From: frohne Date: Tue, 29 May 2012 09:08:50 +0000 (+0000) Subject: fixed bug for filling 'diag_mass_matrix_vector', use of dealii::Timer and FGMRES... X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=b04bc8f0fef58fbc2e94b0ec0d05f36f4ceb5bc0;p=dealii-svn.git fixed bug for filling 'diag_mass_matrix_vector', use of dealii::Timer and FGMRES instead of CG git-svn-id: https://svn.dealii.org/trunk@25553 0785d39b-7218-0410-832d-ea1e28bc413d --- diff --git a/deal.II/examples/step-42/step-42.cc b/deal.II/examples/step-42/step-42.cc index aec7a4f1f4..81038da2dd 100644 --- a/deal.II/examples/step-42/step-42.cc +++ b/deal.II/examples/step-42/step-42.cc @@ -1,4 +1,3 @@ - /* $Id$ */ /* Author: Wolfgang Bangerth, University of Heidelberg, 1999 */ @@ -58,6 +57,7 @@ #include #include +#include #include #include #include @@ -85,7 +85,7 @@ template class Step4 { public: - Step4 (); + Step4 (int _n_refinements_global, int _n_refinements_local); void run (); private: @@ -114,7 +114,7 @@ private: IndexSet locally_owned_dofs; IndexSet locally_relevant_dofs; - int n_refinements; + int n_refinements_global; int n_refinements_local; unsigned int number_iterations; std::vector run_time; @@ -219,19 +219,15 @@ void ConstitutiveLaw::plast_linear_hardening (SymmetricTensor<4,dim> &stre double &sigma_eff, double &yield) { - // Plane strain if (dim == 3) { SymmetricTensor<2,dim> stress_tensor; stress_tensor = (stress_strain_tensor_kappa + stress_strain_tensor_mu)*strain_tensor; double tmp = E/((1+nu)*(1-2*nu)); - double stress_tensor_33 = 0.0;//tmp*(strain_tensor[0][0] + strain_tensor[1][1])*nu; SymmetricTensor<2,dim> deviator_stress_tensor = deviator(stress_tensor); double deviator_stress_tensor_norm = deviator_stress_tensor.norm (); - deviator_stress_tensor_norm = std::sqrt (deviator_stress_tensor_norm*deviator_stress_tensor_norm + - stress_tensor_33*stress_tensor_33); yield = 0; stress_strain_tensor = stress_strain_tensor_mu; @@ -258,13 +254,11 @@ void ConstitutiveLaw::linearized_plast_linear_hardening (SymmetricTensor<4, SymmetricTensor<4,dim> &stress_strain_tensor, SymmetricTensor<2,dim> &strain_tensor) { - // Plane strains if (dim == 3) { SymmetricTensor<2,dim> stress_tensor; stress_tensor = (stress_strain_tensor_kappa + stress_strain_tensor_mu)*strain_tensor; double tmp = E/((1+nu)*(1-2*nu)); - double stress_tensor_33 = 0.0;//tmp*(strain_tensor[0][0] + strain_tensor[1][1])*nu; stress_strain_tensor = stress_strain_tensor_mu; stress_strain_tensor_linearized = stress_strain_tensor_mu; @@ -272,7 +266,7 @@ void ConstitutiveLaw::linearized_plast_linear_hardening (SymmetricTensor<4, SymmetricTensor<2,dim> deviator_stress_tensor = deviator(stress_tensor); double deviator_stress_tensor_norm = deviator_stress_tensor.norm (); - deviator_stress_tensor_norm = std::sqrt (deviator_stress_tensor_norm*deviator_stress_tensor_norm + stress_tensor_33*stress_tensor_33); + double beta = 1.0; if (deviator_stress_tensor_norm >= sigma_0) { @@ -413,12 +407,12 @@ namespace EquationData // return_value = 1e+10; // Hindernis Dortmund - // double x1 = p(0); - // double x2 = p(1); - // if (((x2-0.5)*(x2-0.5)+(x1-0.5)*(x1-0.5)<=0.3*0.3)&&((x2-0.5)*(x2-0.5)+(x1-1.0)*(x1-1.0)>=0.4*0.4)&&((x2-0.5)*(x2-0.5)+x1*x1>=0.4*0.4)) - // return_value = 0.999; - // else - // return_value = 1e+10; + double x1 = p(0); + double x2 = p(1); + if (((x2-0.5)*(x2-0.5)+(x1-0.5)*(x1-0.5)<=0.3*0.3)&&((x2-0.5)*(x2-0.5)+(x1-1.0)*(x1-1.0)>=0.4*0.4)&&((x2-0.5)*(x2-0.5)+x1*x1>=0.4*0.4)) + return_value = 0.999; + else + return_value = 1e+10; // Hindernis Werkzeug TKSE // double shift_walze_x = 0.0; @@ -426,12 +420,12 @@ namespace EquationData // return_value = 0.032 + data->dicke - input_copy->mikro_height (p(0) + shift_walze_x, p(1) + shift_walze_y, p(2)); // Ball with radius R - double R = 0.5; - if (std::pow ((p(0)-1.0/2.0), 2) + std::pow ((p(1)-1.0/2.0), 2) < R*R) - return_value = 1.0 + R - 0.001 - sqrt (R*R - std::pow ((p(0)-1.0/2.0), 2) - - std::pow ((p(1)-1.0/2.0), 2)); - else - return_value = 1e+5; + // double R = 0.5; + // if (std::pow ((p(0)-1.0/2.0), 2) + std::pow ((p(1)-1.0/2.0), 2) < R*R) + // return_value = 1.0 + R - 0.001 - sqrt (R*R - std::pow ((p(0)-1.0/2.0), 2) + // - std::pow ((p(1)-1.0/2.0), 2)); + // else + // return_value = 1e+5; } return return_value; @@ -455,8 +449,10 @@ namespace EquationData // above. As before, we will write everything template -Step4::Step4 () +Step4::Step4 (int _n_refinements_global, int _n_refinements_local) : + n_refinements_global (_n_refinements_global), + n_refinements_local (_n_refinements_local), mpi_communicator (MPI_COMM_WORLD), triangulation (mpi_communicator), fe (FE_Q(1), dim), @@ -465,7 +461,7 @@ Step4::Step4 () (Utilities::MPI::this_mpi_process(mpi_communicator) == 0)), sigma_0 (400), gamma (1.e-2), - e_modul (2.e5), + e_modul (2.0e5), nu (0.3) { // double _E, double _nu, double _sigma_0, double _gamma @@ -512,33 +508,47 @@ void Step4::make_grid () cell->face (face)->set_boundary_indicator (6); } - n_refinements = 3; - n_refinements_local = 3; - triangulation.refine_global (n_refinements); + triangulation.refine_global (n_refinements_global); // Lokale Verfeinerung des Gitters for (int step=0; step::faces_per_cell; ++face) { - if (cell->face (face)->at_boundary() - && cell->face (face)->boundary_indicator () == 9) +// if (cell->face (face)->at_boundary() +// && cell->face (face)->boundary_indicator () == 9) +// { +// cell->set_refine_flag (); +// break; +// } +// else if (cell->level () == n_refinements + n_refinements_local - 1) +// { +// cell->set_refine_flag (); +// break; +// } + +// if (cell->face (face)->at_boundary() +// && cell->face (face)->boundary_indicator () == 9) +// { +// if (cell->face (face)->vertex (0)(0) <= 0.7 && +// cell->face (face)->vertex (1)(0) >= 0.3 && +// cell->face (face)->vertex (0)(1) <= 0.875 && +// cell->face (face)->vertex (2)(1) >= 0.125) +// { +// cell->set_refine_flag (); +// break; +// } +// } + + if (step == 0 && + cell->center ()(2) < n_refinements_local*9.0/64.0) { cell->set_refine_flag (); break; - } - else if (cell->level () == n_refinements + n_refinements_local - 1) - { - cell->set_refine_flag (); - break; - } + } }; triangulation.execute_coarsening_and_refinement (); }; @@ -601,15 +611,17 @@ void Step4::setup_system () system_matrix_newton.reinit (sp); mass_matrix.reinit (sp); - } + } assemble_mass_matrix (); const unsigned int start = (system_rhs_newton.local_range().first), end = (system_rhs_newton.local_range().second); - for (unsigned int j=0; j @@ -912,9 +924,11 @@ void Step4::residual_nl_system (TrilinosWrappers::MPI::Vector &u, template void Step4::projection_active_set () { + clock_t start_proj, end_proj; + const EquationData::Obstacle obstacle; std::vector vertex_touched (dof_handler.n_dofs (), false); - + typename DoFHandler::active_cell_iterator cell = dof_handler.begin_active(), endc = dof_handler.end(); @@ -925,7 +939,7 @@ void Step4::projection_active_set () lambda = resid_vector; TrilinosWrappers::MPI::Vector diag_mass_matrix_vector_relevant (solution); diag_mass_matrix_vector_relevant = diag_mass_matrix_vector; - + constraints.reinit(locally_relevant_dofs); active_set.clear (); IndexSet active_set_locally_owned; @@ -935,7 +949,8 @@ void Step4::projection_active_set () for (; cell!=endc; ++cell) if (cell->is_locally_owned()) for (unsigned int face=0; face::faces_per_cell; ++face) - if (cell->face (face)->boundary_indicator () == 9) + if (cell->face (face)->at_boundary() + && cell->face (face)->boundary_indicator () == 9) for (unsigned int v=0; v::vertices_per_cell; ++v) { unsigned int index_z = cell->face (face)->vertex_dof_index (v,2); @@ -978,7 +993,6 @@ void Step4::projection_active_set () // <::dirichlet_constraints () template void Step4::solve () { - ReductionControl reduction_control (10000, 1e-15, 1e-4); + pcout << "Solving ..." << std::endl; + Timer t; TrilinosWrappers::MPI::Vector distributed_solution (system_rhs_newton); distributed_solution = solution; - + constraints_hanging_nodes.set_zero (distributed_solution); // Solving iterative - SolverCG - solver (reduction_control, mpi_communicator); - preconditioner_u.initialize (system_matrix_newton, additional_data); + MPI_Barrier (mpi_communicator); + t.restart(); - solver.solve (system_matrix_newton, distributed_solution, system_rhs_newton, preconditioner_u); - pcout << "Initial error: " << reduction_control.initial_value() < +// solver (reduction_control, mpi_communicator); +// solver.solve (system_matrix_newton, distributed_solution, system_rhs_newton, preconditioner_u); + + PrimitiveVectorMemory mem; + TrilinosWrappers::MPI::Vector tmp (system_rhs_newton); + const double solver_tolerance = 1e-4 * + system_matrix_newton.residual (tmp, distributed_solution, system_rhs_newton); + SolverControl solver_control (system_matrix_newton.m(), solver_tolerance); + SolverFGMRES + solver(solver_control, mem, + SolverFGMRES:: + AdditionalData(30, true)); + solver.solve(system_matrix_newton, distributed_solution, system_rhs_newton, preconditioner_u); + + pcout << "Initial error: " << solver_control.initial_value() <::solve_newton () double resid_old=100000; TrilinosWrappers::MPI::Vector res (system_rhs_newton); TrilinosWrappers::MPI::Vector tmp_vector (system_rhs_newton); - clock_t start, end; + Timer t; std::vector > constant_modes; std::vector components (dim,true); @@ -1085,7 +1129,7 @@ void Step4::solve_newton () IndexSet active_set_old (active_set); Vector sigma_eff_vector; - sigma_eff_vector.reinit (triangulation.n_active_cells()); + sigma_eff_vector.reinit (triangulation.n_active_cells()); unsigned int j = 0; unsigned int number_assemble_system = 0; for (; j<=100;j++) @@ -1093,23 +1137,38 @@ void Step4::solve_newton () pcout<< " " <::solve_newton () old_solution = tmp_vector; old_solution.sadd(1-a,a, distributed_solution); - start = clock(); + MPI_Barrier (mpi_communicator); + t.restart(); system_rhs_newton = 0; sigma_eff_vector = 0; solution = old_solution; @@ -1151,8 +1211,10 @@ void Step4::solve_newton () pcout<< "Newton-damping parameter alpha = " << a <::solve_newton () active_set_old = active_set; } // End of active-set-loop - start = clock(); + pcout<< "Creating output." < laplace_problem_3d; + int _n_refinements_global = 1; + int _n_refinements_local = 1; + + if (argc == 3) + { + _n_refinements_global = atoi(argv[1]); + _n_refinements_local = atoi(argv[2]); + } + + Step4<3> laplace_problem_3d (_n_refinements_global, _n_refinements_local); laplace_problem_3d.run (); }