From: Daniel Garcia-Sanchez Date: Tue, 10 Sep 2019 21:25:43 +0000 (+0200) Subject: Clarify the degree of the elements NedelecSZ and Nedelec X-Git-Tag: v9.2.0-rc1~1122^2 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=a8f52de72a9d368cb7034b77e51c134c05468b09;p=dealii.git Clarify the degree of the elements NedelecSZ and Nedelec --- diff --git a/include/deal.II/fe/fe_nedelec.h b/include/deal.II/fe/fe_nedelec.h index 65f3f0adbe..b208cb79ba 100644 --- a/include/deal.II/fe/fe_nedelec.h +++ b/include/deal.II/fe/fe_nedelec.h @@ -114,10 +114,16 @@ class FE_Nedelec : public FE_PolyTensor { public: /** - * Constructor for the Nédélec element of given @p order. - * The maximal polynomial degree of the shape functions is - * order+1 (in each variable; the total polynomial degree - * may be higher). + * Constructor for the Nedelec element of given @p order. The maximal + * polynomial degree of the shape functions is `order+1` (in each variable; + * the total polynomial degree may be higher). If `order = 0`, the element is + * linear and has degrees of freedom only on the edges. If `order >=1` the + * element has degrees of freedom on the edges, faces and volume. For example + * the 3D version of FE_Nedelec has 12 degrees of freedom for `order = 0` + * and 54 for `degree = 1`. It is important to have enough quadrature points + * in order to perform the quadrature with sufficient accuracy. + * For example [QGauss(order + 2)](@ref QGauss) can be used for the + * quadrature formula, where `order` is the order of FE_Nedelec. */ FE_Nedelec(const unsigned int order); diff --git a/include/deal.II/fe/fe_nedelec_sz.h b/include/deal.II/fe/fe_nedelec_sz.h index 57de49d51f..43250ddd04 100644 --- a/include/deal.II/fe/fe_nedelec_sz.h +++ b/include/deal.II/fe/fe_nedelec_sz.h @@ -77,9 +77,18 @@ public: "FE_NedelecSZ is only implemented for dim==spacedim!"); /** - * Constructor for an element of given @p degree. + * Constructor for the NedelecSZ element of given @p order. The maximal + * polynomial degree of the shape functions is `order+1` (in each variable; + * the total polynomial degree may be higher). If `order = 0`, the element is + * linear and has degrees of freedom only on the edges. If `order >=1` the + * element has degrees of freedom on the edges, faces and volume. For example + * the 3D version of FE_NedelecSZ has 12 degrees of freedom for `order = 0` + * and 54 for `degree = 1`. It is important to have enough quadrature points + * in order to perform the quadrature with sufficient accuracy. + * For example [QGauss(order + 2)](@ref QGauss) can be used for the + * quadrature formula, where `order` is the order of FE_NedelecSZ. */ - FE_NedelecSZ(const unsigned int degree); + FE_NedelecSZ(const unsigned int order); virtual UpdateFlags requires_update_flags(const UpdateFlags update_flags) const override; diff --git a/source/fe/fe_nedelec_sz.cc b/source/fe/fe_nedelec_sz.cc index b60fdc07c1..d1dc78ba20 100644 --- a/source/fe/fe_nedelec_sz.cc +++ b/source/fe/fe_nedelec_sz.cc @@ -21,14 +21,14 @@ DEAL_II_NAMESPACE_OPEN // Constructor: template -FE_NedelecSZ::FE_NedelecSZ(const unsigned int degree) +FE_NedelecSZ::FE_NedelecSZ(const unsigned int order) : FiniteElement( - FiniteElementData(get_dpo_vector(degree), + FiniteElementData(get_dpo_vector(order), dim, - degree + 1, + order + 1, FiniteElementData::Hcurl), - std::vector(compute_num_dofs(degree), true), - std::vector(compute_num_dofs(degree), + std::vector(compute_num_dofs(order), true), + std::vector(compute_num_dofs(order), std::vector(dim, true))) { Assert(dim >= 2, ExcImpossibleInDim(dim)); @@ -43,7 +43,7 @@ FE_NedelecSZ::FE_NedelecSZ(const unsigned int degree) } // Generate the 1-D polynomial basis. - create_polynomials(degree); + create_polynomials(order); }