From: Wolfgang Bangerth Date: Thu, 6 Nov 2008 23:33:16 +0000 (+0000) Subject: Also add the 3d pictures and results. X-Git-Tag: v8.0.0~8403 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=be316117ec802d0c1c4906d23db1a3518602075b;p=dealii.git Also add the 3d pictures and results. git-svn-id: https://svn.dealii.org/trunk@17502 0785d39b-7218-0410-832d-ea1e28bc413d --- diff --git a/deal.II/examples/step-31/doc/results.dox b/deal.II/examples/step-31/doc/results.dox index 8e502905f1..4cbc1ea878 100644 --- a/deal.II/examples/step-31/doc/results.dox +++ b/deal.II/examples/step-31/doc/results.dox @@ -150,6 +150,68 @@ adaptive mesh and the flow field at the same time steps: +

Results in 3d

+ +The same thing can of course be done in 3d by changing the template +parameter to the BoussinesqFlowProblem object in main() +from 2 to 3. Visualizing the temperature isocontours at time steps 0, +50, 100, 150, 200, 300, 400, 500, 600, 700, and 800 yields the +following plots: + + + + + + + + + + + + + + + + + + + + + + +
+ @image html "step-31.3d.solution.00.png" "" width=22% + + @image html "step-31.3d.solution.01.png" "" width=22% + + @image html "step-31.3d.solution.02.png" "" width=22% + + @image html "step-31.3d.solution.03.png" "" width=22% +
+ @image html "step-31.3d.solution.04.png" "" width=22% + + @image html "step-31.3d.solution.05.png" "" width=22% + + @image html "step-31.3d.solution.06.png" "" width=22% + + @image html "step-31.3d.solution.07.png" "" width=22% +
+ @image html "step-31.3d.solution.08.png" "" width=22% + + @image html "step-31.3d.solution.09.png" "" width=22% + + @image html "step-31.3d.solution.10.png" "" width=22% + +
+ +That the first picture looks like three hedgehogs stems from +the fact that our scheme essentially projects the source times the +first time step size onto the mesh to obtain the temperature field in +the first time step. Since the source function is discontinuous, we +need to expect over- and undershoots from this project. This is in +fact what happens (it's easier to check this in 2d) and leads to the +crumpled appearance of the isosurfaces. +

Numerical experiments to determine optimal parameters