From: bangerth Date: Tue, 7 Feb 2012 16:02:14 +0000 (+0000) Subject: More. X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=b24e7377a2a17c42f3c6f0ea54f3de364504adff;p=dealii-svn.git More. git-svn-id: https://svn.dealii.org/trunk@25007 0785d39b-7218-0410-832d-ea1e28bc413d --- diff --git a/deal.II/examples/step-43/step-43.cc b/deal.II/examples/step-43/step-43.cc index d7d897d87f..3e587253d7 100644 --- a/deal.II/examples/step-43/step-43.cc +++ b/deal.II/examples/step-43/step-43.cc @@ -984,20 +984,29 @@ namespace Step43 // a term weighted by // $\left(\mathbf{K} // \lambda_t\right)^{-1}$ (on the - // velocity) and a mass matrix + // velocity) and a Laplace matrix // weighted by $\left(\mathbf{K} // \lambda_t\right)$ to be // generated, so the creation of - // the local matrix is done in two - // lines. Once the local matrix is - // ready (loop over rows and - // columns in the local matrix on - // each quadrature point), we get - // the local DoF indices and write - // the local information into the - // global matrix. We do this by - // directly applying the - // constraints + // the local matrix is done in + // essentially two lines. Since the + // material model functions at the + // top of this file only provide + // the inverses of the permeability + // and mobility, we have to compute + // $\mathbf K$ and $\lambda_t$ by + // hand from the given values, once + // per quadrature point. + // + // Once the + // local matrix is ready (loop over + // rows and columns in the local + // matrix on each quadrature + // point), we get the local DoF + // indices and write the local + // information into the global + // matrix. We do this by directly + // applying the constraints // (i.e. darcy_preconditioner_constraints) // that takes care of hanging node // and zero Dirichlet boundary @@ -1035,12 +1044,11 @@ namespace Step43 const unsigned int n_q_points = quadrature_formula.size(); std::vector > k_inverse_values (n_q_points); - Tensor<2,dim> k_value; std::vector old_saturation_values (n_q_points); - FullMatrix local_matrix (dofs_per_cell, dofs_per_cell); - std::vector local_dof_indices (dofs_per_cell); + FullMatrix local_matrix (dofs_per_cell, dofs_per_cell); + std::vector local_dof_indices (dofs_per_cell); std::vector > phi_u (dofs_per_cell); std::vector > grad_phi_p (dofs_per_cell); @@ -1069,11 +1077,10 @@ namespace Step43 for (unsigned int q=0; q permeability = invert(k_inverse_values[q]); for (unsigned int k=0; k::build_darcy_preconditioner} - // This function generates the inner - // preconditioners that are going to be used - // for the Schur complement block - // preconditioner. The preconditioners need - // to be regenerated at every saturation time - // step since they contain the independent - // variables saturation $S$ with time. + // After calling the above + // functions to assemble the + // preconditioner matrix, this + // function generates the inner + // preconditioners that are going + // to be used for the Schur + // complement block + // preconditioner. The + // preconditioners need to be + // regenerated at every saturation + // time step since they depend on + // the saturation $S$ that varies + // with time. // - // Next, we set up the preconditioner for the + // In here, we set up the + // preconditioner for the // velocity-velocity matrix - // $\mathbf{M}^{\mathbf{u}}$ and the Schur - // complement $\mathbf{S}$. As explained in - // the introduction, we are going to use an - // IC preconditioner based on a vector matrix - // (which is spectrally close to the Darcy - // matrix $\mathbf{M}^{\mathbf{u}}$) and - // another based on a Laplace vector matrix - // (which is spectrally close to the - // non-mixed pressure matrix - // $\mathbf{S}$). Usually, the - // TrilinosWrappers::PreconditionIC class can - // be seen as a good black-box preconditioner - // which does not need any special knowledge. + // $\mathbf{M}^{\mathbf{u}}$ and + // the Schur complement + // $\mathbf{S}$. As explained in + // the introduction, we are going + // to use an IC preconditioner + // based on the vector matrix + // $\mathbf{M}^{\mathbf{u}}$ and + // another based on the scalar + // Laplace matrix + // $\tilde\mathbf{S}^p$ (which is + // spectrally close to the Schur + // complement of the Darcy + // matrix). Usually, the + // TrilinosWrappers::PreconditionIC + // class can be seen as a good + // black-box preconditioner which + // does not need any special + // knowledge of the matrix + // structure and/or the operator + // that's behind it. template void TwoPhaseFlowProblem::build_darcy_preconditioner () @@ -1150,21 +1171,13 @@ namespace Step43 // // Regarding the technical details of // implementation, the procedures are similar - // to those in step-22 and step-31 we reset + // to those in step-22 and step-31. We reset // matrix and vector, create a quadrature // formula on the cells, and then create the - // respective FEValues object. For the update - // flags, we require basis function - // derivatives only in case of a full - // assembly, since they are not needed for - // the right hand side; as always, choosing - // the minimal set of flags depending on what - // is currently needed makes the call to - // FEValues::reinit further down in the - // program more efficient. + // respective FEValues object. // // There is one thing that needs to be - // commented �V since we have a separate + // commented: since we have a separate // finite element and DoFHandler for the // saturation, we need to generate a second // FEValues object for the proper evaluation @@ -1185,85 +1198,6 @@ namespace Step43 // the local matrix, right hand side as well // as the vector for the indices of the local // dofs compared to the global system. - // - // Note that in its present form, the - // function uses the permeability implemented - // in the RandomMedium::KInverse - // class. Switching to the single curved - // crack permeability function is as simple - // as just changing the namespace name. - // - // Here's the an important step: we have to - // get the values of the saturation function - // of the previous time step at the - // quadrature points. To this end, we can use - // the FEValues::get_function_values - // (previously already used in step-9, - // step-14 and step-15), a function that - // takes a solution vector and returns a list - // of function values at the quadrature - // points of the present cell. In fact, it - // returns the complete vector-valued - // solution at each quadrature point, - // i.e. not only the saturation but also the - // velocities and pressure: - // - // Next we need a vector that will contain - // the values of the saturation solution at - // the previous time level at the quadrature - // points to assemble the source term in the - // right hand side of the momentum - // equation. Let's call this vector - // old_saturation_values. - // - // The set of vectors we create next hold the - // evaluations of the basis functions as well - // as their gradients and symmetrized - // gradients that will be used for creating - // the matrices. Putting these into their own - // arrays rather than asking the FEValues - // object for this information each time it - // is needed is an optimization to accelerate - // the assembly process, see step-22 for - // details. - // - // The last two declarations are used to - // extract the individual blocks (velocity, - // pressure, saturation) from the total FE - // system. - // - // Now start the loop over all cells in the - // problem. We are working on two different - // DoFHandlers for this assembly routine, so - // we must have two different cell iterators - // for the two objects in use. This might - // seem a bit peculiar, since both the Darcy - // system and the saturation system use the - // same grid, but that's the only way to keep - // degrees of freedom in sync. The first - // statements within the loop are again all - // very familiar, doing the update of the - // finite element data as specified by the - // update flags, zeroing out the local arrays - // and getting the values of the old solution - // at the quadrature points. Then we are - // ready to loop over the quadrature points - // on the cell. - // - // Once this is done, we start the loop over - // the rows and columns of the local matrix - // and feed the matrix with the relevant - // products. - // - // The last step in the loop over all cells - // is to enter the local contributions into - // the global matrix and vector structures to - // the positions specified in - // local_dof_indices. Again, we let the - // ConstraintMatrix class do the insertion of - // the cell matrix elements to the global - // matrix, which already condenses the - // hanging node constraints. template void TwoPhaseFlowProblem::assemble_darcy_system () { @@ -1301,15 +1235,108 @@ namespace Step43 std::vector boundary_values (n_face_q_points); std::vector > k_inverse_values (n_q_points); + // Next we need a vector that + // will contain the values of the + // saturation solution at the + // previous time level at the + // quadrature points to assemble + // the saturation dependent + // coefficients in the Darcy + // equations. + // + // The set of vectors we create + // next hold the evaluations of + // the basis functions as well as + // their gradients that will be + // used for creating the + // matrices. Putting these into + // their own arrays rather than + // asking the FEValues object for + // this information each time it + // is needed is an optimization + // to accelerate the assembly + // process, see step-22 for + // details. + // + // The last two declarations are used to + // extract the individual blocks (velocity, + // pressure, saturation) from the total FE + // system. std::vector old_saturation_values (n_q_points); - std::vector > phi_u (dofs_per_cell); - std::vector div_phi_u (dofs_per_cell); - std::vector phi_p (dofs_per_cell); - - const FEValuesExtractors::Vector velocities (0); - const FEValuesExtractors::Scalar pressure (dim); - + std::vector > phi_u (dofs_per_cell); + std::vector div_phi_u (dofs_per_cell); + std::vector phi_p (dofs_per_cell); + + const FEValuesExtractors::Vector velocities (0); + const FEValuesExtractors::Scalar pressure (dim); + + // Now start the loop over all + // cells in the problem. We are + // working on two different + // DoFHandlers for this assembly + // routine, so we must have two + // different cell iterators for + // the two objects in use. This + // might seem a bit peculiar, but + // since both the Darcy system + // and the saturation system use + // the same grid we can assume + // that the two iterators run in + // sync over the cells of the two + // DoFHandler objects. + // + // The first statements within + // the loop are again all very + // familiar, doing the update of + // the finite element data as + // specified by the update flags, + // zeroing out the local arrays + // and getting the values of the + // old solution at the quadrature + // points. At this point we also + // have to get the values of the + // saturation function of the + // previous time step at the + // quadrature points. To this + // end, we can use the + // FEValues::get_function_values + // (previously already used in + // step-9, step-14 and step-15), + // a function that takes a + // solution vector and returns a + // list of function values at the + // quadrature points of the + // present cell. In fact, it + // returns the complete + // vector-valued solution at each + // quadrature point, i.e. not + // only the saturation but also + // the velocities and pressure. + // + // Then we are ready to loop over + // the quadrature points on the + // cell to do the + // integration. The formula for + // this follows in a + // straightforward way from what + // has been discussed in the + // introduction. + // + // Once this is done, we start the loop over + // the rows and columns of the local matrix + // and feed the matrix with the relevant + // products. + // + // The last step in the loop over all cells + // is to enter the local contributions into + // the global matrix and vector structures to + // the positions specified in + // local_dof_indices. Again, we let the + // ConstraintMatrix class do the insertion of + // the cell matrix elements to the global + // matrix, which already condenses the + // hanging node constraints. typename DoFHandler::active_cell_iterator cell = darcy_dof_handler.begin_active(), endc = darcy_dof_handler.end(); @@ -1415,7 +1442,7 @@ namespace Step43 template void TwoPhaseFlowProblem::assemble_saturation_system () { - if ( rebuild_saturation_matrix == true ) + if (rebuild_saturation_matrix == true) { saturation_matrix = 0; assemble_saturation_matrix ();