From: Wolfgang Bangerth Date: Mon, 20 Feb 2012 15:19:56 +0000 (+0000) Subject: Go through the rest. X-Git-Tag: v8.0.0~2863 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=b51d90cba355d9eed907783d3cfbe12e00a20277;p=dealii.git Go through the rest. git-svn-id: https://svn.dealii.org/trunk@25125 0785d39b-7218-0410-832d-ea1e28bc413d --- diff --git a/deal.II/examples/step-44/step-44.cc b/deal.II/examples/step-44/step-44.cc index 0641f1335e..560a4fd7a9 100644 --- a/deal.II/examples/step-44/step-44.cc +++ b/deal.II/examples/step-44/step-44.cc @@ -3063,16 +3063,16 @@ namespace Step44 cell->get_dof_indices(data.local_dof_indices); // We now extract the contribution of - // the dof associated with the current cell + // the dofs associated with the current cell // to the global stiffness matrix. // The discontinuous nature of the $\widetilde{p}$ // and $\widetilde{J}$ // interpolations mean that their is no // coupling of the local contributions at the // global level. This is not the case with the u dof. - // In other words, k_Jp, k_pJ and k_JJ, when extracted + // In other words, $k_{Jp}, k_{pJ} and k_{JJ}$, when extracted // from the global stiffness matrix are the element - // contributions. This is not the case for k_uu. + // contributions. This is not the case for $k_{uu}$. // Currently the matrix corresponding to // the dof associated with the current element @@ -3089,15 +3089,15 @@ namespace Step44 // | k_pu | 0 | k_pJ^-1 | // | 0 | k_Jp | k_JJ | // @endcode - // with k_con = k_uu + k_bbar + // with $k_{con} = k_{uu} + k_{\bar b}$ // where - // k_bbar = k_up k_bar k_pu + // $k_{\bar b} = k_{up} k_{bar} k_{pu}$ // and - // k_bar = k_Jp^{-1} k_JJ kpJ^{-1} + // $k_{bar} = k_{Jp}^{-1} k_{JJ} k_{pJ}^{-1}$. // // At this point, we need to take note of // the fact that global data already exists - // in the K_uu, K_pt, K_tp subblocks. So + // in the $K_{uu}, K_{pt}, K_{tp}$ sub-blocks. So // if we are to modify them, we must // account for the data that is already // there (i.e. simply add to it or remove @@ -3106,7 +3106,7 @@ namespace Step44 // operation, we need to take this into // account // - // For the K_uu block in particular, this + // For the $K_{uu}$ block in particular, this // means that contributions have been added // from the surrounding cells, so we need // to be careful when we manipulate this @@ -3114,38 +3114,40 @@ namespace Step44 // subblocks. // // This is the strategy we will employ to - // get the subblocks we want: k_store: - // Since we don't have access to k_{uu}, + // get the subblocks we want: + // + // - $k_{store}$: + // Since we don't have access to $k_{uu}$, // but we know its contribution is added to - // the global K_{uu} matrix, we just want + // the global $K_{uu}$ matrix, we just want // to add the element wise - // static-condensation k_bbar. + // static-condensation $k_{\bar b}$. // - // - $k_{pJ}^-1$: Similarly, k_pJ exists in + // - $k_{pJ}^{-1}$: Similarly, $k_{pJ}$ exists in // the subblock. Since the copy // operation is a += operation, we // need to subtract the existing - // k_pJ submatrix in addition to + // $k_{pJ}$ submatrix in addition to // "adding" that which we wish to // replace it with. // - // - $k_{Jp}^-1$: Since the global matrix + // - $k_{Jp}^{-1}$: Since the global matrix // is symmetric, this block is the // same as the one above and we - // can simply use k_pJ^-1 as a + // can simply use $k_{pJ}^{-1}$ as a // substitute for this one // // We first extract element data from the // system matrix. So first we get the // entire subblock for the cell, then - // extract k for the dof associated with + // extract $k$ for the dofs associated with // the current element AdditionalTools::extract_submatrix(data.local_dof_indices, data.local_dof_indices, tangent_matrix, data.k_orig); - // and next the local matrices for k_pu, - // k_pJ and k_JJ + // and next the local matrices for $k_{pu}$, + // $k_{pJ}$ and $k_{JJ}$ AdditionalTools::extract_submatrix(element_indices_p, element_indices_u, data.k_orig, @@ -3159,30 +3161,30 @@ namespace Step44 data.k_orig, data.k_JJ); - // To get the inverse of k_pJ, we invert it + // To get the inverse of $k_{pJ}$, we invert it // directly. This operation is relatively - // inexpensive since k_pJ is + // inexpensive since $k_{pJ}$ is // block-diagonal. data.k_pJ_inv.invert(data.k_pJ); // Now we can make condensation terms to - // add to the k_uu block and put them in - // the cell local matrix A = k_pJ^-1 k_pu + // add to the $k_{uu}$ block and put them in + // the cell local matrix $A = k_pJ^{-1} k_{pu}$: data.k_pJ_inv.mmult(data.A, data.k_pu); - // B = k_JJ k_pJ^-1 k_pu + // $B = k_{JJ} k_{pJ}^{-1} k_{pu}$ data.k_JJ.mmult(data.B, data.A); - // C = k_Jp^-1 k_JJ k_pJ^-1 k_pu + // $C = k_{Jp}^{-1} k_{JJ} k_{pJ}^{-1} k_{pu}$ data.k_pJ_inv.Tmmult(data.C, data.B); - // k_bbar = k_up k_Jp^-1 k_JJ k_pJ^-1 k_pu + // $k_{\bar b} = k_{up} k_{Jp}^{-1} k_{JJ} k_{pJ}^{-1} k_{pu}$ data.k_pu.Tmmult(data.k_bbar, data.C); AdditionalTools::replace_submatrix(element_indices_u, element_indices_u, data.k_bbar, data.cell_matrix); - // Next we place k_{pJ}^-1 in the k_{pJ} + // Next we place $k_{pJ}^{-1}$ in the $k_{pJ}$ // block for post-processing. Note again - // that we need to remove the k_pJ + // that we need to remove the k_{pJ} // contribution that already exists there. data.k_pJ_inv.add(-1.0, data.k_pJ); AdditionalTools::replace_submatrix(element_indices_p, @@ -3193,7 +3195,7 @@ namespace Step44 // @sect4{Solid::output_results} // Here we present how the results are written to file to be viewed -// using ParaView. The method is similar to that shown in previous +// using ParaView or Visit. The method is similar to that shown in previous // tutorials so will not be discussed in detail. template void Solid::output_results() const @@ -3216,18 +3218,20 @@ namespace Step44 data_component_interpretation); // Since we are dealing with a large - // deformation problem, it would be nice to - // display the result on a displaced grid! - // The MappingQEulerian class linked with - // the DataOut class provides an interface - // through which this can be achieved - // without physically moving the grid - // points ourselves. We first need to copy - // the solution to a temporary vector and - // then create the Eulerian mapping. We - // also specify the polynomial degree to - // the DataOut object in order to produce a - // more refined output data set when higher + // deformation problem, it would be nice + // to display the result on a displaced + // grid! The MappingQEulerian class + // linked with the DataOut class provides + // an interface through which this can be + // achieved without physically moving the + // grid points in the Triangulation + // object ourselves. We first need to + // copy the solution to a temporary + // vector and then create the Eulerian + // mapping. We also specify the + // polynomial degree to the DataOut + // object in order to produce a more + // refined output data set when higher // order polynomials are used. Vector soln(solution_n.size()); for (unsigned int i = 0; i < soln.size(); ++i)