From: Wolfgang Bangerth Date: Sat, 9 May 2015 03:26:02 +0000 (-0500) Subject: Add some more documentation. X-Git-Tag: v8.3.0-rc1~184^2~3 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=b19f5e2d4b903d44080783fcd2949844b8dc187f;p=dealii.git Add some more documentation. --- diff --git a/include/deal.II/fe/fe_values.h b/include/deal.II/fe/fe_values.h index f3c0d421b4..d839e4b7c3 100644 --- a/include/deal.II/fe/fe_values.h +++ b/include/deal.II/fe/fe_values.h @@ -265,7 +265,7 @@ namespace FEValuesViews * selected scalar component. * * The data type stored by the output vector must be what you get - * when you multiply the values of shape function (i.e., @p + * when you multiply the values of shape functions (i.e., @p * value_type) times the type used to store the values of the * unknowns $U_j$ of your finite element vector $U$ (represented * by the @p fe_function argument). @@ -287,7 +287,7 @@ namespace FEValuesViews * selected scalar component. * * The data type stored by the output vector must be what you get - * when you multiply the gradients of shape function (i.e., @p + * when you multiply the gradients of shape functions (i.e., @p * gradient_type) times the type used to store the values of the * unknowns $U_j$ of your finite element vector $U$ (represented * by the @p fe_function argument). @@ -309,7 +309,7 @@ namespace FEValuesViews * selected scalar component. * * The data type stored by the output vector must be what you get - * when you multiply the Hessians of shape function (i.e., @p + * when you multiply the Hessians of shape functions (i.e., @p * hessian_type) times the type used to store the values of the * unknowns $U_j$ of your finite element vector $U$ (represented * by the @p fe_function argument). @@ -332,7 +332,7 @@ namespace FEValuesViews * selected scalar component. * * The data type stored by the output vector must be what you get - * when you multiply the Laplacians of shape function (i.e., @p + * when you multiply the Laplacians of shape functions (i.e., @p * value_type) times the type used to store the values of the * unknowns $U_j$ of your finite element vector $U$ (represented * by the @p fe_function argument). @@ -622,6 +622,12 @@ namespace FEValuesViews * FEValuesBase::get_function_values function but it only works on the * selected vector components. * + * The data type stored by the output vector must be what you get + * when you multiply the values of shape functions (i.e., @p + * value_type) times the type used to store the values of the + * unknowns $U_j$ of your finite element vector $U$ (represented + * by the @p fe_function argument). + * * @dealiiRequiresUpdateFlags{update_values} */ template @@ -638,6 +644,12 @@ namespace FEValuesViews * FEValuesBase::get_function_gradients function but it only works on the * selected vector components. * + * The data type stored by the output vector must be what you get + * when you multiply the gradients of shape functions (i.e., @p + * gradient_type) times the type used to store the values of the + * unknowns $U_j$ of your finite element vector $U$ (represented + * by the @p fe_function argument). + * * @dealiiRequiresUpdateFlags{update_gradients} */ template @@ -659,6 +671,12 @@ namespace FEValuesViews * but the information can be obtained from * FEValuesBase::get_function_gradients, of course. * + * The data type stored by the output vector must be what you get + * when you multiply the symmetric gradients of shape functions (i.e., @p + * symmetric_gradient_type) times the type used to store the values of the + * unknowns $U_j$ of your finite element vector $U$ (represented + * by the @p fe_function argument). + * * @dealiiRequiresUpdateFlags{update_gradients} */ template @@ -677,6 +695,12 @@ namespace FEValuesViews * information can be obtained from FEValuesBase::get_function_gradients, * of course. * + * The data type stored by the output vector must be what you get + * when you multiply the divergences of shape functions (i.e., @p + * divergence_type) times the type used to store the values of the + * unknowns $U_j$ of your finite element vector $U$ (represented + * by the @p fe_function argument). + * * @dealiiRequiresUpdateFlags{update_gradients} */ template @@ -694,6 +718,12 @@ namespace FEValuesViews * information can be obtained from FEValuesBase::get_function_gradients, * of course. * + * The data type stored by the output vector must be what you get + * when you multiply the curls of shape functions (i.e., @p + * curl_type) times the type used to store the values of the + * unknowns $U_j$ of your finite element vector $U$ (represented + * by the @p fe_function argument). + * * @dealiiRequiresUpdateFlags{update_gradients} */ template @@ -710,6 +740,12 @@ namespace FEValuesViews * FEValuesBase::get_function_hessians function but it only works on the * selected vector components. * + * The data type stored by the output vector must be what you get + * when you multiply the Hessians of shape functions (i.e., @p + * hessian_type) times the type used to store the values of the + * unknowns $U_j$ of your finite element vector $U$ (represented + * by the @p fe_function argument). + * * @dealiiRequiresUpdateFlags{update_hessians} */ template @@ -727,6 +763,12 @@ namespace FEValuesViews * FEValuesBase::get_function_laplacians function but it only works on the * selected vector components. * + * The data type stored by the output vector must be what you get + * when you multiply the Laplacians of shape functions (i.e., @p + * laplacian_type) times the type used to store the values of the + * unknowns $U_j$ of your finite element vector $U$ (represented + * by the @p fe_function argument). + * * @dealiiRequiresUpdateFlags{update_hessians} */ template @@ -913,6 +955,12 @@ namespace FEValuesViews * FEValuesBase::get_function_values function but it only works on the * selected vector components. * + * The data type stored by the output vector must be what you get + * when you multiply the values of shape functions (i.e., @p + * value_type) times the type used to store the values of the + * unknowns $U_j$ of your finite element vector $U$ (represented + * by the @p fe_function argument). + * * @dealiiRequiresUpdateFlags{update_values} */ template @@ -933,6 +981,12 @@ namespace FEValuesViews * See the general discussion of this class for a definition of the * divergence. * + * The data type stored by the output vector must be what you get + * when you multiply the divergences of shape functions (i.e., @p + * divergence_type) times the type used to store the values of the + * unknowns $U_j$ of your finite element vector $U$ (represented + * by the @p fe_function argument). + * * @dealiiRequiresUpdateFlags{update_gradients} */ template @@ -1107,6 +1161,12 @@ namespace FEValuesViews * FEValuesBase::get_function_values function but it only works on the * selected vector components. * + * The data type stored by the output vector must be what you get + * when you multiply the values of shape functions (i.e., @p + * value_type) times the type used to store the values of the + * unknowns $U_j$ of your finite element vector $U$ (represented + * by the @p fe_function argument). + * * @dealiiRequiresUpdateFlags{update_values} */ template @@ -1128,6 +1188,12 @@ namespace FEValuesViews * See the general discussion of this class for a definition of the * divergence. * + * The data type stored by the output vector must be what you get + * when you multiply the divergences of shape functions (i.e., @p + * divergence_type) times the type used to store the values of the + * unknowns $U_j$ of your finite element vector $U$ (represented + * by the @p fe_function argument). + * * @dealiiRequiresUpdateFlags{update_gradients} */ template @@ -1673,6 +1739,12 @@ public: * @param[out] values The values of the function specified by fe_function at * the quadrature points of the current cell. The object is assume to * already have the correct size. + * The data type stored by this output vector must be what you get + * when you multiply the values of shape function + * times the type used to store the values of the + * unknowns $U_j$ of your finite element vector $U$ (represented + * by the @p fe_function argument). This happens to be equal to the + * type of the elements of the solution vector. * * @post values[q] will contain the value of the field * described by fe_function at the $q$th quadrature point. @@ -1816,6 +1888,11 @@ public: * fe_function at the quadrature points of the current cell. The gradients * are computed in real space (as opposed to on the unit cell). The object * is assume to already have the correct size. + * The data type stored by this output vector must be what you get + * when you multiply the gradients of shape function times the type + * used to store the values of the + * unknowns $U_j$ of your finite element vector $U$ (represented + * by the @p fe_function argument). * * @post gradients[q] will contain the gradient of the field * described by fe_function at the $q$th quadrature point. @@ -1902,6 +1979,11 @@ public: * fe_function at the quadrature points of the current cell. The Hessians * are computed in real space (as opposed to on the unit cell). The object * is assume to already have the correct size. + * The data type stored by this output vector must be what you get + * when you multiply the Hessians of shape function times the type + * used to store the values of the + * unknowns $U_j$ of your finite element vector $U$ (represented + * by the @p fe_function argument). * * @post hessians[q] will contain the Hessian of the field * described by fe_function at the $q$th quadrature point. @@ -1988,6 +2070,12 @@ public: * fe_function at the quadrature points of the current cell. The Laplacians * are computed in real space (as opposed to on the unit cell). The object * is assume to already have the correct size. + * The data type stored by this output vector must be what you get + * when you multiply the Laplacians of shape function times the type + * used to store the values of the + * unknowns $U_j$ of your finite element vector $U$ (represented + * by the @p fe_function argument). This happens to be equal to the + * type of the elements of the input vector. * * @post laplacians[q] will contain the Laplacian of the field * described by fe_function at the $q$th quadrature point.