From: frohne Date: Wed, 19 Oct 2011 15:38:14 +0000 (+0000) Subject: Using Trilinos vectors and sparse-matrices X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=c3871d4535decb24817b3bfec2b8a756be51fb23;p=dealii-svn.git Using Trilinos vectors and sparse-matrices git-svn-id: https://svn.dealii.org/trunk@24642 0785d39b-7218-0410-832d-ea1e28bc413d --- diff --git a/deal.II/examples/step-41/step-41.cc b/deal.II/examples/step-41/step-41.cc deleted file mode 100644 index 6ae88cbfd3..0000000000 --- a/deal.II/examples/step-41/step-41.cc +++ /dev/null @@ -1,940 +0,0 @@ -/* $Id: step-4.cc 24093 2011-08-16 13:58:12Z bangerth $ */ -/* Author: Wolfgang Bangerth, University of Heidelberg, 1999 */ - -/* $Id: step-4.cc 24093 2011-08-16 13:58:12Z bangerth $ */ -/* */ -/* Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011 by the deal.II authors */ -/* */ -/* This file is subject to QPL and may not be distributed */ -/* without copyright and license information. Please refer */ -/* to the file deal.II/doc/license.html for the text and */ -/* further information on this license. */ - - // @sect3{Include files} - - // The first few (many?) include - // files have already been used in - // the previous example, so we will - // not explain their meaning here - // again. -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include -#include -#include -#include - - // This is new, however: in the previous - // example we got some unwanted output from - // the linear solvers. If we want to suppress - // it, we have to include this file and add a - // single line somewhere to the program (see - // the main() function below for that): -#include - - // The final step, as in previous - // programs, is to import all the - // deal.II class and function names - // into the global namespace: -using namespace dealii; - - // @sect3{The Step4 class template} - - // This is again the same - // Step4 class as in the - // previous example. The only - // difference is that we have now - // declared it as a class with a - // template parameter, and the - // template parameter is of course - // the spatial dimension in which we - // would like to solve the Laplace - // equation. Of course, several of - // the member variables depend on - // this dimension as well, in - // particular the Triangulation - // class, which has to represent - // quadrilaterals or hexahedra, - // respectively. Apart from this, - // everything is as before. -template -class Step4 -{ - public: - Step4 (); - void run (); - - private: - void make_grid (); - void setup_system(); - void assemble_system (); - void projection_active_set (); - void solve (); - void output_results (Vector vector_to_plot, const std::string& title) const; - - Triangulation triangulation; - FE_Q fe; - DoFHandler dof_handler; - - ConstraintMatrix constraints; - - SparsityPattern sparsity_pattern; - SparseMatrix system_matrix; - SparseMatrix system_matrix_complete; - - Vector solution; - Vector system_rhs; - Vector system_rhs_complete; - Vector resid_vector; - Vector active_set; - - std::map boundary_values; -}; - - - // @sect3{Right hand side and boundary values} - - // In the following, we declare two more - // classes denoting the right hand side and - // the non-homogeneous Dirichlet boundary - // values. Both are functions of a - // dim-dimensional space variable, so we - // declare them as templates as well. - // - // Each of these classes is derived from a - // common, abstract base class Function, - // which declares the common interface which - // all functions have to follow. In - // particular, concrete classes have to - // overload the value function, - // which takes a point in dim-dimensional - // space as parameters and shall return the - // value at that point as a - // double variable. - // - // The value function takes a - // second argument, which we have here named - // component: This is only meant - // for vector valued functions, where you may - // want to access a certain component of the - // vector at the point - // p. However, our functions are - // scalar, so we need not worry about this - // parameter and we will not use it in the - // implementation of the functions. Inside - // the library's header files, the Function - // base class's declaration of the - // value function has a default - // value of zero for the component, so we - // will access the value - // function of the right hand side with only - // one parameter, namely the point where we - // want to evaluate the function. A value for - // the component can then simply be omitted - // for scalar functions. - // - // Note that the C++ language forces - // us to declare and define a - // constructor to the following - // classes even though they are - // empty. This is due to the fact - // that the base class has no default - // constructor (i.e. one without - // arguments), even though it has a - // constructor which has default - // values for all arguments. -template -class RightHandSide : public Function -{ - public: - RightHandSide () : Function() {} - - virtual double value (const Point &p, - const unsigned int component = 0) const; -}; - - - -template -class BoundaryValues : public Function -{ - public: - BoundaryValues () : Function() {} - - virtual double value (const Point &p, - const unsigned int component = 0) const; -}; - -template -class Obstacle : public Function -{ - public: - Obstacle () : Function() {} - - virtual double value (const Point &p, - const unsigned int component = 0) const; -}; - - - - // For this example, we choose as right hand - // side function to function $4(x^4+y^4)$ in - // 2D, or $4(x^4+y^4+z^4)$ in 3D. We could - // write this distinction using an - // if-statement on the space dimension, but - // here is a simple way that also allows us - // to use the same function in 1D (or in 4D, - // if you should desire to do so), by using a - // short loop. Fortunately, the compiler - // knows the size of the loop at compile time - // (remember that at the time when you define - // the template, the compiler doesn't know - // the value of dim, but when it later - // encounters a statement or declaration - // RightHandSide@<2@>, it will take the - // template, replace all occurrences of dim - // by 2 and compile the resulting function); - // in other words, at the time of compiling - // this function, the number of times the - // body will be executed is known, and the - // compiler can optimize away the overhead - // needed for the loop and the result will be - // as fast as if we had used the formulas - // above right away. - // - // The last thing to note is that a - // Point@ denotes a point in - // dim-dimensionsal space, and its individual - // components (i.e. $x$, $y$, - // ... coordinates) can be accessed using the - // () operator (in fact, the [] operator will - // work just as well) with indices starting - // at zero as usual in C and C++. -template -double RightHandSide::value (const Point &p, - const unsigned int /*component*/) const -{ - double return_value = 0; - // for (unsigned int i=0; i -double BoundaryValues::value (const Point &p, - const unsigned int /*component*/) const -{ - double return_value = 0; - - return return_value; -} - -template -double Obstacle::value (const Point &p, - const unsigned int /*component*/) const -{ - return 2.0*p.square() - 0.5; -} - - - - // @sect3{Implementation of the Step4 class} - - // Next for the implementation of the class - // template that makes use of the functions - // above. As before, we will write everything - // as templates that have a formal parameter - // dim that we assume unknown at - // the time we define the template - // functions. Only later, the compiler will - // find a declaration of - // Step4@<2@> (in the - // main function, actually) and - // compile the entire class with - // dim replaced by 2, a process - // referred to as `instantiation of a - // template'. When doing so, it will also - // replace instances of - // RightHandSide@ by - // RightHandSide@<2@> and - // instantiate the latter class from the - // class template. - // - // In fact, the compiler will also find a - // declaration - // Step4@<3@> in - // main(). This will cause it to - // again go back to the general - // Step4@ - // template, replace all occurrences of - // dim, this time by 3, and - // compile the class a second time. Note that - // the two instantiations - // Step4@<2@> and - // Step4@<3@> are - // completely independent classes; their only - // common feature is that they are both - // instantiated from the same general - // template, but they are not convertible - // into each other, for example, and share no - // code (both instantiations are compiled - // completely independently). - - - // @sect4{Step4::Step4} - - // After this introduction, here is the - // constructor of the Step4 - // class. It specifies the desired polynomial - // degree of the finite elements and - // associates the DoFHandler to the - // triangulation just as in the previous - // example program, step-3: -template -Step4::Step4 () - : - fe (1), - dof_handler (triangulation) -{} - - - // @sect4{Step4::make_grid} - - // Grid creation is something inherently - // dimension dependent. However, as long as - // the domains are sufficiently similar in 2D - // or 3D, the library can abstract for - // you. In our case, we would like to again - // solve on the square $[-1,1]\times [-1,1]$ - // in 2D, or on the cube $[-1,1] \times - // [-1,1] \times [-1,1]$ in 3D; both can be - // termed GridGenerator::hyper_cube(), so we may - // use the same function in whatever - // dimension we are. Of course, the functions - // that create a hypercube in two and three - // dimensions are very much different, but - // that is something you need not care - // about. Let the library handle the - // difficult things. -template -void Step4::make_grid () -{ - GridGenerator::hyper_cube (triangulation, -1, 1); - triangulation.refine_global (6); - - std::cout << " Number of active cells: " - << triangulation.n_active_cells() - << std::endl - << " Total number of cells: " - << triangulation.n_cells() - << std::endl; -} - - // @sect4{Step4::setup_system} - - // This function looks - // exactly like in the previous example, - // although it performs actions that in their - // details are quite different if - // dim happens to be 3. The only - // significant difference from a user's - // perspective is the number of cells - // resulting, which is much higher in three - // than in two space dimensions! -template -void Step4::setup_system () -{ - dof_handler.distribute_dofs (fe); - - std::cout << " Number of degrees of freedom: " - << dof_handler.n_dofs() - << std::endl; - - CompressedSparsityPattern c_sparsity(dof_handler.n_dofs()); - DoFTools::make_sparsity_pattern (dof_handler, c_sparsity, constraints, false); -// c_sparsity.compress (); - sparsity_pattern.copy_from(c_sparsity); - - system_matrix.reinit (sparsity_pattern); - system_matrix_complete.reinit (sparsity_pattern); - - solution.reinit (dof_handler.n_dofs()); - system_rhs.reinit (dof_handler.n_dofs()); - system_rhs_complete.reinit (dof_handler.n_dofs()); - resid_vector.reinit (dof_handler.n_dofs()); - active_set.reinit (dof_handler.n_dofs()); -} - - - // @sect4{Step4::assemble_system} - - // Unlike in the previous example, we - // would now like to use a - // non-constant right hand side - // function and non-zero boundary - // values. Both are tasks that are - // readily achieved with a only a few - // new lines of code in the - // assemblage of the matrix and right - // hand side. - // - // More interesting, though, is the - // way we assemble matrix and right - // hand side vector dimension - // independently: there is simply no - // difference to the - // two-dimensional case. Since the - // important objects used in this - // function (quadrature formula, - // FEValues) depend on the dimension - // by way of a template parameter as - // well, they can take care of - // setting up properly everything for - // the dimension for which this - // function is compiled. By declaring - // all classes which might depend on - // the dimension using a template - // parameter, the library can make - // nearly all work for you and you - // don't have to care about most - // things. -template -void Step4::assemble_system () -{ - QGauss quadrature_formula(2); - - // We wanted to have a non-constant right - // hand side, so we use an object of the - // class declared above to generate the - // necessary data. Since this right hand - // side object is only used locally in the - // present function, we declare it here as - // a local variable: - const RightHandSide right_hand_side; - - // Compared to the previous example, in - // order to evaluate the non-constant right - // hand side function we now also need the - // quadrature points on the cell we are - // presently on (previously, we only - // required values and gradients of the - // shape function from the - // FEValues object, as well as - // the quadrature weights, - // FEValues::JxW() ). We can tell the - // FEValues object to do for - // us by also giving it the - // #update_quadrature_points - // flag: - FEValues fe_values (fe, quadrature_formula, - update_values | update_gradients | - update_quadrature_points | update_JxW_values); - - // We then again define a few - // abbreviations. The values of these - // variables of course depend on the - // dimension which we are presently - // using. However, the FE and Quadrature - // classes do all the necessary work for - // you and you don't have to care about the - // dimension dependent parts: - const unsigned int dofs_per_cell = fe.dofs_per_cell; - const unsigned int n_q_points = quadrature_formula.size(); - - FullMatrix cell_matrix (dofs_per_cell, dofs_per_cell); - Vector cell_rhs (dofs_per_cell); - - std::vector local_dof_indices (dofs_per_cell); - - // Next, we again have to loop over all - // cells and assemble local contributions. - // Note, that a cell is a quadrilateral in - // two space dimensions, but a hexahedron - // in 3D. In fact, the - // active_cell_iterator data - // type is something different, depending - // on the dimension we are in, but to the - // outside world they look alike and you - // will probably never see a difference - // although the classes that this typedef - // stands for are in fact completely - // unrelated: - typename DoFHandler::active_cell_iterator - cell = dof_handler.begin_active(), - endc = dof_handler.end(); - - for (; cell!=endc; ++cell) - { - fe_values.reinit (cell); - cell_matrix = 0; - cell_rhs = 0; - - // Now we have to assemble the - // local matrix and right hand - // side. This is done exactly - // like in the previous - // example, but now we revert - // the order of the loops - // (which we can safely do - // since they are independent - // of each other) and merge the - // loops for the local matrix - // and the local vector as far - // as possible to make - // things a bit faster. - // - // Assembling the right hand side - // presents the only significant - // difference to how we did things in - // step-3: Instead of using a constant - // right hand side with value 1, we use - // the object representing the right - // hand side and evaluate it at the - // quadrature points: - for (unsigned int q_point=0; q_pointcell_matrix(i,j), we - // have to multiply the gradients of - // shape functions $i$ and $j$ at point - // q_point and multiply it with the - // scalar weights JxW. This is what - // actually happens: - // fe_values.shape_grad(i,q_point) - // returns a dim - // dimensional vector, represented by a - // Tensor@<1,dim@> object, - // and the operator* that multiplies it - // with the result of - // fe_values.shape_grad(j,q_point) - // makes sure that the dim - // components of the two vectors are - // properly contracted, and the result - // is a scalar floating point number - // that then is multiplied with the - // weights. Internally, this operator* - // makes sure that this happens - // correctly for all dim - // components of the vectors, whether - // dim be 2, 3, or any - // other space dimension; from a user's - // perspective, this is not something - // worth bothering with, however, - // making things a lot simpler if one - // wants to write code dimension - // independently. - - // With the local systems assembled, - // the transfer into the global matrix - // and right hand side is done exactly - // as before, but here we have again - // merged some loops for efficiency: - cell->get_dof_indices (local_dof_indices); -// for (unsigned int i=0; iBoundaryValues -// // class declared above): -// -// MatrixTools::apply_boundary_values (boundary_values, -// system_matrix, -// solution, -// system_rhs); -} - - // @sect4{Step4::projection_active_set} - - // Projection and updating of the active set - // for the dofs which penetrates the obstacle. -template -void Step4::projection_active_set () -{ -// const Obstacle obstacle; -// std::vector vertex_touched (triangulation.n_vertices(), -// false); -// -// boundary_values.clear (); -// VectorTools::interpolate_boundary_values (dof_handler, -// 0, -// BoundaryValues(), -// boundary_values); -// -// typename DoFHandler::active_cell_iterator -// cell = dof_handler.begin_active(), -// endc = dof_handler.end(); -// -// active_set = 0; -// unsigned int n = 0; -// for (; cell!=endc; ++cell) -// for (unsigned int v=0; v::vertices_per_cell; ++v) -// { -// if (vertex_touched[cell->vertex_index(v)] == false) -// { -// vertex_touched[cell->vertex_index(v)] = true; -// unsigned int index_x = cell->vertex_dof_index (v,0); -// // unsigned int index_y = cell->vertex_dof_index (v,1); -// -// Point point (cell->vertex (v)[0], cell->vertex (v)[1]); -// double obstacle_value = obstacle.value (point); -// if (solution (index_x) >= obstacle_value && resid_vector (index_x) <= 0) -// { -// solution (index_x) = obstacle_value; -// boundary_values.insert (std::pair(index_x, obstacle_value)); -// active_set (index_x) = 1; -// n += 1; -// } -// } -// } -// std::cout<< "Number of active contraints: " << n < obstacle; - std::vector vertex_touched (triangulation.n_vertices(), - false); - typename DoFHandler::active_cell_iterator - cell = dof_handler.begin_active(), - endc = dof_handler.end(); - - constraints.clear(); - active_set = 0; - for (; cell!=endc; ++cell) - for (unsigned int v=0; v::vertices_per_cell; ++v) - { - unsigned int index_x = cell->vertex_dof_index (v,0); - - Point point (cell->vertex (v)[0], cell->vertex (v)[1]); - double obstacle_value = obstacle.value (point); - if (solution (index_x) >= obstacle_value && resid_vector (index_x) <= 0) - { - constraints.add_line (index_x); - constraints.set_inhomogeneity (index_x, obstacle_value); - solution (index_x) = 0; - active_set (index_x) = 1; - } - } - - VectorTools::interpolate_boundary_values (dof_handler, - 0, - BoundaryValues(), - constraints); - constraints.close (); -} - - // @sect4{Step4::solve} - - // Solving the linear system of - // equations is something that looks - // almost identical in most - // programs. In particular, it is - // dimension independent, so this - // function is copied verbatim from the - // previous example. -template -void Step4::solve () -{ - ReductionControl reduction_control (100, 1e-12, 1e-2); - SolverCG<> solver (reduction_control); - SolverBicgstab<> solver_bicgstab (reduction_control); - PreconditionSSOR > precondition; - precondition.initialize (system_matrix, 1.2); - - solver.solve (system_matrix, solution, system_rhs, precondition); - - std::cout << "Initial error: " << reduction_control.initial_value() <data_out.write_gnuplot call - // by data_out.write_vtk. - // - // Since the program will run both 2d and 3d - // versions of the laplace solver, we use the - // dimension in the filename to generate - // distinct filenames for each run (in a - // better program, one would check whether - // dim can have other values - // than 2 or 3, but we neglect this here for - // the sake of brevity). -template -void Step4::output_results (Vector vector_to_plot, const std::string& title) const -{ - DataOut data_out; - - data_out.attach_dof_handler (dof_handler); - data_out.add_data_vector (vector_to_plot, "vector_to_plot"); - - data_out.build_patches (); - - std::ofstream output_vtk (dim == 2 ? - (title + ".vtk").c_str () : - (title + ".vtk").c_str ()); - data_out.write_vtk (output_vtk); - - std::ofstream output_gnuplot (dim == 2 ? - (title + ".gp").c_str () : - (title + ".gp").c_str ()); - data_out.write_gnuplot (output_gnuplot); -} - - - - // @sect4{Step4::run} - - // This is the function which has the - // top-level control over - // everything. Apart from one line of - // additional output, it is the same - // as for the previous example. -template -void Step4::run () -{ - std::cout << "Solving problem in " << dim << " space dimensions." << std::endl; - - make_grid(); - setup_system (); - - constraints.clear (); - VectorTools::interpolate_boundary_values (dof_handler, - 0, - BoundaryValues(), - constraints); - constraints.close (); - ConstraintMatrix constraints_complete (constraints); - assemble_system (); - - system_matrix_complete.copy_from (system_matrix); - system_rhs_complete = system_rhs; - - std::cout<< "Update Active Set:" <main function} - - // And this is the main function. It also - // looks mostly like in step-3, but if you - // look at the code below, note how we first - // create a variable of type - // Step4@<2@> (forcing - // the compiler to compile the class template - // with dim replaced by - // 2) and run a 2d simulation, - // and then we do the whole thing over in 3d. - // - // In practice, this is probably not what you - // would do very frequently (you probably - // either want to solve a 2d problem, or one - // in 3d, but not both at the same - // time). However, it demonstrates the - // mechanism by which we can simply change - // which dimension we want in a single place, - // and thereby force the compiler to - // recompile the dimension independent class - // templates for the dimension we - // request. The emphasis here lies on the - // fact that we only need to change a single - // place. This makes it rather trivial to - // debug the program in 2d where computations - // are fast, and then switch a single place - // to a 3 to run the much more computing - // intensive program in 3d for `real' - // computations. - // - // Each of the two blocks is enclosed in - // braces to make sure that the - // laplace_problem_2d variable - // goes out of scope (and releases the memory - // it holds) before we move on to allocate - // memory for the 3d case. Without the - // additional braces, the - // laplace_problem_2d variable - // would only be destroyed at the end of the - // function, i.e. after running the 3d - // problem, and would needlessly hog memory - // while the 3d run could actually use it. - // - // Finally, the first line of the function is - // used to suppress some output. Remember - // that in the previous example, we had the - // output from the linear solvers about the - // starting residual and the number of the - // iteration where convergence was - // detected. This can be suppressed through - // the deallog.depth_console(0) - // call. - // - // The rationale here is the following: the - // deallog (i.e. deal-log, not de-allog) - // variable represents a stream to which some - // parts of the library write output. It - // redirects this output to the console and - // if required to a file. The output is - // nested in a way so that each function can - // use a prefix string (separated by colons) - // for each line of output; if it calls - // another function, that may also use its - // prefix which is then printed after the one - // of the calling function. Since output from - // functions which are nested deep below is - // usually not as important as top-level - // output, you can give the deallog variable - // a maximal depth of nested output for - // output to console and file. The depth zero - // which we gave here means that no output is - // written. By changing it you can get more - // information about the innards of the - // library. -int main () -{ - deallog.depth_console (0); - { - Step4<2> laplace_problem_2d; - laplace_problem_2d.run (); - } - - // { - // Step4<3> laplace_problem_3d; - // laplace_problem_3d.run (); - // } - - return 0; -}