From: Wolfgang Bangerth Date: Fri, 8 Sep 2006 15:44:33 +0000 (+0000) Subject: A bit more X-Git-Tag: v8.0.0~11115 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=c71c4ef8f8241458c1e114ee798388dcb2d79e9c;p=dealii.git A bit more git-svn-id: https://svn.dealii.org/trunk@13857 0785d39b-7218-0410-832d-ea1e28bc413d --- diff --git a/deal.II/examples/step-23/doc/intro.dox b/deal.II/examples/step-23/doc/intro.dox index 78172918f5..3bce82cb2a 100644 --- a/deal.II/examples/step-23/doc/intro.dox +++ b/deal.II/examples/step-23/doc/intro.dox @@ -314,6 +314,8 @@ whereas we do not have to do that for the second one. CFL condition +Energy conservation +

How the program works

Given the above formulation, .... diff --git a/deal.II/examples/step-23/step-23.cc b/deal.II/examples/step-23/step-23.cc index c7a9739b69..db6a1ef6b2 100644 --- a/deal.II/examples/step-23/step-23.cc +++ b/deal.II/examples/step-23/step-23.cc @@ -286,11 +286,11 @@ double BoundaryValues::value (const Point &p, { Assert (component == 0, ExcInternalError()); - if ((this->get_time() <= 1) && - (p[0] < 1) && + if ((this->get_time() <= 0.5) && + (p[0] < 0) && (p[1] < 1./3) && (p[1] > -1./3)) - return std::sin (this->get_time() * 2 * deal_II_numbers::PI); + return std::sin (this->get_time() * 4 * deal_II_numbers::PI); else return 0; } @@ -300,7 +300,19 @@ double BoundaryValues::value (const Point &p, // @sect3{Implementation of the WaveEquation class} - + // The implementation of the actual logic is + // actually fairly short, since we relegate + // things like assembling the matrices and + // right hand side vectors to the + // library. The rest boils down to not much + // more than 130 lines of actual code, a + // significant fraction of which is + // boilerplate code that can be taken from + // previous example programs (e.g. the + // functions that solve linear systems, or + // that generate output). + // + // Let's start with the constructor: template WaveEquation::WaveEquation () : fe (1), @@ -310,7 +322,14 @@ WaveEquation::WaveEquation () : {} + // @sect4{WaveEquation::setup_system} + // The next function is the one that sets up + // the mesh, DoFHandler, and matrices and + // vectors at the beginning of the program, + // i.e. before the first time step. The first + // few lines are pretty much standard if + // you've read at least to step-6: template void WaveEquation::setup_system () { @@ -337,6 +356,44 @@ void WaveEquation::setup_system () DoFTools::make_sparsity_pattern (dof_handler, sparsity_pattern); sparsity_pattern.compress(); + // Then comes a block where we have to + // initialize the 3 matrices we need in the + // course of the program: the mass matrix, + // the laplace matrix, and the matrix + // $M+k^2\theta^2A$ used when solving for + // $U^n$ in each time step. + // + // When setting up these matrices, note + // that they all make use of the same + // sparsity pattern object. Finally, the + // reason why matrices and sparsity + // patterns are separate objects in deal.II + // (unlike in many other finite element or + // linear algebra classes) becomes clear: + // in a significant fraction of + // applications, one has to hold several + // matrices that happen to have the same + // sparsity pattern, and there is no reason + // for them not to share this information, + // rather than re-building and wasting + // memory on it several times. + // + // After initializing all of these + // matrices, we call library functions that + // build the Laplace and mass matrices. All + // they need is a DoFHandler object and a + // quadrature formula object that is to be + // used for numerical integration. Note + // that in many respect these functions are + // better than what we would usually do in + // application programs, as these functions + // for example automatically parallelize + // building the matrices if multiple + // processors are available in a + // machine. When we have both of these + // matrices, we form the third one by + // copying and adding the first two in + // appropriate multiples: system_matrix.reinit (sparsity_pattern); mass_matrix.reinit (sparsity_pattern); laplace_matrix.reinit (sparsity_pattern); @@ -348,7 +405,18 @@ void WaveEquation::setup_system () system_matrix.copy_from (mass_matrix); system_matrix.add (theta * theta * time_step * time_step, laplace_matrix); - + + // The rest of the function is spent on + // setting vector sizes to the correct + // value. The final line closes the hanging + // node constraints object. Since we work + // on a uniformly refined mesh, no + // constraints exist or have been computed + // (i.e. there was no need to call + // DoFTools::make_hanging_nod_constraints + // as in other programs), but we need a + // constraints object in one place further + // down below anyway. solution_u.reinit (dof_handler.n_dofs()); solution_v.reinit (dof_handler.n_dofs()); old_solution_u.reinit (dof_handler.n_dofs()); @@ -359,12 +427,32 @@ void WaveEquation::setup_system () } + // @sect4{WaveEquation::solve_u and WaveEquation::solve_u} + // The next two functions deal with solving + // the linear systems associated with the + // equations for $U^n$ and $V^n$. Both are + // not particularly interesting as they + // pretty much follow the scheme used in all + // the previous tutorial programs. + // + // One can make little experiments with + // preconditioners for the two matrices we + // have to invert. As it turns out, however, + // for the matrices at hand here, using + // Jacobi or SSOR preconditioners reduces the + // number of iterations necessary to solve + // the linear system slightly, but due to the + // cost of applying the preconditioner it is + // no win in terms of run-time. It is not + // much of a loss either, but let's keep it + // simple and just do without: template void WaveEquation::solve_u () { SolverControl solver_control (1000, 1e-8*system_rhs.l2_norm()); SolverCG<> cg (solver_control); + cg.solve (system_matrix, solution_u, system_rhs, PreconditionIdentity()); @@ -379,6 +467,7 @@ void WaveEquation::solve_v () { SolverControl solver_control (1000, 1e-8*system_rhs.l2_norm()); SolverCG<> cg (solver_control); + cg.solve (mass_matrix, solution_v, system_rhs, PreconditionIdentity()); @@ -389,6 +478,16 @@ void WaveEquation::solve_v () + // @sect4{WaveEquation::output_results} + + // Likewise, the following function is pretty + // much what we've done before. The only + // thing worth mentioning is how here we + // generate a string representation of the + // time step number padded with leading zeros + // to 3 character length using the + // Utilities::int_to_string function's second + // argument. template void WaveEquation::output_results () const { @@ -411,6 +510,22 @@ void WaveEquation::output_results () const + // @sect4{WaveEquation::run} + + // The following is really the only + // interesting function of the program. It + // contains the loop over all time steps, but + // before we get to that we have to set up + // the grid, DoFHandler, and matrices. In + // addition, we have to somehow get started + // with initial values. To this end, we use + // the VectorTools::project function that + // takes an object that describes a + // continuous function and computes the $L^2$ + // projection of this function onto the + // finite element space described by the + // DoFHandler object. Can't be any simpler + // than that: template void WaveEquation::run () { @@ -422,15 +537,56 @@ void WaveEquation::run () VectorTools::project (dof_handler, constraints, QGauss(3), InitialValuesV(), old_solution_v); + + // The next thing is to loop over all the + // time steps until we reach the end time + // ($T=5$ in this case). In each time step, + // we first have to solve for $U^n$, using + // the equation $(M^n + k^2\theta^2 A^n)U^n + // = M^{n,n-1}U^{n-1} - k^2\theta^2 + // A^{n,n-1}U^{n-1} + kM^{n,n-1}V^{n-1} - + // k^2\theta \left[ \theta F^n + (1-\theta) + // F^{n-1} \right]$. Note that we use the + // same mesh for all time steps, so that + // $M^n=M^{n,n-1}=M$ and + // $A^n=A^{n,n-1}=A$. What we therefore + // have to do first is to add up $MU^{n-1} + // - k^2\theta^2 AU^{n-1} + kMV^{n-1}$ and + // put the result into the + // system_rhs vector. (For + // these additions, we need a temporary + // vector that we declare before the loop + // to avoid repeated memory allocations in + // each time step.) + // + // The one thing to realize here is how we + // communicate the time variable to the + // object describing the right hand side: + // each object derived from the Function + // class has a time field that can be set + // using the Function::set_time and read by + // Function::get_time. In essence, using + // this mechanism, all functions of space + // and time are therefore considered + // functions of space evaluated at a + // particular time. This matches well what + // we typically need in finite element + // programs, where we almost always work on + // a single time step at a time, and where + // it never happens that, for example, one + // would like to evaluate a space-time + // function for all times at any given + // spatial location. + Vector tmp (solution_u.size()); - for (timestep_number=1, time=time_step; time<=5; time+=time_step, ++timestep_number) + for (timestep_number=1, time=time_step; + time<=5; + time+=time_step, ++timestep_number) { std::cout << "Time step " << timestep_number << " at t=" << time << std::endl; - Vector tmp (solution_u.size()); - mass_matrix.vmult (system_rhs, old_solution_u); mass_matrix.vmult (tmp, old_solution_v); @@ -450,7 +606,18 @@ void WaveEquation::run () rhs_function, tmp); system_rhs.add (theta * (1-theta) * time_step * time_step, tmp); - + // After so constructing the right hand + // side vector of the first equation, + // all we have to do is apply the + // correct boundary values. As for the + // right hand side, this is a + // space-time function evaluated at a + // particular time, which we + // interpolate at boundary nodes and + // then use the result to apply + // boundary values as we usually + // do. The result is then handed off to + // the solve_u() function: BoundaryValues boundary_values_function; boundary_values_function.set_time (time); @@ -466,6 +633,14 @@ void WaveEquation::run () solve_u (); + // The second step -- solving for $V^n$ + // works similarly, except that this + // time the matrix on the left is the + // mass matrix, the right hand side is + // $MV^{n-1} - k\left[ \theta A U^n + + // (1-\theta) AU^{n-1}\right]$, and + // there are no boundary values to be + // applied. laplace_matrix.vmult (system_rhs, solution_u); system_rhs *= -theta * time_step; @@ -487,6 +662,13 @@ void WaveEquation::run () solve_v (); + // Finally, after both solution + // components have been computed, we + // output the result, and go on to the + // next time step after shifting the + // present solution into the vectors + // that hold the solution at the + // previous time step: output_results (); old_solution_u = solution_u; @@ -495,14 +677,51 @@ void WaveEquation::run () } + // @sect3{The main function} + // What remains is the main function of the + // program. There is nothing here that hasn't + // been shown in several of the previous + // programs: int main () { - deallog.depth_console (0); - { - WaveEquation<2> wave_equation_solver; - wave_equation_solver.run (); - } + try + { + deallog.depth_console (0); + WaveEquation<2> wave_equation_solver; + wave_equation_solver.run (); + } + catch (std::exception &exc) + { + std::cerr << std::endl << std::endl + << "----------------------------------------------------" + << std::endl; + std::cerr << "Exception on processing: " << std::endl + << exc.what() << std::endl + << "Aborting!" << std::endl + << "----------------------------------------------------" + << std::endl; + + return 1; + } + // If the exception that was thrown + // somewhere was not an object of a + // class derived from the standard + // exception class, then we + // can't do anything at all. We + // then simply print an error + // message and exit. + catch (...) + { + std::cerr << std::endl << std::endl + << "----------------------------------------------------" + << std::endl; + std::cerr << "Unknown exception!" << std::endl + << "Aborting!" << std::endl + << "----------------------------------------------------" + << std::endl; + return 1; + } return 0; }