From: Wolfgang Bangerth Date: Thu, 22 Sep 2016 22:17:16 +0000 (-0600) Subject: Use latex formulas to describe tensor invariants. X-Git-Tag: v8.5.0-rc1~639^2 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=bcaca3a486e6e9ee426a0f0ec07a649e9e3635fb;p=dealii.git Use latex formulas to describe tensor invariants. --- diff --git a/include/deal.II/base/symmetric_tensor.h b/include/deal.II/base/symmetric_tensor.h index cc3a09ae71..dd754ec942 100644 --- a/include/deal.II/base/symmetric_tensor.h +++ b/include/deal.II/base/symmetric_tensor.h @@ -2191,7 +2191,7 @@ Number determinant (const SymmetricTensor<2,dim,Number> &t) * Compute the determinant of a tensor or rank 2. This function therefore * computes the same value as the determinant() functions and is only * provided for greater notational simplicity (since there are also functions - * first_invariant and second_invariant). + * first_invariant() and second_invariant()). * * @relates SymmetricTensor * @author Wolfgang Bangerth, 2005 @@ -2226,7 +2226,7 @@ Number trace (const SymmetricTensor<2,dim,Number> &d) * Compute the trace of a tensor or rank 2. This function therefore computes * the same value as the trace() functions and is only provided for * greater notational simplicity (since there are also functions - * second_invariant and third_invariant). + * second_invariant() and third_invariant()). * * @relates SymmetricTensor * @author Wolfgang Bangerth, 2005 @@ -2240,8 +2240,13 @@ Number first_invariant (const SymmetricTensor<2,dim,Number> &t) /** - * Compute the second invariant of a tensor of rank 2. The second invariant is - * defined as I2 = 1/2[ (trace sigma)^2 - trace (sigma^2) ]. + * Compute the second invariant of a tensor of rank 2. The second invariant of + * a tensor $\sigma$ is defined as + * $II(\sigma) = \frac 12 \left[ (\text{trace}\ \sigma)^2 + * -\text{trace}\ (\sigma^2) \right]$. + * + * For the kind of arguments to this function, i.e., a rank-2 tensor of + * size 1, the result is simply zero. * * @relates SymmetricTensor * @author Wolfgang Bangerth, 2005, 2010 @@ -2256,8 +2261,21 @@ Number second_invariant (const SymmetricTensor<2,1,Number> &) /** - * Compute the second invariant of a tensor of rank 2. The second invariant is - * defined as I2 = 1/2[ (trace sigma)^2 - trace (sigma^2) ]. + * Compute the second invariant of a tensor of rank 2. The second invariant of + * a tensor $\sigma$ is defined as + * $II(\sigma) = \frac 12 \left[ (\text{trace}\ \sigma)^2 + * -\text{trace}\ (\sigma^2) \right]$. + * + * For the kind of arguments to this function, i.e., a rank-2 tensor of + * size 2, the result is (counting indices starting at one) + * $II(\sigma) = \frac 12 \left[ (\sigma_{11} + \sigma_{22})^2 + * -(\sigma_{11}^2+2\sigma_{12}^2+\sigma_{22}^2) \right] + * = \sigma_{11}\sigma_{22} - \sigma_{12}^2$. + * As expected, for the $2\times 2$ symmetric tensors this function handles, + * this equals the determinant of the tensor. (This is so because for + * $2\times 2$ symmetric tensors, there really are only two invariants, so + * the second and third invariant are the same; the determinant is the third + * invariant.) * * @relates SymmetricTensor * @author Wolfgang Bangerth, 2005, 2010 @@ -2272,8 +2290,10 @@ Number second_invariant (const SymmetricTensor<2,2,Number> &t) /** - * Compute the second invariant of a tensor of rank 2. The second invariant is - * defined as I2 = 1/2[ (trace sigma)^2 - trace (sigma^2) ]. + * Compute the second invariant of a tensor of rank 2. The second invariant of + * a tensor $\sigma$ is defined as + * $II(\sigma) = \frac 12 \left[ (\text{trace}\ \sigma)^2 + * -\text{trace}\ (\sigma^2) \right]$. * * @relates SymmetricTensor * @author Wolfgang Bangerth, 2005, 2010