From: Wolfgang Bangerth Date: Wed, 13 May 2020 21:34:30 +0000 (-0600) Subject: Use better variable names when computing the error estimator. X-Git-Tag: v9.2.0-rc2~7^2~7 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=c5ab7ef8f9ca44cab8822dea6522dec0825c17a9;p=dealii.git Use better variable names when computing the error estimator. --- diff --git a/examples/step-50/step-50.cc b/examples/step-50/step-50.cc index b1f5b3c63a..df2f3db567 100644 --- a/examples/step-50/step-50.cc +++ b/examples/step-50/step-50.cc @@ -1220,7 +1220,7 @@ void LaplaceProblem::estimate() mpi_communicator); temp_solution = solution; - Coefficient coefficient; + const Coefficient coefficient; error_estimator.reinit(triangulation.n_active_cells()); @@ -1243,14 +1243,14 @@ void LaplaceProblem::estimate() copy_data.cell_index = cell->active_cell_index(); - double value = 0.; + double residual_norm_square = 0.; for (unsigned k = 0; k < fe_values.n_quadrature_points; ++k) { - const double res = - cell->diameter() * (rhs_value + nu * trace(hessians[k])); - value += res * res * fe_values.JxW(k); + const double residual = (rhs_value + nu * trace(hessians[k])); + residual_norm_square += residual * residual * fe_values.JxW(k); } - copy_data.value = std::sqrt(value); + + copy_data.value = cell->diameter() * std::sqrt(residual_norm_square); }; // Assembler for face term $\sum_F h_F \| \jump{\epsilon \nabla u \cdot n} @@ -1273,9 +1273,8 @@ void LaplaceProblem::estimate() copy_data_face.cell_indices[0] = cell->active_cell_index(); copy_data_face.cell_indices[1] = ncell->active_cell_index(); - const double nu1 = coefficient.value(cell->center()); - const double nu2 = coefficient.value(ncell->center()); - const double h = cell->face(f)->measure(); + const double coeff1 = coefficient.value(cell->center()); + const double coeff2 = coefficient.value(ncell->center()); std::vector> grad_u[2]; @@ -1286,20 +1285,21 @@ void LaplaceProblem::estimate() temp_solution, grad_u[i]); } - double value = 0.; + double jump_norm_square = 0.; for (unsigned int qpoint = 0; qpoint < fe_interface_values.n_quadrature_points; ++qpoint) { const double jump = - nu1 * grad_u[0][qpoint] * fe_interface_values.normal(qpoint) - - nu2 * grad_u[1][qpoint] * fe_interface_values.normal(qpoint); + coeff1 * grad_u[0][qpoint] * fe_interface_values.normal(qpoint) - + coeff2 * grad_u[1][qpoint] * fe_interface_values.normal(qpoint); - value += h * jump * jump * fe_interface_values.JxW(qpoint); + jump_norm_square += jump * jump * fe_interface_values.JxW(qpoint); } - copy_data_face.values[0] = 0.5 * std::sqrt(value); + const double h = cell->face(f)->measure(); + copy_data_face.values[0] = 0.5 * h * std::sqrt(jump_norm_square); copy_data_face.values[1] = copy_data_face.values[0]; }; @@ -1336,14 +1336,14 @@ void LaplaceProblem::estimate() MeshWorker::assemble_own_cells | MeshWorker::assemble_ghost_faces_both | MeshWorker::assemble_own_interior_faces_once, - nullptr /*boundary_worker*/, + /*boundary_worker=*/nullptr, face_worker); } // @sect4{LaplaceProblem::refine_grid()} -// We use the cell-wise estimator stored in the vector @p error_estimator and +// We use the cell-wise estimator stored in the vector @p estimate_vector and // refine a fixed number of cells (chosen here to roughly double the number of // DoFs in each step). template @@ -1377,6 +1377,7 @@ void LaplaceProblem::output_results(const unsigned int cycle) DataOut data_out; data_out.attach_dof_handler(dof_handler); data_out.add_data_vector(temp_solution, "solution"); + Vector subdomain(triangulation.n_active_cells()); for (unsigned int i = 0; i < subdomain.size(); ++i) subdomain(i) = triangulation.locally_owned_subdomain();