/base/include/base/quadrature.h +++ b/deal.II/base/include/base/quadrature.h @@ -15,6 +15,7 @@ #include +#include #include @@ -32,6 +33,7 @@ * these. Therefore, a three-dimensional @ref{QGauss5} formula has 125 * quadrature points. * + * @sect2{Mathematical background} * For each quadrature formula we denote by @p{m}, the maximal degree of * polynomials integrated exactly. This number is given in the * documentation of each formula. The order of the integration error @@ -42,6 +44,7 @@ * exact on tensor product polynomials of degree @p{m} in each space * direction, but they are still only of @p{m+1}st order. * + * @sect2{Implementation details} * Most integration formulae in more than one space dimension are * tensor products of quadrature formulae in one space dimension, or * more generally the tensor product of a formula in @p{(dim-1)} @@ -66,7 +69,7 @@ * @author Wolfgang Bangerth, 1998, 1999, 2000 */ template -class Quadrature +class Quadrature : public Subscriptor { public: /**