From: Wolfgang Bangerth Date: Sat, 19 Sep 2015 13:03:15 +0000 (-0500) Subject: Move the implementation of transform_r_to_u_cell from MappingQ1 to MappingQGeneric. X-Git-Tag: v8.4.0-rc2~349^2~9 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=b7176ebb11c68ec61f269234ae4c6df2b46b4262;p=dealii.git Move the implementation of transform_r_to_u_cell from MappingQ1 to MappingQGeneric. --- diff --git a/include/deal.II/fe/mapping_q1.h b/include/deal.II/fe/mapping_q1.h index ba05c5cfc7..33371651a2 100644 --- a/include/deal.II/fe/mapping_q1.h +++ b/include/deal.II/fe/mapping_q1.h @@ -63,21 +63,6 @@ public: // for documentation, see the Mapping base class virtual MappingQ1 *clone () const; - - /** - * @name Mapping points between reference and real cells - * @{ - */ - - // for documentation, see the Mapping base class - virtual - Point - transform_real_to_unit_cell (const typename Triangulation::cell_iterator &cell, - const Point &p) const; - - /** - * @} - */ }; diff --git a/include/deal.II/fe/mapping_q_generic.h b/include/deal.II/fe/mapping_q_generic.h index 8b876feebf..d3fa8a4c21 100644 --- a/include/deal.II/fe/mapping_q_generic.h +++ b/include/deal.II/fe/mapping_q_generic.h @@ -96,6 +96,12 @@ public: transform_unit_to_real_cell (const typename Triangulation::cell_iterator &cell, const Point &p) const; + // for documentation, see the Mapping base class + virtual + Point + transform_real_to_unit_cell (const typename Triangulation::cell_iterator &cell, + const Point &p) const; + /** * @} */ diff --git a/source/fe/mapping_q1.cc b/source/fe/mapping_q1.cc index 54001d53b2..e61f37e339 100644 --- a/source/fe/mapping_q1.cc +++ b/source/fe/mapping_q1.cc @@ -48,401 +48,6 @@ MappingQ1::MappingQ1 () -namespace internal -{ - namespace MappingQ1 - { - // These are left as templates on the spatial dimension (even though dim - // == spacedim must be true for them to make sense) because templates are - // expanded before the compiler eliminates code due to the 'if (dim == - // spacedim)' statement (see the body of the general - // transform_real_to_unit_cell). - template - Point<1> - transform_real_to_unit_cell - (const std_cxx11::array, GeometryInfo<1>::vertices_per_cell> &vertices, - const Point &p) - { - Assert(spacedim == 1, ExcInternalError()); - return Point<1>((p[0] - vertices[0](0))/(vertices[1](0) - vertices[0](0))); - } - - - - template - Point<2> - transform_real_to_unit_cell - (const std_cxx11::array, GeometryInfo<2>::vertices_per_cell> &vertices, - const Point &p) - { - Assert(spacedim == 2, ExcInternalError()); - const double x = p(0); - const double y = p(1); - - const double x0 = vertices[0](0); - const double x1 = vertices[1](0); - const double x2 = vertices[2](0); - const double x3 = vertices[3](0); - - const double y0 = vertices[0](1); - const double y1 = vertices[1](1); - const double y2 = vertices[2](1); - const double y3 = vertices[3](1); - - const double a = (x1 - x3)*(y0 - y2) - (x0 - x2)*(y1 - y3); - const double b = -(x0 - x1 - x2 + x3)*y + (x - 2*x1 + x3)*y0 - (x - 2*x0 + x2)*y1 - - (x - x1)*y2 + (x - x0)*y3; - const double c = (x0 - x1)*y - (x - x1)*y0 + (x - x0)*y1; - - const double discriminant = b*b - 4*a*c; - // exit if the point is not in the cell (this is the only case where the - // discriminant is negative) - if (discriminant < 0.0) - { - AssertThrow (false, - (typename Mapping::ExcTransformationFailed())); - } - - double eta1; - double eta2; - // special case #1: if a is zero, then use the linear formula - if (a == 0.0 && b != 0.0) - { - eta1 = -c/b; - eta2 = -c/b; - } - // special case #2: if c is very small: - else if (std::abs(c/b) < 1e-12) - { - eta1 = (-b - std::sqrt(discriminant)) / (2*a); - eta2 = (-b + std::sqrt(discriminant)) / (2*a); - } - // finally, use the numerically stable version of the quadratic formula: - else - { - eta1 = 2*c / (-b - std::sqrt(discriminant)); - eta2 = 2*c / (-b + std::sqrt(discriminant)); - } - // pick the one closer to the center of the cell. - const double eta = (std::abs(eta1 - 0.5) < std::abs(eta2 - 0.5)) ? eta1 : eta2; - - /* - * There are two ways to compute xi from eta, but either one may have a - * zero denominator. - */ - const double subexpr0 = -eta*x2 + x0*(eta - 1); - const double xi_denominator0 = eta*x3 - x1*(eta - 1) + subexpr0; - const double max_x = std::max(std::max(std::abs(x0), std::abs(x1)), - std::max(std::abs(x2), std::abs(x3))); - - if (std::abs(xi_denominator0) > 1e-10*max_x) - { - const double xi = (x + subexpr0)/xi_denominator0; - return Point<2>(xi, eta); - } - else - { - const double max_y = std::max(std::max(std::abs(y0), std::abs(y1)), - std::max(std::abs(y2), std::abs(y3))); - const double subexpr1 = -eta*y2 + y0*(eta - 1); - const double xi_denominator1 = eta*y3 - y1*(eta - 1) + subexpr1; - if (std::abs(xi_denominator1) > 1e-10*max_y) - { - const double xi = (subexpr1 + y)/xi_denominator1; - return Point<2>(xi, eta); - } - else // give up and try Newton iteration - { - AssertThrow (false, - (typename Mapping::ExcTransformationFailed())); - } - } - // bogus return to placate compiler. It should not be possible to get - // here. - Assert(false, ExcInternalError()); - return Point<2>(std::numeric_limits::quiet_NaN(), - std::numeric_limits::quiet_NaN()); - } - - - - template - Point<3> - transform_real_to_unit_cell - (const std_cxx11::array, GeometryInfo<3>::vertices_per_cell> &/*vertices*/, - const Point &/*p*/) - { - // It should not be possible to get here - Assert(false, ExcInternalError()); - return Point<3>(); - } - } -} - - - -/** - * Compute an initial guess to pass to the Newton method in - * transform_real_to_unit_cell. For the initial guess we proceed in the - * following way: - *
    - *
  • find the least square dim-dimensional plane approximating the cell - * vertices, i.e. we find an affine map A x_hat + b from the reference cell - * to the real space. - *
  • Solve the equation A x_hat + b = p for x_hat - *
  • This x_hat is the initial solution used for the Newton Method. - *
- * - * @note if dim - struct TransformR2UInitialGuess - { - static const double KA[GeometryInfo::vertices_per_cell][dim]; - static const double Kb[GeometryInfo::vertices_per_cell]; - }; - - - /* - Octave code: - M=[0 1; 1 1]; - K1 = transpose(M) * inverse (M*transpose(M)); - printf ("{%f, %f},\n", K1' ); - */ - template <> - const double - TransformR2UInitialGuess<1>:: - KA[GeometryInfo<1>::vertices_per_cell][1] = - { - {-1.000000}, - {1.000000} - }; - - template <> - const double - TransformR2UInitialGuess<1>:: - Kb[GeometryInfo<1>::vertices_per_cell] = {1.000000, 0.000000}; - - - /* - Octave code: - M=[0 1 0 1;0 0 1 1;1 1 1 1]; - K2 = transpose(M) * inverse (M*transpose(M)); - printf ("{%f, %f, %f},\n", K2' ); - */ - template <> - const double - TransformR2UInitialGuess<2>:: - KA[GeometryInfo<2>::vertices_per_cell][2] = - { - {-0.500000, -0.500000}, - { 0.500000, -0.500000}, - {-0.500000, 0.500000}, - { 0.500000, 0.500000} - }; - - /* - Octave code: - M=[0 1 0 1 0 1 0 1;0 0 1 1 0 0 1 1; 0 0 0 0 1 1 1 1; 1 1 1 1 1 1 1 1]; - K3 = transpose(M) * inverse (M*transpose(M)) - printf ("{%f, %f, %f, %f},\n", K3' ); - */ - template <> - const double - TransformR2UInitialGuess<2>:: - Kb[GeometryInfo<2>::vertices_per_cell] = - {0.750000,0.250000,0.250000,-0.250000 }; - - - template <> - const double - TransformR2UInitialGuess<3>:: - KA[GeometryInfo<3>::vertices_per_cell][3] = - { - {-0.250000, -0.250000, -0.250000}, - { 0.250000, -0.250000, -0.250000}, - {-0.250000, 0.250000, -0.250000}, - { 0.250000, 0.250000, -0.250000}, - {-0.250000, -0.250000, 0.250000}, - { 0.250000, -0.250000, 0.250000}, - {-0.250000, 0.250000, 0.250000}, - { 0.250000, 0.250000, 0.250000} - - }; - - - template <> - const double - TransformR2UInitialGuess<3>:: - Kb[GeometryInfo<3>::vertices_per_cell] = - {0.500000,0.250000,0.250000,0.000000,0.250000,0.000000,0.000000,-0.250000}; - - template - Point - transform_real_to_unit_cell_initial_guess (const std::vector > &vertex, - const Point &p) - { - Point p_unit; - - FullMatrix KA(GeometryInfo::vertices_per_cell, dim); - Vector Kb(GeometryInfo::vertices_per_cell); - - KA.fill( (double *)(TransformR2UInitialGuess::KA) ); - for (unsigned int i=0; i::vertices_per_cell; ++i) - Kb(i)=(TransformR2UInitialGuess::Kb)[i]; - - FullMatrix Y(spacedim, GeometryInfo::vertices_per_cell); - for (unsigned int v=0; v::vertices_per_cell; v++) - for (unsigned int i=0; i A(spacedim,dim); - Y.mmult(A,KA); // A = Y*KA - Vector< double > b(spacedim); - Y.vmult(b,Kb); // b = Y*Kb - - for (unsigned int i=0; i dest(dim); - - FullMatrix A_1(dim,spacedim); - if (dim -Point -MappingQ1:: -transform_real_to_unit_cell (const typename Triangulation::cell_iterator &cell, - const Point &p) const -{ - // Use the exact formula if available - if (dim == spacedim && (dim == 1 || dim == 2)) - { - // The dimension-dependent algorithms are much faster (about 25-45x in - // 2D) but fail most of the time when the given point (p) is not in the - // cell. The dimension-independent Newton algorithm given below is - // slower, but more robust (though it still sometimes fails). Therefore - // this function implements the following strategy based on the - // p's dimension: - // - // * In 1D this mapping is linear, so the mapping is always invertible - // (and the exact formula is known) as long as the cell has non-zero - // length. - // * In 2D the exact (quadratic) formula is called first. If either the - // exact formula does not succeed (negative discriminant in the - // quadratic formula) or succeeds but finds a solution outside of the - // unit cell, then the Newton solver is called. The rationale for the - // second choice is that the exact formula may provide two different - // answers when mapping a point outside of the real cell, but the - // Newton solver (if it converges) will only return one answer. - // Otherwise the exact formula successfully found a point in the unit - // cell and that value is returned. - // * In 3D there is no (known to the authors) exact formula, so the Newton - // algorithm is used. - const std_cxx11::array, GeometryInfo::vertices_per_cell> - vertices = this->get_vertices(cell); - try - { - Point point = internal::MappingQ1::transform_real_to_unit_cell(vertices, p); - - if (dim == 1) - { - // formula not subject to any issues - return point; - } - else if (dim == 2) - { - // formula not guaranteed to work for points outside of the cell - const double eps = 1e-15; - if (-eps <= point(1) && point(1) <= 1 + eps && - -eps <= point(0) && point(0) <= 1 + eps) - { - return point; - } - } - else - { - Assert(false, ExcInternalError()); - } - } - catch (const typename Mapping::ExcTransformationFailed &) - { - // continue on to the standard Newton code - } - } - - // Find the initial value for the Newton iteration by a normal - // projection to the least square plane determined by the vertices - // of the cell - std::vector > a; - this->compute_mapping_support_points (cell,a); - Assert(a.size() == GeometryInfo::vertices_per_cell, - ExcInternalError()); - - // if dim==1 there is nothing else to do to the initial value, and - // it is the answer - if (dim == 1) - return transform_real_to_unit_cell_initial_guess(a,p); - else - { - const Point initial_p_unit = - transform_real_to_unit_cell_initial_guess(a,p); - - // use the full mapping. in case the function above should have - // given us something back that lies outside the unit cell (that - // might happen because either the function computing an initial - // guess gave us a poor initial guess or for the following - // reason: we call this function here in the Q1 mapping to - // produce an initial guess for a higher order mapping, but we - // may have given a point 'p' that lies inside the cell with the - // higher order mapping, but outside the Q1-mapped reference - // cell), then project it back into the reference cell in hopes - // that this gives a better starting point to the following - // iteration - - // perform the Newton iteration and - // return the result. note that this - // statement may throw an exception, which - // we simply pass up to the caller - return this->transform_real_to_unit_cell_internal(cell, p, initial_p_unit); - } -} - - - - - template MappingQ1 * MappingQ1::clone () const diff --git a/source/fe/mapping_q_generic.cc b/source/fe/mapping_q_generic.cc index cefa8671c8..034f2b4edb 100644 --- a/source/fe/mapping_q_generic.cc +++ b/source/fe/mapping_q_generic.cc @@ -1477,6 +1477,404 @@ transform_real_to_unit_cell_internal } +namespace internal +{ + namespace MappingQ1 + { + namespace + { + + // These are left as templates on the spatial dimension (even though dim + // == spacedim must be true for them to make sense) because templates are + // expanded before the compiler eliminates code due to the 'if (dim == + // spacedim)' statement (see the body of the general + // transform_real_to_unit_cell). + template + Point<1> + transform_real_to_unit_cell + (const std_cxx11::array, GeometryInfo<1>::vertices_per_cell> &vertices, + const Point &p) + { + Assert(spacedim == 1, ExcInternalError()); + return Point<1>((p[0] - vertices[0](0))/(vertices[1](0) - vertices[0](0))); + } + + + + template + Point<2> + transform_real_to_unit_cell + (const std_cxx11::array, GeometryInfo<2>::vertices_per_cell> &vertices, + const Point &p) + { + Assert(spacedim == 2, ExcInternalError()); + const double x = p(0); + const double y = p(1); + + const double x0 = vertices[0](0); + const double x1 = vertices[1](0); + const double x2 = vertices[2](0); + const double x3 = vertices[3](0); + + const double y0 = vertices[0](1); + const double y1 = vertices[1](1); + const double y2 = vertices[2](1); + const double y3 = vertices[3](1); + + const double a = (x1 - x3)*(y0 - y2) - (x0 - x2)*(y1 - y3); + const double b = -(x0 - x1 - x2 + x3)*y + (x - 2*x1 + x3)*y0 - (x - 2*x0 + x2)*y1 + - (x - x1)*y2 + (x - x0)*y3; + const double c = (x0 - x1)*y - (x - x1)*y0 + (x - x0)*y1; + + const double discriminant = b*b - 4*a*c; + // exit if the point is not in the cell (this is the only case where the + // discriminant is negative) + if (discriminant < 0.0) + { + AssertThrow (false, + (typename Mapping::ExcTransformationFailed())); + } + + double eta1; + double eta2; + // special case #1: if a is zero, then use the linear formula + if (a == 0.0 && b != 0.0) + { + eta1 = -c/b; + eta2 = -c/b; + } + // special case #2: if c is very small: + else if (std::abs(c/b) < 1e-12) + { + eta1 = (-b - std::sqrt(discriminant)) / (2*a); + eta2 = (-b + std::sqrt(discriminant)) / (2*a); + } + // finally, use the numerically stable version of the quadratic formula: + else + { + eta1 = 2*c / (-b - std::sqrt(discriminant)); + eta2 = 2*c / (-b + std::sqrt(discriminant)); + } + // pick the one closer to the center of the cell. + const double eta = (std::abs(eta1 - 0.5) < std::abs(eta2 - 0.5)) ? eta1 : eta2; + + /* + * There are two ways to compute xi from eta, but either one may have a + * zero denominator. + */ + const double subexpr0 = -eta*x2 + x0*(eta - 1); + const double xi_denominator0 = eta*x3 - x1*(eta - 1) + subexpr0; + const double max_x = std::max(std::max(std::abs(x0), std::abs(x1)), + std::max(std::abs(x2), std::abs(x3))); + + if (std::abs(xi_denominator0) > 1e-10*max_x) + { + const double xi = (x + subexpr0)/xi_denominator0; + return Point<2>(xi, eta); + } + else + { + const double max_y = std::max(std::max(std::abs(y0), std::abs(y1)), + std::max(std::abs(y2), std::abs(y3))); + const double subexpr1 = -eta*y2 + y0*(eta - 1); + const double xi_denominator1 = eta*y3 - y1*(eta - 1) + subexpr1; + if (std::abs(xi_denominator1) > 1e-10*max_y) + { + const double xi = (subexpr1 + y)/xi_denominator1; + return Point<2>(xi, eta); + } + else // give up and try Newton iteration + { + AssertThrow (false, + (typename Mapping::ExcTransformationFailed())); + } + } + // bogus return to placate compiler. It should not be possible to get + // here. + Assert(false, ExcInternalError()); + return Point<2>(std::numeric_limits::quiet_NaN(), + std::numeric_limits::quiet_NaN()); + } + + + + template + Point<3> + transform_real_to_unit_cell + (const std_cxx11::array, GeometryInfo<3>::vertices_per_cell> &/*vertices*/, + const Point &/*p*/) + { + // It should not be possible to get here + Assert(false, ExcInternalError()); + return Point<3>(); + } + + + + /** + * Compute an initial guess to pass to the Newton method in + * transform_real_to_unit_cell. For the initial guess we proceed in the + * following way: + *
    + *
  • find the least square dim-dimensional plane approximating the cell + * vertices, i.e. we find an affine map A x_hat + b from the reference cell + * to the real space. + *
  • Solve the equation A x_hat + b = p for x_hat + *
  • This x_hat is the initial solution used for the Newton Method. + *
+ * + * @note if dim + struct TransformR2UInitialGuess + { + static const double KA[GeometryInfo::vertices_per_cell][dim]; + static const double Kb[GeometryInfo::vertices_per_cell]; + }; + + + /* + Octave code: + M=[0 1; 1 1]; + K1 = transpose(M) * inverse (M*transpose(M)); + printf ("{%f, %f},\n", K1' ); + */ + template <> + const double + TransformR2UInitialGuess<1>:: + KA[GeometryInfo<1>::vertices_per_cell][1] = + { + {-1.000000}, + {1.000000} + }; + + template <> + const double + TransformR2UInitialGuess<1>:: + Kb[GeometryInfo<1>::vertices_per_cell] = {1.000000, 0.000000}; + + + /* + Octave code: + M=[0 1 0 1;0 0 1 1;1 1 1 1]; + K2 = transpose(M) * inverse (M*transpose(M)); + printf ("{%f, %f, %f},\n", K2' ); + */ + template <> + const double + TransformR2UInitialGuess<2>:: + KA[GeometryInfo<2>::vertices_per_cell][2] = + { + {-0.500000, -0.500000}, + { 0.500000, -0.500000}, + {-0.500000, 0.500000}, + { 0.500000, 0.500000} + }; + + /* + Octave code: + M=[0 1 0 1 0 1 0 1;0 0 1 1 0 0 1 1; 0 0 0 0 1 1 1 1; 1 1 1 1 1 1 1 1]; + K3 = transpose(M) * inverse (M*transpose(M)) + printf ("{%f, %f, %f, %f},\n", K3' ); + */ + template <> + const double + TransformR2UInitialGuess<2>:: + Kb[GeometryInfo<2>::vertices_per_cell] = + {0.750000,0.250000,0.250000,-0.250000 }; + + + template <> + const double + TransformR2UInitialGuess<3>:: + KA[GeometryInfo<3>::vertices_per_cell][3] = + { + {-0.250000, -0.250000, -0.250000}, + { 0.250000, -0.250000, -0.250000}, + {-0.250000, 0.250000, -0.250000}, + { 0.250000, 0.250000, -0.250000}, + {-0.250000, -0.250000, 0.250000}, + { 0.250000, -0.250000, 0.250000}, + {-0.250000, 0.250000, 0.250000}, + { 0.250000, 0.250000, 0.250000} + + }; + + + template <> + const double + TransformR2UInitialGuess<3>:: + Kb[GeometryInfo<3>::vertices_per_cell] = + {0.500000,0.250000,0.250000,0.000000,0.250000,0.000000,0.000000,-0.250000}; + + template + Point + transform_real_to_unit_cell_initial_guess (const std::vector > &vertex, + const Point &p) + { + Point p_unit; + + dealii::FullMatrix KA(GeometryInfo::vertices_per_cell, dim); + dealii::Vector Kb(GeometryInfo::vertices_per_cell); + + KA.fill( (double *)(TransformR2UInitialGuess::KA) ); + for (unsigned int i=0; i::vertices_per_cell; ++i) + Kb(i) = TransformR2UInitialGuess::Kb[i]; + + FullMatrix Y(spacedim, GeometryInfo::vertices_per_cell); + for (unsigned int v=0; v::vertices_per_cell; v++) + for (unsigned int i=0; i A(spacedim,dim); + Y.mmult(A,KA); // A = Y*KA + dealii::Vector b(spacedim); + Y.vmult(b,Kb); // b = Y*Kb + + for (unsigned int i=0; i dest(dim); + + FullMatrix A_1(dim,spacedim); + if (dim +Point +MappingQGeneric:: +transform_real_to_unit_cell (const typename Triangulation::cell_iterator &cell, + const Point &p) const +{ + // Use an exact formula if one is available. this is only the case + // for Q1 mappings in 1d, and in 2d if dim==spacedim + if ((polynomial_degree == 1) && + ((dim == 1) + || + ((dim == 2) && (dim == spacedim)))) + { + // The dimension-dependent algorithms are much faster (about 25-45x in + // 2D) but fail most of the time when the given point (p) is not in the + // cell. The dimension-independent Newton algorithm given below is + // slower, but more robust (though it still sometimes fails). Therefore + // this function implements the following strategy based on the + // p's dimension: + // + // * In 1D this mapping is linear, so the mapping is always invertible + // (and the exact formula is known) as long as the cell has non-zero + // length. + // * In 2D the exact (quadratic) formula is called first. If either the + // exact formula does not succeed (negative discriminant in the + // quadratic formula) or succeeds but finds a solution outside of the + // unit cell, then the Newton solver is called. The rationale for the + // second choice is that the exact formula may provide two different + // answers when mapping a point outside of the real cell, but the + // Newton solver (if it converges) will only return one answer. + // Otherwise the exact formula successfully found a point in the unit + // cell and that value is returned. + // * In 3D there is no (known to the authors) exact formula, so the Newton + // algorithm is used. + const std_cxx11::array, GeometryInfo::vertices_per_cell> + vertices = this->get_vertices(cell); + try + { + switch (dim) + { + case 1: + { + // formula not subject to any issues in 1d + if (spacedim == 1) + return internal::MappingQ1::transform_real_to_unit_cell(vertices, p); + else + { + const std::vector > a (vertices.begin(), + vertices.end()); + return internal::MappingQ1::transform_real_to_unit_cell_initial_guess(a,p); + } + } + + case 2: + { + const Point point + = internal::MappingQ1::transform_real_to_unit_cell(vertices, p); + + // formula not guaranteed to work for points outside of + // the cell. only take the computed point if it lies + // inside the reference cell + const double eps = 1e-15; + if (-eps <= point(1) && point(1) <= 1 + eps && + -eps <= point(0) && point(0) <= 1 + eps) + { + return point; + } + else + break; + } + + default: + { + // we should get here, based on the if-condition at the top + Assert(false, ExcInternalError()); + } + } + } + catch (const typename Mapping::ExcTransformationFailed &) + { + // simply fall through and continue on to the standard Newton code + } + } + else + { + // we can't use an explicit formula, + } + + + // Find the initial value for the Newton iteration by a normal + // projection to the least square plane determined by the vertices + // of the cell + std::vector > a; + compute_mapping_support_points (cell,a); + Assert(a.size() == GeometryInfo::vertices_per_cell, + ExcInternalError()); + const Point initial_p_unit = + internal::MappingQ1::transform_real_to_unit_cell_initial_guess(a,p); + + // perform the Newton iteration and return the result. note that + // this statement may throw an exception, which we simply pass up to + // the caller + return this->transform_real_to_unit_cell_internal(cell, p, initial_p_unit); +} + template