From: Wolfgang Bangerth Date: Tue, 13 Jan 2015 13:38:35 +0000 (-0600) Subject: Fix the same typo in a number of places. X-Git-Tag: v8.3.0-rc1~546^2~1 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=bff7ce3d19fb135a51b1e4b59b54614156914f8d;p=dealii.git Fix the same typo in a number of places. --- diff --git a/include/deal.II/base/function_lib.h b/include/deal.II/base/function_lib.h index 0801bc5258..81db6c65cf 100644 --- a/include/deal.II/base/function_lib.h +++ b/include/deal.II/base/function_lib.h @@ -1,6 +1,6 @@ // --------------------------------------------------------------------- // -// Copyright (C) 1999 - 2014 by the deal.II authors +// Copyright (C) 1999 - 2015 by the deal.II authors // // This file is part of the deal.II library. // @@ -1091,7 +1091,7 @@ namespace Functions * A scalar function that computes its values by (bi-, tri-)linear * interpolation from a set of point data that are arranged on a possibly * non-uniform tensor product mesh. In other words, considering the three- - * dimensional case, let there be points $x_0,\ldotx, x_{K-1}$, + * dimensional case, let there be points $x_0,\ldots, x_{K-1}$, * $y_0,\ldots,y_{L-1}$, $z_1,\ldots,z_{M-1}$, and data $d_{klm}$ defined at * point $(x_k,y_l,z_m)^T$, then evaluating the function at a point $\mathbf * x=(x,y,z)$ will find the box so that $x_k\le x\le x_{k+1}, y_l\le x\le @@ -1126,7 +1126,7 @@ namespace Functions /** * Constructor. * @param coordinate_values An array of dim arrays. Each of the inner - * arrays contains the coordinate values $x_0,\ldotx, x_{K-1}$ and + * arrays contains the coordinate values $x_0,\ldots, x_{K-1}$ and * similarly for the other coordinate directions. These arrays need not * have the same size. Obviously, we need dim such arrays for a dim- * dimensional function object. The coordinate values within this array @@ -1171,7 +1171,7 @@ namespace Functions * A scalar function that computes its values by (bi-, tri-)linear * interpolation from a set of point data that are arranged on a uniformly * spaced tensor product mesh. In other words, considering the three- - * dimensional case, let there be points $x_0,\ldotx, x_{K-1}$ that result + * dimensional case, let there be points $x_0,\ldots, x_{K-1}$ that result * from a uniform subdivision of the interval $[x_0,x_{K-1}]$ into $K-1$ * sub-intervals of size $\Delta x = (x_{K-1}-x_0)/(K-1)$, and similarly * $y_0,\ldots,y_{L-1}$, $z_1,\ldots,z_{M-1}$. Also consider data $d_{klm}$