From: kronbichler Date: Wed, 6 Aug 2008 16:17:24 +0000 (+0000) Subject: Added some more comments. More to come... X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=c51f90be835461cba18a2914a9289f8370e17199;p=dealii-svn.git Added some more comments. More to come... git-svn-id: https://svn.dealii.org/trunk@16498 0785d39b-7218-0410-832d-ea1e28bc413d --- diff --git a/deal.II/examples/step-31/step-31.cc b/deal.II/examples/step-31/step-31.cc index f0d8925f55..bbcdf43d84 100644 --- a/deal.II/examples/step-31/step-31.cc +++ b/deal.II/examples/step-31/step-31.cc @@ -102,7 +102,7 @@ template // Furthermore, we have a slightly more // sophisticated solver we are going to // use, so there is a second pointer - // to a sparse ILU for the pressure + // to a sparse ILU for a pressure // mass matrix as well. template class BoussinesqFlowProblem @@ -148,10 +148,11 @@ class BoussinesqFlowProblem - // @sect3{Boundary values, initial values and right hand sides} + // @sect3{Equation data} // Again, the next stage in the program - // is the definition of the various + // is the definition of the equation + // data, that is, the various // boundary conditions, the right hand // side and the initial condition (remember // that we're about to solve a time- @@ -168,7 +169,7 @@ class BoussinesqFlowProblem // pressure p and temperature // T. - // Secondly, we set the initial + // Secondly, we set an initial // condition for all problem variables, // i.e., for u, p and T, // so the function has dim+2 @@ -178,7 +179,8 @@ class BoussinesqFlowProblem // The last definition of this kind // is the one for the right hand - // side function. Again, it is very + // side function. Again, the content + // of the function is very // basic and zero in most of the // components, except for a source // of temperature in some isolated @@ -319,14 +321,14 @@ RightHandSide::vector_value (const Point &p, // This section introduces some // objects that are used for the + // solution of the linear equations of // Stokes system that we need to // solve in each time step. The basic // structure is still the same as // in step-20, where Schur complement // based preconditioners and solvers - // have been introduced. The interface - // is the same as in step-22 for - // the Stokes system. + // have been introduced, with the + // actual interface taken from step-22. // @sect4{The InverseMatrix class template} @@ -394,9 +396,97 @@ void InverseMatrix::vmult (Vector &dst, // of the Schur complement // preconditioner as described // in the section on improved - // solvers in step-22. See there - // for more explanation of the - // method. + // solvers in step-22. + // + // The basic + // concept of the preconditioner is + // different to the solution + // strategy used in step-20 and + // step-22. There, the Schur + // complement was used for a + // two-stage solution of the linear + // system. Recall that the process + // in the Schur complement solver is + // a Gaussian elimination of + // a 2x2 block matrix, where each + // block is solved iteratively. + // Here, the idea is to let + // an iterative solver act on the + // whole system, and to use + // a Schur complement for + // preconditioning. As usual when + // dealing with preconditioners, we + // don't intend to exacly set up a + // Schur complement, but rather use + // a good approximation to the + // Schur complement for the purpose of + // preconditioning. + // + // So the question is how we can + // obtain a good preconditioner. + // Let's have a look at the + // preconditioner matrix P + // acting on the block system, built + // as + // @f{eqnarray*} + // P^{-1} + // = + // \left(\begin{array}{cc} + // A^{-1} & 0 \\ S^{-1} B A^{-1} & -S^{-1} + // \end{array}\right) + // @f} + // using the Schur complement + // $S = B A^{-1} B^T$. If we apply + // this matrix in the solution of + // a linear system, convergence of + // an iterative Krylov-based solver + // will be governed by the matrix + // @f{eqnarray*} + // P^{-1}\left(\begin{array}{cc} + // A & B^T \\ B & 0 + // \end{array}\right) + // = + // \left(\begin{array}{cc} + // I & A^{-1} B^T \\ 0 & 0 + // \end{array}\right), + // @f} + // which turns out to be very simple. + // A GMRES solver based on exact + // matrices would converge in two + // iterations, since there are + // only two distinct eigenvalues. + // Such a preconditioner for the + // blocked Stokes system has been + // proposed by Silvester and Wathen, + // Fast iterative solution of + // stabilised Stokes systems part II. + // Using general block preconditioners. + // (SIAM J. Numer. Anal., 31 (1994), + // pp. 1352-1367). + // + // The deal.II users who have already + // gone through the step-20 and step-22 + // tutorials can certainly imagine + // how we're going to implement this. + // We replace the inverse matrices + // in $P^{-1}$ using the InverseMatrix + // class, and the inverse Schur + // complement will be approximated + // by the pressure mass matrix $M_p$. + // Having this in mind, we define a + // preconditioner class with a + // vmult functionality, + // which is all we need for the + // interaction with the usual solver + // functions further below in the + // program code. + // + // First the declarations. These + // are similar to the definition of + // the Schur complement in step-20, + // with the difference that we need + // some more preconditioners in + // the constructor. template class BlockSchurPreconditioner : public Subscriptor { @@ -432,6 +522,26 @@ BlockSchurPreconditioner::BlockSchurPrecondit { } + + // This is the vmult + // function. We implement + // the action of $P^{-1}$ as described + // above in three successive steps. + // The first step multiplies + // the velocity vector by a + // preconditioner of the matrix A. + // The resuling velocity vector + // is then multiplied by $B$ and + // subtracted from the pressure. + // This second step only acts on + // the pressure vector and is + // accomplished by the command + // SparseMatrix::residual. Next, + // we change the sign in the + // temporary pressure vector and + // finally multiply by the pressure + // mass matrix to get the final + // pressure vector. template void BlockSchurPreconditioner::vmult ( BlockVector &dst, @@ -448,6 +558,19 @@ void BlockSchurPreconditioner::vmult ( // @sect3{BoussinesqFlowProblem class implementation} // @sect4{BoussinesqFlowProblem::BoussinesqFlowProblem} + // + // The constructor of this class is + // an extension of the constructor + // in step-22. We need to include + // the temperature in the definition + // of the finite element. As discussed + // in the introduction, we are going + // to use discontinuous elements + // of one degree less than for pressure + // there. Moreover, we initialize + // the time stepping as well as the + // options for the matrix assembly + // and preconditioning. template BoussinesqFlowProblem::BoussinesqFlowProblem (const unsigned int degree) : @@ -463,7 +586,7 @@ BoussinesqFlowProblem::BoussinesqFlowProblem (const unsigned int degree) - + // @sect4{BoussinesqFlowProblem::setup_dofs} template void BoussinesqFlowProblem::setup_dofs (const bool setup_matrices) { @@ -544,6 +667,7 @@ void BoussinesqFlowProblem::setup_dofs (const bool setup_matrices) + // @sect4{BoussinesqFlowProblem::assemble_system} template void BoussinesqFlowProblem::assemble_system () { @@ -780,7 +904,7 @@ void BoussinesqFlowProblem::assemble_system () - + // @sect4{BoussinesqFlowProblem::assemble_rhs_T} template void BoussinesqFlowProblem::assemble_rhs_T () { @@ -1060,6 +1184,7 @@ void BoussinesqFlowProblem::assemble_rhs_T () + // @sect4{BoussinesqFlowProblem::solve} template void BoussinesqFlowProblem::solve () { @@ -1081,7 +1206,7 @@ void BoussinesqFlowProblem::solve () // Define some temporary vectors // for the solution process. // TODO: Can we somhow avoid copying - // the vectors back and forth? I.e. + // these vectors back and forth? I.e. // accessing the block vectors in a // similar way as the matrix with the // BlockMatrixArray class? @@ -1161,6 +1286,7 @@ void BoussinesqFlowProblem::solve () + // @sect4{BoussinesqFlowProblem::output_results} template void BoussinesqFlowProblem::output_results () const { @@ -1197,9 +1323,9 @@ void BoussinesqFlowProblem::output_results () const + // @sect4{BoussinesqFlowProblem::refine_mesh} template -void -BoussinesqFlowProblem::refine_mesh () +void BoussinesqFlowProblem::refine_mesh () { Vector estimated_error_per_cell (triangulation.n_active_cells()); @@ -1244,9 +1370,9 @@ BoussinesqFlowProblem::refine_mesh () + // @sect4{BoussinesqFlowProblem::get_maximal_velocity} template -double -BoussinesqFlowProblem::get_maximal_velocity () const +double BoussinesqFlowProblem::get_maximal_velocity () const { QGauss quadrature_formula(degree+2); const unsigned int n_q_points @@ -1282,6 +1408,7 @@ BoussinesqFlowProblem::get_maximal_velocity () const + // @sect4{BoussinesqFlowProblem::run} template void BoussinesqFlowProblem::run () { @@ -1387,6 +1514,7 @@ void BoussinesqFlowProblem::run () + // @sect3{The main function} int main () { try