From: Martin Kronbichler Date: Fri, 21 Apr 2023 16:50:52 +0000 (+0200) Subject: New test cases X-Git-Tag: v9.5.0-rc1~297^2~1 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=ae3c6b005a3ae87f4ca9650a9757dc0d2cfec1c9;p=dealii.git New test cases --- diff --git a/tests/matrix_free/tensor_product_evaluate_07.cc b/tests/matrix_free/tensor_product_evaluate_07.cc new file mode 100644 index 0000000000..2f4cf577d8 --- /dev/null +++ b/tests/matrix_free/tensor_product_evaluate_07.cc @@ -0,0 +1,114 @@ +// --------------------------------------------------------------------- +// +// Copyright (C) 2020 - 2022 by the deal.II authors +// +// This file is part of the deal.II library. +// +// The deal.II library is free software; you can use it, redistribute +// it, and/or modify it under the terms of the GNU Lesser General +// Public License as published by the Free Software Foundation; either +// version 2.1 of the License, or (at your option) any later version. +// The full text of the license can be found in the file LICENSE.md at +// the top level directory of deal.II. +// +// --------------------------------------------------------------------- + + + +// Tests point-wise evaluation of higher order derivatives with +// evaluate_tensor_product_higher_derivatives for a scalar function on FE_Q + +#include +#include +#include +#include + +#include +#include + +#include + +#include + +#include "../tests.h" + +template +void +test(const unsigned int degree) +{ + FE_Q fe(degree); + + // go through all monomials of degree 'derivative_order + 1' + std::vector> exponents; + for (int i2 = 0; i2 <= (dim > 2 ? derivative_order : 0); ++i2) + for (int i1 = 0; i1 <= (dim > 1 ? derivative_order : 0); ++i1) + for (int i0 = 0; i0 <= derivative_order; ++i0) + if (i0 + i1 + i2 == derivative_order) + exponents.push_back(std::array{{i0, i1, i2}}); + + deallog << "Evaluate derivative " << derivative_order << " in " << dim + << "d with polynomial degree " << degree << std::endl; + + const std::vector renumbering = + FETools::lexicographic_to_hierarchic_numbering(degree); + const std::vector> polynomials = + Polynomials::generate_complete_Lagrange_basis( + QGaussLobatto<1>(degree + 1).get_points()); + + Point p; + for (unsigned int d = 0; d < dim; ++d) + p[d] = 1.; + + std::vector function_values(fe.dofs_per_cell); + + for (const std::array &exponent : exponents) + { + Tensor<1, dim> exp; + for (unsigned int d = 0; d < dim; ++d) + exp[d] = exponent[d]; + Functions::Monomial monomial(exp); + for (unsigned int i = 0; i < fe.dofs_per_cell; ++i) + function_values[i] = monomial.value(fe.get_unit_support_points()[i]); + + deallog << "Monomial ["; + for (unsigned int d = 0; d < dim; ++d) + deallog << exponent[d] << (d == dim - 1 ? "" : " "); + deallog << "]: "; + const auto derivative = + internal::evaluate_tensor_product_higher_derivatives( + polynomials, function_values, p, renumbering); + + for (unsigned int d = 0; d < derivative.dimension; ++d) + deallog << (std::abs(derivative[d]) < 1e-11 ? 0. : derivative[d]) + << " "; + deallog << std::endl; + } + deallog << std::endl; +} + + + +int +main() +{ + initlog(); + deallog << std::setprecision(3); + + // test 2nd derivatives + test<1, 2>(2); + test<2, 2>(2); + test<3, 2>(2); + test<3, 2>(3); + + // test 3rd derivatives + test<1, 3>(3); + test<2, 3>(3); + test<3, 3>(3); + test<3, 3>(2); + test<3, 3>(4); + + // test 4th derivatives + test<1, 4>(4); + test<2, 4>(4); + test<3, 4>(4); +} diff --git a/tests/matrix_free/tensor_product_evaluate_07.output b/tests/matrix_free/tensor_product_evaluate_07.output new file mode 100644 index 0000000000..96f187558e --- /dev/null +++ b/tests/matrix_free/tensor_product_evaluate_07.output @@ -0,0 +1,97 @@ + +DEAL::Evaluate derivative 2 in 1d with polynomial degree 2 +DEAL::Monomial [2]: 2.00 +DEAL:: +DEAL::Evaluate derivative 2 in 2d with polynomial degree 2 +DEAL::Monomial [2 0]: 2.00 0.00 0.00 +DEAL::Monomial [1 1]: 0.00 1.00 0.00 +DEAL::Monomial [0 2]: 0.00 0.00 2.00 +DEAL:: +DEAL::Evaluate derivative 2 in 3d with polynomial degree 2 +DEAL::Monomial [2 0 0]: 2.00 0.00 0.00 0.00 0.00 0.00 +DEAL::Monomial [1 1 0]: 0.00 1.00 0.00 0.00 0.00 0.00 +DEAL::Monomial [0 2 0]: 0.00 0.00 2.00 0.00 0.00 0.00 +DEAL::Monomial [1 0 1]: 0.00 0.00 0.00 1.00 0.00 0.00 +DEAL::Monomial [0 1 1]: 0.00 0.00 0.00 0.00 1.00 0.00 +DEAL::Monomial [0 0 2]: 0.00 0.00 0.00 0.00 0.00 2.00 +DEAL:: +DEAL::Evaluate derivative 2 in 3d with polynomial degree 3 +DEAL::Monomial [2 0 0]: 2.00 0.00 0.00 0.00 0.00 0.00 +DEAL::Monomial [1 1 0]: 0.00 1.00 0.00 0.00 0.00 0.00 +DEAL::Monomial [0 2 0]: 0.00 0.00 2.00 0.00 0.00 0.00 +DEAL::Monomial [1 0 1]: 0.00 0.00 0.00 1.00 0.00 0.00 +DEAL::Monomial [0 1 1]: 0.00 0.00 0.00 0.00 1.00 0.00 +DEAL::Monomial [0 0 2]: 0.00 0.00 0.00 0.00 0.00 2.00 +DEAL:: +DEAL::Evaluate derivative 3 in 1d with polynomial degree 3 +DEAL::Monomial [3]: 6.00 +DEAL:: +DEAL::Evaluate derivative 3 in 2d with polynomial degree 3 +DEAL::Monomial [3 0]: 6.00 0.00 0.00 0.00 +DEAL::Monomial [2 1]: 0.00 2.00 0.00 0.00 +DEAL::Monomial [1 2]: 0.00 0.00 2.00 0.00 +DEAL::Monomial [0 3]: 0.00 0.00 0.00 6.00 +DEAL:: +DEAL::Evaluate derivative 3 in 3d with polynomial degree 3 +DEAL::Monomial [3 0 0]: 6.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 +DEAL::Monomial [2 1 0]: 0.00 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 +DEAL::Monomial [1 2 0]: 0.00 0.00 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 +DEAL::Monomial [0 3 0]: 0.00 0.00 0.00 6.00 0.00 0.00 0.00 0.00 0.00 0.00 +DEAL::Monomial [2 0 1]: 0.00 0.00 0.00 0.00 2.00 0.00 0.00 0.00 0.00 0.00 +DEAL::Monomial [1 1 1]: 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 +DEAL::Monomial [0 2 1]: 0.00 0.00 0.00 0.00 0.00 0.00 2.00 0.00 0.00 0.00 +DEAL::Monomial [1 0 2]: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.00 0.00 0.00 +DEAL::Monomial [0 1 2]: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.00 0.00 +DEAL::Monomial [0 0 3]: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.00 +DEAL:: +DEAL::Evaluate derivative 3 in 3d with polynomial degree 2 +DEAL::Monomial [3 0 0]: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 +DEAL::Monomial [2 1 0]: 0.00 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 +DEAL::Monomial [1 2 0]: 0.00 0.00 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 +DEAL::Monomial [0 3 0]: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 +DEAL::Monomial [2 0 1]: 0.00 0.00 0.00 0.00 2.00 0.00 0.00 0.00 0.00 0.00 +DEAL::Monomial [1 1 1]: 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 +DEAL::Monomial [0 2 1]: 0.00 0.00 0.00 0.00 0.00 0.00 2.00 0.00 0.00 0.00 +DEAL::Monomial [1 0 2]: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.00 0.00 0.00 +DEAL::Monomial [0 1 2]: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.00 0.00 +DEAL::Monomial [0 0 3]: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 +DEAL:: +DEAL::Evaluate derivative 3 in 3d with polynomial degree 4 +DEAL::Monomial [3 0 0]: 6.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 +DEAL::Monomial [2 1 0]: 0.00 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 +DEAL::Monomial [1 2 0]: 0.00 0.00 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 +DEAL::Monomial [0 3 0]: 0.00 0.00 0.00 6.00 0.00 0.00 0.00 0.00 0.00 0.00 +DEAL::Monomial [2 0 1]: 0.00 0.00 0.00 0.00 2.00 0.00 0.00 0.00 0.00 0.00 +DEAL::Monomial [1 1 1]: 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 +DEAL::Monomial [0 2 1]: 0.00 0.00 0.00 0.00 0.00 0.00 2.00 0.00 0.00 0.00 +DEAL::Monomial [1 0 2]: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.00 0.00 0.00 +DEAL::Monomial [0 1 2]: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.00 0.00 +DEAL::Monomial [0 0 3]: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.00 +DEAL:: +DEAL::Evaluate derivative 4 in 1d with polynomial degree 4 +DEAL::Monomial [4]: 24.0 +DEAL:: +DEAL::Evaluate derivative 4 in 2d with polynomial degree 4 +DEAL::Monomial [4 0]: 24.0 0.00 0.00 0.00 0.00 +DEAL::Monomial [3 1]: 0.00 6.00 0.00 0.00 0.00 +DEAL::Monomial [2 2]: 0.00 0.00 4.00 0.00 0.00 +DEAL::Monomial [1 3]: 0.00 0.00 0.00 6.00 0.00 +DEAL::Monomial [0 4]: 0.00 0.00 0.00 0.00 24.0 +DEAL:: +DEAL::Evaluate derivative 4 in 3d with polynomial degree 4 +DEAL::Monomial [4 0 0]: 24.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 +DEAL::Monomial [3 1 0]: 0.00 6.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 +DEAL::Monomial [2 2 0]: 0.00 0.00 4.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 +DEAL::Monomial [1 3 0]: 0.00 0.00 0.00 6.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 +DEAL::Monomial [0 4 0]: 0.00 0.00 0.00 0.00 24.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 +DEAL::Monomial [3 0 1]: 0.00 0.00 0.00 0.00 0.00 6.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 +DEAL::Monomial [2 1 1]: 0.00 0.00 0.00 0.00 0.00 0.00 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 +DEAL::Monomial [1 2 1]: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 +DEAL::Monomial [0 3 1]: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.00 0.00 0.00 0.00 0.00 0.00 0.00 +DEAL::Monomial [2 0 2]: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.00 0.00 0.00 0.00 0.00 0.00 +DEAL::Monomial [1 1 2]: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.00 0.00 0.00 0.00 0.00 +DEAL::Monomial [0 2 2]: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.00 0.00 0.00 0.00 +DEAL::Monomial [1 0 3]: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.00 0.00 0.00 +DEAL::Monomial [0 1 3]: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.00 0.00 +DEAL::Monomial [0 0 4]: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 24.0 +DEAL:: diff --git a/tests/matrix_free/tensor_product_evaluate_08.cc b/tests/matrix_free/tensor_product_evaluate_08.cc new file mode 100644 index 0000000000..d6bfaf480d --- /dev/null +++ b/tests/matrix_free/tensor_product_evaluate_08.cc @@ -0,0 +1,111 @@ +// --------------------------------------------------------------------- +// +// Copyright (C) 2020 - 2022 by the deal.II authors +// +// This file is part of the deal.II library. +// +// The deal.II library is free software; you can use it, redistribute +// it, and/or modify it under the terms of the GNU Lesser General +// Public License as published by the Free Software Foundation; either +// version 2.1 of the License, or (at your option) any later version. +// The full text of the license can be found in the file LICENSE.md at +// the top level directory of deal.II. +// +// --------------------------------------------------------------------- + + + +// Tests point-wise evaluation of higher order derivatives with +// evaluate_tensor_product_higher_derivatives for a scalar function on FE_DGQ + +#include +#include +#include +#include + +#include + +#include + +#include + +#include "../tests.h" + +template +void +test(const unsigned int degree) +{ + FE_DGQ fe(degree); + + // go through all monomials of degree 'derivative_order + 1' + std::vector> exponents; + for (int i2 = 0; i2 <= (dim > 2 ? derivative_order : 0); ++i2) + for (int i1 = 0; i1 <= (dim > 1 ? derivative_order : 0); ++i1) + for (int i0 = 0; i0 <= derivative_order; ++i0) + if (i0 + i1 + i2 == derivative_order) + exponents.push_back(std::array{{i0, i1, i2}}); + + deallog << "Evaluate derivative " << derivative_order << " in " << dim + << "d with polynomial degree " << degree << std::endl; + + const std::vector> polynomials = + Polynomials::generate_complete_Lagrange_basis( + QGaussLobatto<1>(degree + 1).get_points()); + + Point p; + for (unsigned int d = 0; d < dim; ++d) + p[d] = 1.; + + std::vector function_values(fe.dofs_per_cell); + + for (const std::array &exponent : exponents) + { + Tensor<1, dim> exp; + for (unsigned int d = 0; d < dim; ++d) + exp[d] = exponent[d]; + Functions::Monomial monomial(exp); + for (unsigned int i = 0; i < fe.dofs_per_cell; ++i) + function_values[i] = monomial.value(fe.get_unit_support_points()[i]); + + deallog << "Monomial ["; + for (unsigned int d = 0; d < dim; ++d) + deallog << exponent[d] << (d == dim - 1 ? "" : " "); + deallog << "]: "; + const auto derivative = + internal::evaluate_tensor_product_higher_derivatives( + polynomials, function_values, p); + + for (unsigned int d = 0; d < derivative.dimension; ++d) + deallog << (std::abs(derivative[d]) < 1e-11 ? 0. : derivative[d]) + << " "; + deallog << std::endl; + } + deallog << std::endl; +} + + + +int +main() +{ + initlog(); + deallog << std::setprecision(3); + + // test 2nd derivatives + test<1, 2>(2); + test<2, 2>(2); + test<3, 2>(2); + test<3, 2>(3); + + // test 3rd derivatives + test<1, 3>(3); + test<2, 3>(3); + test<3, 3>(3); + test<3, 3>(2); + test<3, 3>(4); + + // test 4th derivatives + test<1, 4>(4); + test<2, 4>(4); + test<3, 4>(4); +} diff --git a/tests/matrix_free/tensor_product_evaluate_08.output b/tests/matrix_free/tensor_product_evaluate_08.output new file mode 100644 index 0000000000..96f187558e --- /dev/null +++ b/tests/matrix_free/tensor_product_evaluate_08.output @@ -0,0 +1,97 @@ + +DEAL::Evaluate derivative 2 in 1d with polynomial degree 2 +DEAL::Monomial [2]: 2.00 +DEAL:: +DEAL::Evaluate derivative 2 in 2d with polynomial degree 2 +DEAL::Monomial [2 0]: 2.00 0.00 0.00 +DEAL::Monomial [1 1]: 0.00 1.00 0.00 +DEAL::Monomial [0 2]: 0.00 0.00 2.00 +DEAL:: +DEAL::Evaluate derivative 2 in 3d with polynomial degree 2 +DEAL::Monomial [2 0 0]: 2.00 0.00 0.00 0.00 0.00 0.00 +DEAL::Monomial [1 1 0]: 0.00 1.00 0.00 0.00 0.00 0.00 +DEAL::Monomial [0 2 0]: 0.00 0.00 2.00 0.00 0.00 0.00 +DEAL::Monomial [1 0 1]: 0.00 0.00 0.00 1.00 0.00 0.00 +DEAL::Monomial [0 1 1]: 0.00 0.00 0.00 0.00 1.00 0.00 +DEAL::Monomial [0 0 2]: 0.00 0.00 0.00 0.00 0.00 2.00 +DEAL:: +DEAL::Evaluate derivative 2 in 3d with polynomial degree 3 +DEAL::Monomial [2 0 0]: 2.00 0.00 0.00 0.00 0.00 0.00 +DEAL::Monomial [1 1 0]: 0.00 1.00 0.00 0.00 0.00 0.00 +DEAL::Monomial [0 2 0]: 0.00 0.00 2.00 0.00 0.00 0.00 +DEAL::Monomial [1 0 1]: 0.00 0.00 0.00 1.00 0.00 0.00 +DEAL::Monomial [0 1 1]: 0.00 0.00 0.00 0.00 1.00 0.00 +DEAL::Monomial [0 0 2]: 0.00 0.00 0.00 0.00 0.00 2.00 +DEAL:: +DEAL::Evaluate derivative 3 in 1d with polynomial degree 3 +DEAL::Monomial [3]: 6.00 +DEAL:: +DEAL::Evaluate derivative 3 in 2d with polynomial degree 3 +DEAL::Monomial [3 0]: 6.00 0.00 0.00 0.00 +DEAL::Monomial [2 1]: 0.00 2.00 0.00 0.00 +DEAL::Monomial [1 2]: 0.00 0.00 2.00 0.00 +DEAL::Monomial [0 3]: 0.00 0.00 0.00 6.00 +DEAL:: +DEAL::Evaluate derivative 3 in 3d with polynomial degree 3 +DEAL::Monomial [3 0 0]: 6.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 +DEAL::Monomial [2 1 0]: 0.00 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 +DEAL::Monomial [1 2 0]: 0.00 0.00 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 +DEAL::Monomial [0 3 0]: 0.00 0.00 0.00 6.00 0.00 0.00 0.00 0.00 0.00 0.00 +DEAL::Monomial [2 0 1]: 0.00 0.00 0.00 0.00 2.00 0.00 0.00 0.00 0.00 0.00 +DEAL::Monomial [1 1 1]: 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 +DEAL::Monomial [0 2 1]: 0.00 0.00 0.00 0.00 0.00 0.00 2.00 0.00 0.00 0.00 +DEAL::Monomial [1 0 2]: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.00 0.00 0.00 +DEAL::Monomial [0 1 2]: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.00 0.00 +DEAL::Monomial [0 0 3]: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.00 +DEAL:: +DEAL::Evaluate derivative 3 in 3d with polynomial degree 2 +DEAL::Monomial [3 0 0]: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 +DEAL::Monomial [2 1 0]: 0.00 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 +DEAL::Monomial [1 2 0]: 0.00 0.00 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 +DEAL::Monomial [0 3 0]: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 +DEAL::Monomial [2 0 1]: 0.00 0.00 0.00 0.00 2.00 0.00 0.00 0.00 0.00 0.00 +DEAL::Monomial [1 1 1]: 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 +DEAL::Monomial [0 2 1]: 0.00 0.00 0.00 0.00 0.00 0.00 2.00 0.00 0.00 0.00 +DEAL::Monomial [1 0 2]: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.00 0.00 0.00 +DEAL::Monomial [0 1 2]: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.00 0.00 +DEAL::Monomial [0 0 3]: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 +DEAL:: +DEAL::Evaluate derivative 3 in 3d with polynomial degree 4 +DEAL::Monomial [3 0 0]: 6.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 +DEAL::Monomial [2 1 0]: 0.00 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 +DEAL::Monomial [1 2 0]: 0.00 0.00 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 +DEAL::Monomial [0 3 0]: 0.00 0.00 0.00 6.00 0.00 0.00 0.00 0.00 0.00 0.00 +DEAL::Monomial [2 0 1]: 0.00 0.00 0.00 0.00 2.00 0.00 0.00 0.00 0.00 0.00 +DEAL::Monomial [1 1 1]: 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 +DEAL::Monomial [0 2 1]: 0.00 0.00 0.00 0.00 0.00 0.00 2.00 0.00 0.00 0.00 +DEAL::Monomial [1 0 2]: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.00 0.00 0.00 +DEAL::Monomial [0 1 2]: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.00 0.00 +DEAL::Monomial [0 0 3]: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.00 +DEAL:: +DEAL::Evaluate derivative 4 in 1d with polynomial degree 4 +DEAL::Monomial [4]: 24.0 +DEAL:: +DEAL::Evaluate derivative 4 in 2d with polynomial degree 4 +DEAL::Monomial [4 0]: 24.0 0.00 0.00 0.00 0.00 +DEAL::Monomial [3 1]: 0.00 6.00 0.00 0.00 0.00 +DEAL::Monomial [2 2]: 0.00 0.00 4.00 0.00 0.00 +DEAL::Monomial [1 3]: 0.00 0.00 0.00 6.00 0.00 +DEAL::Monomial [0 4]: 0.00 0.00 0.00 0.00 24.0 +DEAL:: +DEAL::Evaluate derivative 4 in 3d with polynomial degree 4 +DEAL::Monomial [4 0 0]: 24.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 +DEAL::Monomial [3 1 0]: 0.00 6.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 +DEAL::Monomial [2 2 0]: 0.00 0.00 4.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 +DEAL::Monomial [1 3 0]: 0.00 0.00 0.00 6.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 +DEAL::Monomial [0 4 0]: 0.00 0.00 0.00 0.00 24.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 +DEAL::Monomial [3 0 1]: 0.00 0.00 0.00 0.00 0.00 6.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 +DEAL::Monomial [2 1 1]: 0.00 0.00 0.00 0.00 0.00 0.00 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 +DEAL::Monomial [1 2 1]: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 +DEAL::Monomial [0 3 1]: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.00 0.00 0.00 0.00 0.00 0.00 0.00 +DEAL::Monomial [2 0 2]: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.00 0.00 0.00 0.00 0.00 0.00 +DEAL::Monomial [1 1 2]: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.00 0.00 0.00 0.00 0.00 +DEAL::Monomial [0 2 2]: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.00 0.00 0.00 0.00 +DEAL::Monomial [1 0 3]: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.00 0.00 0.00 +DEAL::Monomial [0 1 3]: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.00 0.00 +DEAL::Monomial [0 0 4]: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 24.0 +DEAL::