From: bonito Date: Wed, 5 Jan 2011 20:36:39 +0000 (+0000) Subject: git-svn-id: https://svn.dealii.org/trunk@23128 0785d39b-7218-0410-832d-ea1e28bc413d X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=bd31675729c7709aa9d791517d9f1fc3b4f9045a;p=dealii-svn.git git-svn-id: https://svn.dealii.org/trunk@23128 0785d39b-7218-0410-832d-ea1e28bc413d --- diff --git a/deal.II/examples/step-38/doc/intro.dox b/deal.II/examples/step-38/doc/intro.dox index 5a1d33c6e9..ebdcdf889a 100644 --- a/deal.II/examples/step-38/doc/intro.dox +++ b/deal.II/examples/step-38/doc/intro.dox @@ -55,7 +55,7 @@ Since $\Delta_S = \nabla_S \cdot \nabla_S$, we deduce @f[ \Delta_S v = \Delta \tilde v - \mathbf n^T \ D^2 \tilde v \ \mathbf n - (\mathbf n \cdot \nabla \tilde v) (\nabla \cdot \mathbf n - \mathbf n^T \ D \mathbf n \ \mathbf n ). @f] -Worth mentioning, the term $\nabla \cdot \mathbf n - \mathbf n \ D \mathbf n \ \mathbf n$ appearing in the above expression is the total curvature of the surface (sum of principal curvatures). +Worth mentioning, the term $\nabla^T \cdot \mathbf n - \mathbf n \ D \mathbf n \ \mathbf n$ appearing in the above expression is the total curvature of the surface (sum of principal curvatures). As usual, we are only interested in weak solutions for which we can use $C^0$ finite elements (rather than requiring $C^1$ continuity as for strong