From: Martin Kronbichler Date: Thu, 23 Oct 2008 15:40:34 +0000 (+0000) Subject: Now step-31 is fully commented. However, one should look them through once again... X-Git-Tag: v8.0.0~8491 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=b6143776d3addd6f51d68b5971e04e0c986cdacf;p=dealii.git Now step-31 is fully commented. However, one should look them through once again... git-svn-id: https://svn.dealii.org/trunk@17324 0785d39b-7218-0410-832d-ea1e28bc413d --- diff --git a/deal.II/examples/step-31/step-31.cc b/deal.II/examples/step-31/step-31.cc index b95b43348f..80fd1c4016 100644 --- a/deal.II/examples/step-31/step-31.cc +++ b/deal.II/examples/step-31/step-31.cc @@ -1144,12 +1144,17 @@ void BoussinesqFlowProblem::setup_dofs () stokes_preconditioner_matrix.collect_sizes(); } - // The generation of the - // temperature matrix follows the + // The creation of the temperature + // matrix (or, rather, matrices, + // since we provide a temperature + // mass matrix and a temperature + // stiffness matrix, that will be + // added together for time + // discretization) follows the // generation of the Stokes matrix // – except that it is much - // easier since we do not need to - // take care of any blocks. + // easier here since we do not need + // to take care of any blocks. { temperature_mass_matrix.clear (); temperature_stiffness_matrix.clear (); @@ -1165,14 +1170,13 @@ void BoussinesqFlowProblem::setup_dofs () } // As last action in this function, - // we need to set the vectors for - // the solution $\mathbf u$ and - // $T^k$, the old solutions - // $T^{k-1}$ and $T^{k-2}$ - // (required for time stepping) and - // the system right hand sides to - // their correct sizes and block - // structure: + // we set the vectors for the + // solution $\mathbf u$ and $T^k$, + // the old solutions $T^{k-1}$ and + // $T^{k-2}$ (required for time + // stepping) and the system right + // hand sides to their correct + // sizes and block structure: stokes_solution.reinit (stokes_block_sizes); stokes_rhs.reinit (stokes_block_sizes); @@ -2082,17 +2086,76 @@ void BoussinesqFlowProblem::assemble_temperature_system () - // @sect4{BoussinesqFlowProblem::solve} + // @sect4{BoussinesqFlowProblem::solve} + // + // This function solves the linear + // equation systems. According to + // the introduction, we start with + // the Stokes system, where we need + // to generate our block Schur + // preconditioner. Since all the + // relevant actions are implemented + // in the class + // BlockSchurPreconditioner, + // all we have to do is to + // initialize the class + // appropriately. What we need to + // pass down is an + // InverseMatrix object + // for the pressure mass matrix, + // which we set up using the + // respective class together with + // the IC preconditioner we already + // generated, and the AMG + // preconditioner for the + // velocity-velocity matrix. Note + // that both + // Mp_preconditioner and + // Amg_preconditioner are + // only pointers, so we use + // * to pass down the + // actual preconditioner objects. + // + // Once the preconditioner is + // ready, we create a GMRES solver + // for the block system. Since we + // are working with Trilinos data + // structures, we have to set the + // respective template argument in + // the solver. GMRES needs to + // internally store temporary + // vectors for each iteration (see + // even the discussion in the + // results section of step-22) + // – the more vectors it can + // use, the better it will + // generally perform. To let memory + // demands not increase to much, we + // set the number of vectors to + // 100. This means that up to 100 + // solver iterations, every + // temporary vector can be + // stored. If the solver needs to + // iterate more often to get the + // specified tolerance, it will + // work on a reduced set of vectors + // by restarting at every 100 + // iterations. Then, we solve the + // system and distribute the + // constraints in the Stokes + // system, i.e. hanging nodes and + // no-flux boundary condition, in + // order to have the appropriate + // solution values even at + // constrained dofs. Finally, we + // write the number of iterations + // to the screen. template void BoussinesqFlowProblem::solve () { std::cout << " Solving..." << std::endl; { - // Set up inverse matrix for - // pressure mass matrix. Then, - // create the Block Schur - // preconditioner object. LinearSolvers::InverseMatrix mp_inverse (stokes_preconditioner_matrix.block(1,1), *Mp_preconditioner); @@ -2101,8 +2164,6 @@ void BoussinesqFlowProblem::solve () TrilinosWrappers::PreconditionIC> preconditioner (stokes_matrix, mp_inverse, *Amg_preconditioner); - // Set up GMRES solver and - // solve. SolverControl solver_control (stokes_matrix.m(), 1e-6*stokes_rhs.l2_norm()); @@ -2111,21 +2172,47 @@ void BoussinesqFlowProblem::solve () gmres.solve(stokes_matrix, stokes_solution, stokes_rhs, preconditioner); + stokes_constraints.distribute (stokes_solution); + std::cout << " " << solver_control.last_step() << " GMRES iterations for Stokes subsystem." << std::endl; - - // Produce a constistent solution - // field (we can't do this on the 'up' - // vector since it does not have the - // temperature component, but - // hanging_node_constraints has - // constraints also for the - // temperature vector) - stokes_constraints.distribute (stokes_solution); } + // Once we know the Stokes + // solution, we can determine the + // new time step from the maximal + // velocity. We have to do this to + // satisfy the CFL condition since + // convection terms are treated + // explicitly in the temperature + // equation, as discussed in the + // introduction. Next we set up the + // temperature system and the right + // hand side using the function + // assemble_temperature_system(). Knowing + // the matrix and right hand side + // of the temperature equation, we + // set up a preconditioner and a + // solver. The temperature matrix + // is a mass matrix plus a Laplace + // matrix times a small number, the + // time step. Hence, the mass + // matrix dominates and we get a + // reasonable good preconditioner + // by simple means, namely SSOR. We + // set the relaxation parameter to + // 1.2. As a solver, we choose the + // conjugate gradient method CG. As + // before, we tell the solver to + // use Trilinos vectors via the + // template argument + // TrilinosWrappers::Vector + // at construction. Finally, we + // solve, distribute the hanging + // node constraints and write out + // the number of iterations. old_time_step = time_step; time_step = 1./(1.6*dim*std::sqrt(1.*dim)) / temperature_degree * @@ -2140,7 +2227,7 @@ void BoussinesqFlowProblem::solve () SolverControl solver_control (temperature_matrix.m(), 1e-8*temperature_rhs.l2_norm()); - SolverCG cg (solver_control); + SolverCG cg (solver_control); TrilinosWrappers::PreconditionSSOR preconditioner; preconditioner.initialize (temperature_matrix, 1.2); @@ -2148,7 +2235,6 @@ void BoussinesqFlowProblem::solve () cg.solve (temperature_matrix, temperature_solution, temperature_rhs, preconditioner); - // produce a consistent temperature field temperature_constraints.distribute (temperature_solution); std::cout << " " @@ -2156,6 +2242,11 @@ void BoussinesqFlowProblem::solve () << " CG iterations for temperature." << std::endl; + // In the end of this function, we + // step through the vector and read + // out the maximum and minimum + // temperature value, which we also + // want to output. double min_temperature = temperature_solution(0), max_temperature = temperature_solution(0); for (unsigned int i=0; i::solve () - // @sect4{BoussinesqFlowProblem::output_results} + // @sect4{BoussinesqFlowProblem::output_results} + // + // This function writes the + // solution to a vtk output file + // for visualization, which is done + // every tenth time step. This is + // usually a quite simple task, + // since the deal.II library + // provides functions that do + // almost all the job for us. In + // this case, the situation is a + // bit more complicated, since we + // want to visualize both the + // Stokes solution and the + // temperature as one data set, but + // we have done all the + // calculations based on two + // different. The way we're going + // to achieve this recombination is + // to create a joint DoFHandler + // that collects both components, + // the Stokes solution and the + // temperature solution. This can + // be nicely done by combining the + // finite elements from the two + // systems to form one FESystem, + // and let this collective system + // define a new DoFHandler + // object. To be sure that + // everything was done correctly, + // we perform a sanity check that + // ensures that we got all the dofs + // from both Stokes and temperature + // even in the combined system. + // + // Next, we create a vector that + // collects the actual solution + // values (up to now, we've just + // provided the tools for it + // without reading any data. Since + // this vector is only going to be + // used for output, we create it as + // a deal.II vector that nicely + // cooperate with the data output + // classes. Remember that we used + // Trilinos vectors for assembly + // and solving. template void BoussinesqFlowProblem::output_results () const { @@ -2191,6 +2328,42 @@ void BoussinesqFlowProblem::output_results () const Vector joint_solution (joint_dof_handler.n_dofs()); + // Unfortunately, there is no + // straight-forward relation that + // tells us how to sort Stokes and + // temperature vector into the + // joint vector. The way we can get + // around this trouble is to rely + // on the information collected in + // the FESystem. For each dof in a + // cell, the joint finite element + // knows to which equation + // component (velocity component, + // pressure, or temperature) it + // belongs – that's the + // information we need! So we step + // through all cells (as a + // complication, we need to create + // iterations for the cells in the + // Stokes system and the + // temperature system, too, even + // though they are the same in all + // the three cases), and for each + // joint cell dof, we read out that + // component using the function + // joint_fe.system_to_base_index(i).second. We + // also need to keep track whether + // we're on a Stokes dof or a + // temperature dof, which is + // contained in + // joint_fe.system_to_base_index(i).first.first. Eventually, + // the dof_indices data structures + // on either of the three systems + // tell us how the relation between + // global vector and local dofs + // looks like on the present cell, + // which concludes this tedious + // work. { std::vector local_joint_dof_indices (joint_fe.dofs_per_cell); std::vector local_stokes_dof_indices (stokes_fe.dofs_per_cell); @@ -2231,7 +2404,31 @@ void BoussinesqFlowProblem::output_results () const } } - + // Next, we proceed as we've done + // in step-22. We create solution + // names (that are going to appear + // in the visualization program for + // the individual components), and + // attach the joint dof handler to + // a DataOut object. The first + // dim components are the + // vector velocity, and then we + // have pressure and + // temperature. This information is + // read out using the + // DataComponentInterpretation + // helper class. Next, we attach + // the solution values together + // with the names of its components + // to the output object, and build + // patches according to the degree + // of freedom, which are (sub-) + // elements that describe the data + // for visualization + // programs. Finally, we set a file + // name (that includes the time + // step number) and write the vtk + // file. std::vector joint_solution_names (dim, "velocity"); joint_solution_names.push_back ("p"); joint_solution_names.push_back ("T"); @@ -2261,7 +2458,44 @@ void BoussinesqFlowProblem::output_results () const - // @sect4{BoussinesqFlowProblem::refine_mesh} + // @sect4{BoussinesqFlowProblem::refine_mesh} + // + // This function takes care of the + // adaptive mesh refinement. The + // three tasks this function + // performs is to first find out + // which cells to refine/coarsen, + // then to actually do the + // refinement and eventually + // transfer the solution vectors + // between the two different + // grids. The first task is simply + // achieved by using the + // well-established Kelly error + // estimator on the temperature (it + // is the temperature we're mainly + // interested in for this program, + // and we need to be accurate in + // regions of high temperature + // gradients, also to not have too + // much numerical diffusion). The + // second task is to actually do + // the remeshing. That involves + // only basic functions as well, + // such as the + // refine_and_coarsen_fixed_fraction + // that refines the 80 precent of + // the cells which have the largest + // estimated error and coarsens the + // 10 precent with the smallest + // error. For reasons of limited + // computer ressources, we have to + // set a limit on the maximum + // refinement level. We do this + // after the refinement indicator + // has been applied to the cells, + // and simply unselect cells with + // too high grid level. template void BoussinesqFlowProblem::refine_mesh (const unsigned int max_grid_level) { @@ -2281,7 +2515,40 @@ void BoussinesqFlowProblem::refine_mesh (const unsigned int max_grid_level) cell = triangulation.begin_active(max_grid_level); cell != triangulation.end(); ++cell) cell->clear_refine_flag (); - + + // Before we can apply the mesh + // refinement, we have to prepare + // the solution vectors that should + // be transfered to the new grid + // (we will lose the old grid once + // we have done the + // refinement). What we definetely + // need are the current and the old + // temperature (BDF-2 time stepping + // requires two old + // solutions). Since the + // SolutionTransfer objects only + // support to transfer one object + // per dof handler, we need to + // collect the two temperature + // solutions in one data + // structure. Moreover, we choose + // to transfer the Stokes solution, + // too. The reason for doing so is + // that the Stokes solution will + // not change dramatically from + // step to step, so we get a good + // initial guess for the linear + // solver when we reuse old data, + // which reduces the number of + // needed solver iterations. Next, + // we initialize the + // SolutionTransfer objects, by + // attaching them to the old dof + // handler. With this at place, we + // can prepare the triangulation + // and the data vectors for + // refinement (in this order). std::vector x_temperature (2); x_temperature[0].reinit (temperature_solution); x_temperature[0] = temperature_solution; @@ -2297,6 +2564,31 @@ void BoussinesqFlowProblem::refine_mesh (const unsigned int max_grid_level) temperature_trans.prepare_for_coarsening_and_refinement(x_temperature); stokes_trans.prepare_for_coarsening_and_refinement(x_stokes); + // Now everything is ready, so do + // the refinement and recreate the + // dof structure on the new grid, + // and initialize the matrix + // structures and the new vectors + // in the setup_dofs + // function. Next, we actually + // perform the interpolation of the + // solutions between the grids. We + // create another copy of temporary + // vectors for temperature (now + // according to the new grid), and + // let the interpolate function do + // the job. Then, the new vector is + // written into the respective + // vector. For the Stokes vector, + // everything is just the same + // – except that we do not + // need another temporary vector + // since we just interpolate a + // single vector. In the end, we + // have to tell the program that + // the matrices and preconditioners + // need to be regenerated, since + // the mesh has changed. triangulation.execute_coarsening_and_refinement (); setup_dofs (); @@ -2317,7 +2609,35 @@ void BoussinesqFlowProblem::refine_mesh (const unsigned int max_grid_level) - // @sect4{BoussinesqFlowProblem::run} + // @sect4{BoussinesqFlowProblem::run} + // + // This function performs all the + // essential steps in the + // Boussinesq program. It starts by + // setting up a grid (depending on + // the spatial dimension, we choose + // some different level of initial + // refinement and additional + // adative refinement steps, and + // then create a cube in + // dim dimensions and set + // up the dofs for the first + // time. Since we want to start the + // time stepping already with an + // adaptively refined grid, we + // perform some pre-refinement + // steps, consisting of all + // assembly, solution and + // refinement, but without actually + // advancing in time. + // + // Before we start, we project the + // initial values to the grid and + // obtain the first data for the + // old_temperature_solution + // vector. Then, we initialize time + // step number and time step and + // start the time loop. template void BoussinesqFlowProblem::run () { @@ -2352,6 +2672,28 @@ void BoussinesqFlowProblem::run () << ", dt=" << time_step << std::endl; + // The first steps in the time loop + // are all obvious – we + // assemble the Stokes system, the + // preconditioner, the temperature + // matrix (matrices and + // preconditioner do actually only + // change in case we've remeshed + // before), and then do the + // solve. The solution is then + // written to screen. Before going + // on with the next time step, we + // have to check whether we should + // first finish the pre-refinement + // steps or if we should remesh + // (every fifth time step), + // refining up to a level that is + // consistent with initial + // refinement and pre-refinement + // steps. Last in the loop is to + // advance the solutions, i.e. to + // copy the temperature solution to + // the next "older" time level. assemble_stokes_system (); build_stokes_preconditioner (); assemble_temperature_matrix (); @@ -2379,12 +2721,26 @@ void BoussinesqFlowProblem::run () old_old_temperature_solution = old_temperature_solution; old_temperature_solution = temperature_solution; } + // Do all the above until we arrive + // at time 100. while (time <= 100); } - // @sect3{The main function} + // @sect3{The main function} + // + // The main function looks almost + // the same as in all other + // programs. The only difference is + // that Trilinos wants to get the + // arguments from calling the + // function (argc and argv) in + // order to correctly set up the + // MPI system in case we use those + // compilers (even though this + // program is only meant to be run + // in serial). int main (int argc, char *argv[]) { #ifdef DEAL_II_COMPILER_SUPPORTS_MPI