From: bangerth Date: Wed, 8 Feb 2012 15:41:59 +0000 (+0000) Subject: Last efforts in cleaning up and documenting this program. There are X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=b6ab42688c5281a4e9d32c28eb8d393a97f642d1;p=dealii-svn.git Last efforts in cleaning up and documenting this program. There are still a couple of places left, but by and large it's in good shape. git-svn-id: https://svn.dealii.org/trunk@25015 0785d39b-7218-0410-832d-ea1e28bc413d --- diff --git a/deal.II/examples/step-43/step-43.cc b/deal.II/examples/step-43/step-43.cc index a81f03c08b..20feab83c0 100644 --- a/deal.II/examples/step-43/step-43.cc +++ b/deal.II/examples/step-43/step-43.cc @@ -568,11 +568,8 @@ namespace Step43 const FEFaceValues &darcy_fe_face_values, const std::vector &local_dof_indices); void solve (); - void compute_refinement_indicators (const TrilinosWrappers::Vector &predicted_saturation_solution, - Vector &refinement_indicators) const; - void refine_mesh (const unsigned int min_grid_level, - const unsigned int max_grid_level, - const Vector &indicator); + void refine_mesh (const unsigned int min_grid_level, + const unsigned int max_grid_level); void output_results () const; // We follow with a number of @@ -590,10 +587,7 @@ namespace Step43 const std::vector > &present_darcy_values, const double global_max_u_F_prime, const double global_S_variation, - const double cell_diameter, - const double old_time_step, - const double viscosity, - const double porosity) const; + const double cell_diameter) const; // This all is followed by the @@ -712,14 +706,14 @@ namespace Step43 FE_Q(darcy_degree), 1), darcy_dof_handler (triangulation), - saturation_degree (degree), + saturation_degree (degree+1), saturation_fe (saturation_degree), saturation_dof_handler (triangulation), saturation_refinement_threshold (0.5), time (0), - end_time (250), + end_time (10), current_macro_time_step (0), old_macro_time_step (0), @@ -1578,10 +1572,9 @@ namespace Step43 const unsigned int dofs_per_cell = saturation_dof_handler.get_fe().dofs_per_cell; std::vector local_dof_indices (dofs_per_cell); - const double global_max_u_F_prime = get_max_u_F_prime (); - const std::pair - global_S_range = get_extrapolated_saturation_range (); - const double global_S_variation = global_S_range.second - global_S_range.first; + const double global_max_u_F_prime = get_max_u_F_prime (); + const std::pair global_S_range = get_extrapolated_saturation_range (); + const double global_S_variation = global_S_range.second - global_S_range.first; typename DoFHandler::active_cell_iterator cell = saturation_dof_handler.begin_active(), @@ -1666,10 +1659,7 @@ namespace Step43 present_darcy_solution_values, global_max_u_F_prime, global_S_variation, - saturation_fe_values.get_cell()->diameter(), - old_time_step, - viscosity, - porosity); + saturation_fe_values.get_cell()->diameter()); Vector local_rhs (dofs_per_cell); @@ -1834,9 +1824,9 @@ namespace Step43 darcy_constraints.distribute (darcy_solution); - std::cout << " " + std::cout << " ..." << solver_control.last_step() - << " GMRES iterations for Darcy (pressure-velocity) system." + << " GMRES iterations." << std::endl; } @@ -1900,7 +1890,8 @@ namespace Step43 if (max_u_F_prime > 0) time_step = porosity * GridTools::minimal_cell_diameter(triangulation) / - max_u_F_prime / 12; + saturation_degree / + max_u_F_prime / 50; else time_step = end_time - time; } @@ -1963,164 +1954,67 @@ namespace Step43 saturation_constraints.distribute (saturation_solution); project_back_saturation (); - std::cout << " " + std::cout << " ..." << solver_control.last_step() - << " CG iterations for saturation." + << " CG iterations." << std::endl; } } - // @sect3{Tool functions} - - // @sect4{TwoPhaseFlowProblem::determine_whether_to_solve_for_pressure_and_velocity} - - // This function is to implement the a - // posteriori criterion for - // adaptive operator splitting. As mentioned - // in step-31, we use two FEValues objects - // initialized with two cell iterators that - // we walk in parallel through the two - // DoFHandler objects associated with the - // same Triangulation object; for these two - // FEValues objects, we use of course the - // same quadrature objects so that we can - // iterate over the same set of quadrature - // points, but each FEValues object will get - // update flags only according to what it - // actually needs to compute. - // - // In addition to this, if someone doesn't - // want to perform their simulation with - // operator splitting, they can lower the - // criterion value (default value is $5.0$) - // down to zero ad therefore numerical - // algorithm becomes the original IMPES - // method. - template - bool - TwoPhaseFlowProblem::determine_whether_to_solve_for_pressure_and_velocity () const - { - if (timestep_number <= 2) - return true; - - const QGauss quadrature_formula(saturation_degree+2); - const unsigned int n_q_points = quadrature_formula.size(); - - FEValues fe_values (saturation_fe, quadrature_formula, - update_values | update_quadrature_points); - - std::vector old_saturation_after_solving_pressure (n_q_points); - std::vector present_saturation (n_q_points); - - std::vector > k_inverse_values (n_q_points); - - double max_global_aop_indicator = 0.0; - - typename DoFHandler::active_cell_iterator - cell = saturation_dof_handler.begin_active(), - endc = saturation_dof_handler.end(); - for (; cell!=endc; ++cell) - { - double max_local_mobility_reciprocal_difference = 0.0; - double max_local_permeability_inverse_l1_norm = 0.0; - - fe_values.reinit(cell); - fe_values.get_function_values (saturation_matching_last_computed_darcy_solution, - old_saturation_after_solving_pressure); - fe_values.get_function_values (saturation_solution, - present_saturation); - - k_inverse.value_list (fe_values.get_quadrature_points(), - k_inverse_values); - - for (unsigned int q=0; q AOS_threshold ) - { - return true; - } - else - { - std::cout << " Activating adaptive operating splitting" << std::endl; - return false; - } - } - - - - // @sect3{TwoPhaseFlowProblem::compute_refinement_indicators} + // @sect3{TwoPhaseFlowProblem::refine_mesh} - // This function is to to compute the - // refinement indicator discussed in the - // introduction for each cell and its - // implementation is similar to that - // contained in step-33. There is no need to - // repeat descriptions about it. + // The next function does the + // refinement and coarsening of the + // mesh. It does its work in three + // blocks: (i) Compute refinement + // indicators by looking at the + // gradient of a solution vector + // extrapolated linearly from the + // previous two using the + // respective sizes of the time + // step (or taking the only + // solution we have if this is the + // first time step). (ii) Flagging + // those cells for refinement and + // coarsening where the gradient is + // larger or smaller than a certain + // threshold, preserving minimal + // and maximal levels of mesh + // refinement. (iii) Transfering + // the solution from the old to the + // new mesh. None of this is + // particularly difficult. template void TwoPhaseFlowProblem:: - compute_refinement_indicators (const TrilinosWrappers::Vector &predicted_saturation_solution, - Vector &refinement_indicators) const + refine_mesh (const unsigned int min_grid_level, + const unsigned int max_grid_level) { - const QMidpoint quadrature_formula; - FEValues fe_values (saturation_fe, quadrature_formula, update_gradients); - std::vector > grad_saturation (1); - - double max_refinement_indicator = 0.0; - - typename DoFHandler::active_cell_iterator - cell = saturation_dof_handler.begin_active(), - endc = saturation_dof_handler.end(); - for (unsigned int cell_no=0; cell!=endc; ++cell, ++cell_no) - { - fe_values.reinit(cell); - fe_values.get_function_grads (predicted_saturation_solution, - grad_saturation); - - refinement_indicators(cell_no) = grad_saturation[0].norm(); - max_refinement_indicator = std::max(max_refinement_indicator, - refinement_indicators(cell_no)); - } - } + Vector refinement_indicators (triangulation.n_active_cells()); + { + const QMidpoint quadrature_formula; + FEValues fe_values (saturation_fe, quadrature_formula, update_gradients); + std::vector > grad_saturation (1); + TrilinosWrappers::Vector extrapolated_saturation_solution (saturation_solution); + if (timestep_number != 0) + extrapolated_saturation_solution.sadd ((1. + time_step/old_time_step), + time_step/old_time_step, old_saturation_solution); + typename DoFHandler::active_cell_iterator + cell = saturation_dof_handler.begin_active(), + endc = saturation_dof_handler.end(); + for (unsigned int cell_no=0; cell!=endc; ++cell, ++cell_no) + { + fe_values.reinit(cell); + fe_values.get_function_grads (extrapolated_saturation_solution, + grad_saturation); - // @sect3{TwoPhaseFlowProblem::refine_mesh} + refinement_indicators(cell_no) = grad_saturation[0].norm(); + } + } - // This function is to decide if every cell - // is refined or coarsened with computed - // refinement indicators in the previous - // function and do the interpolations of the - // solution vectors. The main difference from - // the previous time-dependent tutorials is - // that there is no need to do the solution - // interpolations if we don't have any cell - // that is refined or coarsend, saving some - // additional computing time. - template - void - TwoPhaseFlowProblem:: - refine_mesh (const unsigned int min_grid_level, - const unsigned int max_grid_level, - const Vector &refinement_indicators) - { - //TODO: use a useful refinement criterion, in much the same way as we do in step-31 { typename DoFHandler::active_cell_iterator cell = saturation_dof_handler.begin_active(), @@ -2136,124 +2030,66 @@ namespace Step43 cell->set_refine_flag(); else if ((static_cast(cell->level()) > min_grid_level) && - (std::fabs(refinement_indicators(cell_no)) < 0.75 * saturation_refinement_threshold)) + (std::fabs(refinement_indicators(cell_no)) < 0.5 * saturation_refinement_threshold)) cell->set_coarsen_flag(); } } triangulation.prepare_coarsening_and_refinement (); - unsigned int number_of_cells_refine = 0; - unsigned int number_of_cells_coarsen = 0; - { - typename DoFHandler::active_cell_iterator - cell = saturation_dof_handler.begin_active(), - endc = saturation_dof_handler.end(); - - for (; cell!=endc; ++cell) - if (cell->refine_flag_set()) - ++number_of_cells_refine; - else - if (cell->coarsen_flag_set()) - ++number_of_cells_coarsen; - } + std::vector x_saturation (3); + x_saturation[0] = saturation_solution; + x_saturation[1] = old_saturation_solution; + x_saturation[2] = saturation_matching_last_computed_darcy_solution; - std::cout << " " - << number_of_cells_refine - << " cell(s) are going to be refined." - << std::endl; - std::cout << " " - << number_of_cells_coarsen - << " cell(s) are going to be coarsened." - << std::endl; + std::vector x_darcy (2); + x_darcy[0] = last_computed_darcy_solution; + x_darcy[1] = second_last_computed_darcy_solution; - std::cout << std::endl; + SolutionTransfer saturation_soltrans(saturation_dof_handler); - if ( number_of_cells_refine > 0 || number_of_cells_coarsen > 0 ) - { - std::vector x_saturation (3); - x_saturation[0] = saturation_solution; - x_saturation[1] = old_saturation_solution; - x_saturation[2] = saturation_matching_last_computed_darcy_solution; + SolutionTransfer darcy_soltrans(darcy_dof_handler); - std::vector x_darcy (2); - x_darcy[0] = last_computed_darcy_solution; - x_darcy[1] = second_last_computed_darcy_solution; - SolutionTransfer saturation_soltrans(saturation_dof_handler); + triangulation.prepare_coarsening_and_refinement(); + saturation_soltrans.prepare_for_coarsening_and_refinement(x_saturation); - SolutionTransfer darcy_soltrans(darcy_dof_handler); + darcy_soltrans.prepare_for_coarsening_and_refinement(x_darcy); + triangulation.execute_coarsening_and_refinement (); + setup_dofs (); - triangulation.prepare_coarsening_and_refinement(); - saturation_soltrans.prepare_for_coarsening_and_refinement(x_saturation); + std::vector tmp_saturation (3); + tmp_saturation[0].reinit (saturation_solution); + tmp_saturation[1].reinit (saturation_solution); + tmp_saturation[2].reinit (saturation_solution); + saturation_soltrans.interpolate(x_saturation, tmp_saturation); - darcy_soltrans.prepare_for_coarsening_and_refinement(x_darcy); + saturation_solution = tmp_saturation[0]; + old_saturation_solution = tmp_saturation[1]; + saturation_matching_last_computed_darcy_solution = tmp_saturation[2]; - triangulation.execute_coarsening_and_refinement (); - setup_dofs (); + std::vector tmp_darcy (2); + tmp_darcy[0].reinit (darcy_solution); + tmp_darcy[1].reinit (darcy_solution); + darcy_soltrans.interpolate(x_darcy, tmp_darcy); - std::vector tmp_saturation (3); - tmp_saturation[0].reinit (saturation_solution); - tmp_saturation[1].reinit (saturation_solution); - tmp_saturation[2].reinit (saturation_solution); - saturation_soltrans.interpolate(x_saturation, tmp_saturation); - - saturation_solution = tmp_saturation[0]; - old_saturation_solution = tmp_saturation[1]; - saturation_matching_last_computed_darcy_solution = tmp_saturation[2]; - - std::vector tmp_darcy (2); - tmp_darcy[0].reinit (darcy_solution); - tmp_darcy[1].reinit (darcy_solution); - darcy_soltrans.interpolate(x_darcy, tmp_darcy); - - last_computed_darcy_solution = tmp_darcy[0]; - second_last_computed_darcy_solution = tmp_darcy[1]; - - rebuild_saturation_matrix = true; - } - else - { - rebuild_saturation_matrix = false; - - std::vector darcy_block_component (dim+1,0); - darcy_block_component[dim] = 1; - - std::vector darcy_dofs_per_block (2); - DoFTools::count_dofs_per_block (darcy_dof_handler, darcy_dofs_per_block, darcy_block_component); - const unsigned int n_u = darcy_dofs_per_block[0], - n_p = darcy_dofs_per_block[1], - n_s = saturation_dof_handler.n_dofs(); - - std::cout << "Number of active cells: " - << triangulation.n_active_cells() - << " (on " - << triangulation.n_levels() - << " levels)" - << std::endl - << "Number of degrees of freedom: " - << n_u + n_p + n_s - << " (" << n_u << '+' << n_p << '+'<< n_s <<')' - << std::endl - << std::endl; - } + last_computed_darcy_solution = tmp_darcy[0]; + second_last_computed_darcy_solution = tmp_darcy[1]; + rebuild_saturation_matrix = true; + } } // @sect3{TwoPhaseFlowProblem::output_results} - // This function to process the output - // data. We only store the results when we - // actually solve the pressure and velocity - // part at the present time step. The rest of - // the implementation is similar to that - // output function in step-31, which - // implementations has been explained in that - // tutorial. + // This function generates + // graphical output. It is in + // essence a copy of the + // implementation in step-31. template void TwoPhaseFlowProblem::output_results () const { @@ -2337,11 +2173,126 @@ namespace Step43 - // @sect3{TwoPhaseFlowProblem::THE_REMAINING_FUNCTIONS} + // @sect3{Tool functions} + + // @sect4{TwoPhaseFlowProblem::determine_whether_to_solve_for_pressure_and_velocity} + + // This function implements the a + // posteriori criterion for + // adaptive operator splitting. The + // function is relatively + // straightforward given the way we + // have implemented other functions + // above and given the formula for + // the criterion derived in the + // paper. + // + // If one decides that one wants + // the original IMPES method in + // which the Darcy equation is + // solved in every time step, then + // this can be achieved by setting + // the threshold value + // AOS_threshold (with + // a default of $5.0$) to zero, + // thereby forcing the function to + // always return true. + // + // Finally, note that the function + // returns true unconditionally for + // the first two time steps to + // ensure that we have always + // solved the Darcy system at least + // twice when skipping its + // solution, thereby allowing us to + // extrapolate the velocity from + // the last two solutions in + // solve(). + template + bool + TwoPhaseFlowProblem::determine_whether_to_solve_for_pressure_and_velocity () const + { + if (timestep_number <= 2) + return true; + + const QGauss quadrature_formula(saturation_degree+2); + const unsigned int n_q_points = quadrature_formula.size(); + + FEValues fe_values (saturation_fe, quadrature_formula, + update_values | update_quadrature_points); + + std::vector old_saturation_after_solving_pressure (n_q_points); + std::vector present_saturation (n_q_points); + + std::vector > k_inverse_values (n_q_points); + + double max_global_aop_indicator = 0.0; + + typename DoFHandler::active_cell_iterator + cell = saturation_dof_handler.begin_active(), + endc = saturation_dof_handler.end(); + for (; cell!=endc; ++cell) + { + double max_local_mobility_reciprocal_difference = 0.0; + double max_local_permeability_inverse_l1_norm = 0.0; + + fe_values.reinit(cell); + fe_values.get_function_values (saturation_matching_last_computed_darcy_solution, + old_saturation_after_solving_pressure); + fe_values.get_function_values (saturation_solution, + present_saturation); + + k_inverse.value_list (fe_values.get_quadrature_points(), + k_inverse_values); + + for (unsigned int q=0; q AOS_threshold); + } - // The remaining functions that have been - // used in step-31 so we don't have to - // describe their implementations. + + + // @sect4{TwoPhaseFlowProblem::project_back_saturation} + + // The next function simply makes + // sure that the saturation values + // always remain within the + // physically reasonable range of + // $[0,1]$. While the continuous + // equations guarantee that this is + // so, the discrete equations + // don't. However, if we allow the + // discrete solution to escape this + // range we get into trouble + // because terms like $F(S)$ and + // $F'(S)$ will produce + // unreasonable results + // (e.g. $F'(S)<0$ for $S<0$, which + // would imply that the wetting + // fluid phase flows against + // the direction of the bulk fluid + // velocity)). Consequently, at the + // end of each time step, we simply + // project the saturation field + // back into the physically + // reasonable region. template void TwoPhaseFlowProblem::project_back_saturation () @@ -2355,13 +2306,26 @@ namespace Step43 } + + // @sect4{TwoPhaseFlowProblem::get_max_u_F_prime} + // + // Another simpler helper function: + // Compute the maximum of the total + // velocity times the derivative of + // the fraction flow function, + // i.e., compute $\|\mathbf{u} + // F'(S)\|_{L_\infty(\Omega)}$. This + // term is used in both the + // computation of the time step as + // well as in normalizing the + // entropy-residual term in the + // artificial viscosity. template double TwoPhaseFlowProblem::get_max_u_F_prime () const { - QGauss quadrature_formula(darcy_degree+2); - const unsigned int n_q_points - = quadrature_formula.size(); + const QGauss quadrature_formula(darcy_degree+2); + const unsigned int n_q_points = quadrature_formula.size(); FEValues darcy_fe_values (darcy_fe, quadrature_formula, update_values); @@ -2404,6 +2368,26 @@ namespace Step43 } + // @sect4{TwoPhaseFlowProblem::get_extrapolated_saturation_range} + // + // For computing the stabilization + // term, we need to know the range + // of the saturation + // variable. Unlike in step-31, + // this range is trivially bounded + // by the interval $[0,1]$ but we + // can do a bit better by looping + // over a collection of quadrature + // points and seeing what the + // values are there. If we can, + // i.e., if there are at least two + // timesteps around, we can even + // take the values extrapolated to + // the next time step. + // + // As before, the function is taken + // with minimal modifications from + // step-31. template std::pair TwoPhaseFlowProblem::get_extrapolated_saturation_range () const @@ -2418,12 +2402,8 @@ namespace Step43 if (timestep_number != 0) { - double min_saturation = (1. + time_step/old_time_step) * - old_saturation_solution.linfty_norm() - + - time_step/old_time_step * - old_old_saturation_solution.linfty_norm(), - max_saturation = -min_saturation; + double min_saturation = std::numeric_limits::max(), + max_saturation = -std::numeric_limits::max(); typename DoFHandler::active_cell_iterator cell = saturation_dof_handler.begin_active(), @@ -2451,8 +2431,8 @@ namespace Step43 } else { - double min_saturation = old_saturation_solution.linfty_norm(), - max_saturation = -min_saturation; + double min_saturation = std::numeric_limits::max(), + max_saturation = -std::numeric_limits::max(); typename DoFHandler::active_cell_iterator cell = saturation_dof_handler.begin_active(), @@ -2478,6 +2458,21 @@ namespace Step43 + // @sect4{TwoPhaseFlowProblem::compute_viscosity} + // + // The final tool function is used + // to compute the artificial + // viscosity on a given cell. This + // isn't particularly complicated + // if you have the formula for it + // in front of you, and looking at + // the implementation in + // step-31. The major difference to + // that tutorial program is that + // the velocity here is not simply + // $\mathbf u$ but $\mathbf u + // F'(S)$ and some of the formulas + // need to be adjusted accordingly. template double TwoPhaseFlowProblem:: @@ -2488,12 +2483,9 @@ namespace Step43 const std::vector > &present_darcy_values, const double global_max_u_F_prime, const double global_S_variation, - const double cell_diameter, - const double old_time_step, - const double viscosity, - const double porosity) const + const double cell_diameter) const { - const double beta = .35 * dim; + const double beta = .4 * dim; const double alpha = 1; if (global_max_u_F_prime == 0) @@ -2529,16 +2521,20 @@ namespace Step43 max_velocity_times_dF_dS = std::max (std::sqrt (u*u) * (use_dF_dS ? - std::max(dF_dS,1.) + std::max(dF_dS, 1.) : 1), max_velocity_times_dF_dS); } - const double c_R = 1; + const double c_R = 1e-16; const double global_scaling = c_R * porosity * (global_max_u_F_prime) * global_S_variation / std::pow(global_Omega_diameter, alpha - 2.); + return (beta * + (max_velocity_times_dF_dS) * + cell_diameter); + return (beta * (max_velocity_times_dF_dS) * std::min (cell_diameter, @@ -2549,21 +2545,30 @@ namespace Step43 // @sect3{TwoPhaseFlowProblem::run} - // In this function, we follow the structure - // of the same function partly in step-21 and - // partly in step-31 so again there is no - // need to repeat it. However, since we - // consider the simulation with grid - // adaptivity, we need to compute a - // saturation predictor, which implementation - // was first used in step-33, for the - // function that computes the refinement - // indicators. + // This function is, besides + // solve(), the + // primary function of this program + // as it controls the time + // iteration as well as when the + // solution is written into output + // files and when to do mesh + // refinement. + // + // With the exception of the + // startup code that loops back to + // the beginning of the function + // through the goto + // start_time_iteration + // label, everything should be + // relatively straightforward. In + // any case, it mimicks the + // corresponding function in + // step-31. template void TwoPhaseFlowProblem::run () { const unsigned int initial_refinement = (dim == 2 ? 4 : 2); - const unsigned int n_pre_refinement_steps = (dim == 2 ? 4 : 3); + const unsigned int n_pre_refinement_steps = (dim == 2 ? 2 : 2); GridGenerator::hyper_cube (triangulation, 0, 1); @@ -2597,23 +2602,14 @@ namespace Step43 solve (); - output_results (); + std::cout << std::endl; - { - // check if this already initializes the vector of if we need the next line - TrilinosWrappers::Vector predicted_saturation_solution (saturation_solution); - predicted_saturation_solution = saturation_solution; - predicted_saturation_solution.sadd (2.0, -1.0, old_saturation_solution); + if (timestep_number % 100 == 0) + output_results (); - // TODO: move this into refine_mesh - Vector refinement_indicators (triangulation.n_active_cells()); - - compute_refinement_indicators(predicted_saturation_solution, - refinement_indicators); + if (timestep_number % 25 == 0) refine_mesh (initial_refinement, - initial_refinement + n_pre_refinement_steps, - refinement_indicators); - } + initial_refinement + n_pre_refinement_steps); if ((timestep_number == 0) && (pre_refinement_step < n_pre_refinement_steps)) @@ -2634,7 +2630,7 @@ namespace Step43 - // @sect3{The main function} + // @sect3{The main() function} // // The main function looks almost the // same as in all other programs. In