From: Guido Kanschat Date: Sat, 16 Mar 2002 15:04:44 +0000 (+0000) Subject: Tensors which are actually Points are Points now X-Git-Tag: v8.0.0~18279 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=af6c5682c0ae18dda4fa4606f787ae46e1d802dc;p=dealii.git Tensors which are actually Points are Points now git-svn-id: https://svn.dealii.org/trunk@5568 0785d39b-7218-0410-832d-ea1e28bc413d --- diff --git a/deal.II/base/source/auto_derivative_function.cc b/deal.II/base/source/auto_derivative_function.cc index 6b210ad7ef..96fa2898e1 100644 --- a/deal.II/base/source/auto_derivative_function.cc +++ b/deal.II/base/source/auto_derivative_function.cc @@ -73,7 +73,7 @@ AutoDerivativeFunction::gradient (const Point &p, { case UpwindEuler: { - Tensor<1,dim> q1; + Point q1; for (unsigned int i=0; i::gradient (const Point &p, } case Euler: { - Tensor<1,dim> q1, q2; + Point q1, q2; for (unsigned int i=0; i::gradient (const Point &p, } case FourthOrder: { - Tensor<1,dim> q1, q2, q3, q4; + Point q1, q2, q3, q4; for (unsigned int i=0; i::vector_gradient (const Point &p, { case UpwindEuler: { - Tensor<1,dim> q1; + Point q1; Vector v(n_components), v1(n_components); const double h_inv=1./h; for (unsigned int i=0; i::vector_gradient (const Point &p, } case Euler: { - Tensor<1,dim> q1, q2; + Point q1, q2; Vector v1(n_components), v2(n_components); const double h_inv_2=1./(2*h); for (unsigned int i=0; i::vector_gradient (const Point &p, } case FourthOrder: { - Tensor<1,dim> q1, q2, q3, q4; + Point q1, q2, q3, q4; Vector v1(n_components), v2(n_components), v3(n_components), v4(n_components); const double h_inv_12=1./(12*h); for (unsigned int i=0; i::gradient_list (const typename std::vector q1; + Point q1; for (unsigned p=0; p::gradient_list (const typename std::vector q1, q2; + Point q1, q2; for (unsigned p=0; p::gradient_list (const typename std::vector q1, q2, q3, q4; + Point q1, q2, q3, q4; for (unsigned p=0; p > &points { case UpwindEuler: { - Tensor<1,dim> q1; + Point q1; for (unsigned p=0; p > &points } case Euler: { - Tensor<1,dim> q1, q2; + Point q1, q2; for (unsigned p=0; p > &points } case FourthOrder: { - Tensor<1,dim> q1, q2, q3, q4; + Point q1, q2, q3, q4; for (unsigned p=0; p