From: hartmann Date: Thu, 5 Apr 2001 11:26:06 +0000 (+0000) Subject: Extend each function of MatrixCreator to use an arbitrary mapping. Keep second versio... X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=c8d2f58e91d30f832848ce4b8db40899f2c26f33;p=dealii-svn.git Extend each function of MatrixCreator to use an arbitrary mapping. Keep second version without mapping argument for backward compatibility. Rewrite almost all documentation of MatrixCreator. git-svn-id: https://svn.dealii.org/trunk@4373 0785d39b-7218-0410-832d-ea1e28bc413d --- diff --git a/deal.II/deal.II/include/numerics/matrices.h b/deal.II/deal.II/include/numerics/matrices.h index c3919beacf..f9e1200666 100644 --- a/deal.II/deal.II/include/numerics/matrices.h +++ b/deal.II/deal.II/include/numerics/matrices.h @@ -24,6 +24,7 @@ template class SparseMatrix; template class BlockSparseMatrix; template class BlockVector; +template class Mapping; template class DoFHandler; template class MGDoFHandler; template class FEValues; @@ -31,14 +32,30 @@ template class FEValues; /** - * Provide a class which assembles certain standard matrices for a given - * triangulation, using a given finite element and a quadrature formula. - * All functions are static, so it is not necessary to create an object - * of this type, though you may do so. + * Provide a class which assembles certain standard matrices for a + * given triangulation, using a given finite element, a given mapping + * and a quadrature formula. All functions are static, so it is not + * necessary to create an object of this type, though you may do so. * * * @sect3{Conventions for all functions} * + * There exist two versions of each function. One with a @ref{Mapping} + * argument and one without. If a code uses a mapping different from + * @ref{MappingQ1} the functions @em{with} mapping argument should be + * used. Code that uses only @ref{MappingQ1} may also use the + * functions @em{without} @ref{Mapping} argument. Each of these latter + * functions create a @ref{MappingQ1} object and just call the + * respective functions with that object as mapping argument. The + * functions without @ref{Mapping} argument still exist to ensure + * backward compatibility. Nevertheless it is advised to change the + * user's codes to store a specific @ref{Mapping} object and to use + * the functions that take this @p{Mapping} object as argument. This + * gives the possibility to easily extend the user codes to work also + * on mappings of higher degree, this just by exchanging + * @ref{MappingQ1} by, for example, a @ref{MappingQ} or another + * @ref{Mapping} object of interest. + * * All functions take a sparse matrix object to hold the matrix to be * created. The functions assume that the matrix is initialized with a * sparsity pattern (@ref{SparsityPattern}) corresponding to the given degree @@ -48,9 +65,24 @@ template class FEValues; * * Furthermore it is assumed that no relevant data is in the matrix. All * entries will be overwritten. Entries which are not needed by the matrix - * (and were thus added 'by hand' after @p{make_sparsity_pattern} was called) - * are not touched and in special are not set to zero, so you have to care - * yourself about that if you really need these entries. + * are not touched and in special are not set to zero. + * In all cases, the elements of the matrix to be assembled are simply + * summed up from the contributions of each cell. Therefore you may want + * to clear the matrix before assemblage. + * + * All created matrices are `raw': they are not condensed, + * i.e. hanging nodes are not eliminated. The reason is that you may + * want to add several matrices and could then condense afterwards + * only once, instead of for every matrix. To actually do computations + * with these matrices, you have to condense the matrix using the + * @ref{ConstraintMatrix}@p{::condense} function; you also have to + * condense the right hand side accordingly and distribute the + * solution afterwards. + * + * If you want to use boundary conditions with the matrices generated + * by the functions of this class, you have to use a function like + * @p{ProblemBase<>::apply_dirichlet_bc} to matrix and right hand + * side. * * * @sect3{Supported matrices} @@ -58,88 +90,56 @@ template class FEValues; * At present there are functions to create the following matrices: * @begin{itemize} * @item @p{create_mass_matrix}: create the matrix with entries - * $m_{ij} = \int_\Omega \phi_i(x) \phi_j(x) dx$. Here, the $\phi_i$ - * are the basis functions of the finite element space given. - * This function uses the @ref{MassMatrix} class. + * $m_{ij} = \int_\Omega \phi_i(x) \phi_j(x) dx$ by numerical + * quadrature. Here, the $\phi_i$ are the basis functions of the + * finite element space given. * - * Two ways to create this matrix are offered. The first one uses - * numerical quadrature and the @ref{MassMatrix} class. In this case, - * a coefficient may be given to evaluate + * A coefficient may be given to evaluate * $m_{ij} = \int_\Omega a(x) \phi_i(x) \phi_j(x) dx$ instead. - * This way of setting up the mass matrix is quite general, but has - * some drawbacks, see the documentation of the @ref{MassMatrix} class. - * - * The other way uses exact integration, as offered by the finite - * element class used. This way you can avoid quadrature errors and - * the assemblage is much faster. However, no coefficient can be - * given. - * - * Note that the effect of the two ways of setting up the mass - * matrix is not the same if you use finite elements which are - * composed of several subelements. In this case, using the - * quadrature free way (without coefficient) results in a matrix - * which does not couple the subelements, as described in the - * @ref{FESystem}@p{::get_local_mass_matrix} documentation, while the - * way using quadrature sets up the full matrix, i.e. with the - * cross coupling of shape functions belonging to different subelements. - * - * If the finite element for which the mass matrix is to be built - * has more than one component, the resulting matrix will not couple - * the different components. It will furthermore accept a single - * coefficient through the @ref{Function} parameter for all - * components. If you want different coefficients for the different - * parameters, you have to assemble the matrix yourself, sorry; the - * implementation of the function will serve as a good starting - * point, though. (You may also modify the implementation to accept - * vector-valued functions and send this implementation to us -- we - * will then include this implementation into the library.) - * - * @item @p{create_laplace_matrix}: there are two versions of this; the - * one which takes the @ref{Function} object creates - * $a_{ij} = \int_\Omega a(x) \nabla\phi_i(x) \nabla\phi_j(x) dx$, - * $a$ being the given function, while the other one assumes that - * $a=1$ which enables some optimizations. In fact the two versions - * are in one function, the coefficient being given as a defaulted - * argument, which is a pointer to a function and defaults to zero. - * This function uses the @ref{LaplaceMatrix} class. - * - * If the finite element in use presently has more than only one - * component, this function may not be overly useful. It assembles a - * Laplace matrix block for each component (with the same - * coefficient for each component). These blocks are not coupled. * - * @end{itemize} - * - * All created matrices are `raw': they are not condensed, i.e. hanging - * nodes are not eliminated. The reason is that you may want to add - * several matrices and could then condense afterwards only once, - * instead of for every matrix. To actually do computations with these - * matrices, you have to condense the matrix using the - * @ref{ConstraintMatrix}@p{::condense} function; you also have to condense the - * right hand side accordingly and distribute the solution afterwards. * - * In all cases, the elements of the matrix to be assembled are simply - * summed up from the contributions of each cell. Therefore you may want - * to clear the matrix before assemblage. + * @item @p{create_laplace_matrix}: create the matrix with entries + * $m_{ij} = \int_\Omega \nabla\phi_i(x) \nabla\phi_j(x) dx$ by + * numerical quadrature. * - * If you want to use boundary conditions, you have to use a function - * like @p{ProblemBase<>::apply_dirichlet_bc} to matrix and right hand - * side. + * Again, a coefficient may be given to evaluate + * $m_{ij} = \int_\Omega a(x) \nabla\phi_i(x) \phi_j(x) dx$ instead. + * @end{itemize} + * + * Make sure that the order of the @ref{Quadrature} formula given to these + * functions is sufficiently high to compute the matrices with the + * required accuracy. For the choice of this quadrature rule you need + * to take into account the polynomial degree of the @ref{FiniteElement} + * basis functions, the roughness of the coefficient @p{a}, as well as + * the degree of the given @p{Mapping}. + * + * Note, that for system elements the mass matrix and the laplace + * matrix is implemented such that each components couples only with + * itself. I.e. there is no coupling of shape functions belonging to + * different components. + * + * If the finite element for which the mass matrix or the laplace + * matrix is to be built has more than one component, this function + * accepts a single coefficient as well as a vector valued coefficient + * function. For the latter case make sure that the number of + * components coincides with the number of components of the system + * finite element. * * * @sect3{Matrices on the boundary} * * The @p{create_boundary_mass_matrix} creates the matrix with entries - * $m_{ij} = \int_{\Gamma} \phi_i \phi_j dx$, where $\Gamma$ is the union - * of boundary parts with indicators contained in a set passed to the - * function (i.e. if you want to set up the mass matrix for the parts of - * the boundary with indicators zero and 2, you pass the function a set - * of @p{unsigned char}s as parameter @p{boundary_parts} containing the elements - * zero and 2). The $\phi_i$ are the basis functions which have at least - * part of their support om $\Gamma$. The mapping between row and column - * indices in the mass matrix and the right hand side and the global degree - * of freedom numbers of the respective basis functions on the whole domain - * is returned as a vector of numbers which has the same size as the dimension - * of matrix and right hand side. + * $m_{ij} = \int_{\Gamma} \phi_i \phi_j dx$, where $\Gamma$ is the + * union of boundary parts with indicators contained in a + * @p{FunctionMap} passed to the function (i.e. if you want to set up + * the mass matrix for the parts of the boundary with indicators zero + * and 2, you pass the function a map of @p{unsigned char}s as + * parameter @p{boundary_functions} containing the keys zero and + * 2). The $\phi_i$ are the basis functions which have at least part + * of their support on $\Gamma$. The mapping + * @p{dof_to_boundary_mapping} required by this function maps global + * DoF numbers to a numbering of the degrees of freedom located on the + * boundary, and can be obtained using the function + * @p{DoFTools::map_dof_to_boundary_indices}. * * Since in most cases we are not interested in the pure mass matrix on the * boundary, but rather need it to compute the projection of a function to @@ -153,35 +153,33 @@ template class FEValues; * The object describing the exact form of the boundary is obtained from the * triangulation object. * + * * @sect3{Right hand sides} * * In many cases, you will not only want to build the matrix, but also * a right hand side, which will give a vector with * $f_i = \int_\Omega f(x) \phi_i(x) dx$. For this purpose, each function * exists in two versions, one only building the matrix and one also - * building the right hand side vector. (The @p{create_mass_matrix} function - * which does not use quadrature does not offer a version to evaluate a right - * hand side also, since this needs quadrature anyway. Take look at the - * @ref{VectorTools} class to find a function to set up a right hand side vector - * only.) - * - * Creation of the right hand side - * is the same for all operators and therefore for all of the functions - * below. It would be most orthogonal to write one single function which - * builds up the right hand side and not provide many functions doing - * the same thing. However, this may result in a heavy performance - * penalty, since then many values of a certain finite element have to - * be computed twice, so it is more economical to implement it more than - * once. If you only want to create a right hand side as above, there is - * a function in the @p{VectorCreator} class. The use of the latter may be - * useful if you want to create many right hand side vectors. - * - * - * All functions in this collection use the finite elemen given to the - * @ref{DoFHandler} object the last time that the degrees of freedom were - * distributed on the triangulation. - * - * @author Wolfgang Bangerth, 1998 + * building the right hand side vector. If you want to create a right + * hand side vector without creating a matrix, you can use the + * @ref{VectorTools::create_right_hand_side} function. The use of the + * latter may be useful if you want to create many right hand side + * vectors. + * + * Creation of the right hand side is the same for all operators and + * therefore for all of the functions below. It would be most + * orthogonal to write one single function which builds up the right + * hand side and not provide many functions doing the same + * thing. However, this may result in a heavy performance penalty, + * since then many values of a certain finite element have to be + * computed twice, so it is more economical to implement it more than + * once. + * + * All functions in this collection use the finite element given to + * the @ref{DoFHandler} object the last time that the degrees of + * freedom were distributed on the triangulation. + * + * @author Wolfgang Bangerth, 1998, Ralf Hartmann, 2001 */ template class MatrixCreator @@ -209,6 +207,17 @@ class MatrixCreator * See the general doc of this class * for more information. */ + static void create_mass_matrix (const Mapping &mapping, + const DoFHandler &dof, + const Quadrature &q, + SparseMatrix &matrix, + const Function *a = 0); + + /** + * Calls the @p{create_mass_matrix} + * function, see above, with + * @p{mapping=MappingQ1()}. + */ static void create_mass_matrix (const DoFHandler &dof, const Quadrature &q, SparseMatrix &matrix, @@ -223,13 +232,26 @@ class MatrixCreator * See the general doc of this class * for more information. */ - static void create_mass_matrix (const DoFHandler &dof, + static void create_mass_matrix (const Mapping &mapping, + const DoFHandler &dof, const Quadrature &q, SparseMatrix &matrix, const Function &rhs, Vector &rhs_vector, const Function *a = 0); + /** + * Calls the @p{create_mass_matrix} + * function, see above, with + * @p{mapping=MappingQ1()}. + */ + static void create_mass_matrix (const DoFHandler &dof, + const Quadrature &q, + SparseMatrix &matrix, + const Function &rhs, + Vector &rhs_vector, + const Function *a = 0); + /** * Assemble the mass matrix and a right * hand side vector along the boundary. @@ -245,12 +267,26 @@ class MatrixCreator * See the general doc of this class * for more information. */ + static void create_boundary_mass_matrix (const Mapping &mapping, + const DoFHandler &dof, + const Quadrature &q, + SparseMatrix &matrix, + const FunctionMap &boundary_functions, + Vector &rhs_vector, + std::vector&dof_to_boundary_mapping, + const Function *a = 0); + + /** + * Calls the @p{create_boundary_mass_matrix} + * function, see above, with + * @p{mapping=MappingQ1()}. + */ static void create_boundary_mass_matrix (const DoFHandler &dof, const Quadrature &q, SparseMatrix &matrix, - const FunctionMap &rhs, + const FunctionMap &boundary_functions, Vector &rhs_vector, - std::vector&vec_to_dof_mapping, + std::vector&dof_to_boundary_mapping, const Function *a = 0); /** @@ -261,6 +297,17 @@ class MatrixCreator * See the general doc of this class * for more information. */ + static void create_laplace_matrix (const Mapping &mapping, + const DoFHandler &dof, + const Quadrature &q, + SparseMatrix &matrix, + const Function *a = 0); + + /** + * Calls the @p{create_laplace_matrix} + * function, see above, with + * @p{mapping=MappingQ1()}. + */ static void create_laplace_matrix (const DoFHandler &dof, const Quadrature &q, SparseMatrix &matrix, @@ -287,6 +334,19 @@ class MatrixCreator * See the general doc of this class * for more information. */ + static void create_laplace_matrix (const Mapping &mapping, + const DoFHandler &dof, + const Quadrature &q, + SparseMatrix &matrix, + const Function &rhs, + Vector &rhs_vector, + const Function *a = 0); + + /** + * Calls the @p{create_laplace_matrix} + * function, see above, with + * @p{mapping=MappingQ1()}. + */ static void create_laplace_matrix (const DoFHandler &dof, const Quadrature &q, SparseMatrix &matrix, diff --git a/deal.II/deal.II/source/numerics/matrices.cc b/deal.II/deal.II/source/numerics/matrices.cc index 3c81a0d92f..f286436a7f 100644 --- a/deal.II/deal.II/source/numerics/matrices.cc +++ b/deal.II/deal.II/source/numerics/matrices.cc @@ -44,11 +44,11 @@ using namespace std; static const MappingQ1 mapping_q1; - -//TODO:[RH,GK] maybe re-create the create_mass_matrix function with 2 args - +// TODO:[RH, WB] extend this function to use vector valued coefficient functions for system elements. +// TODO:[WB] implement multithreading for this function. template -void MatrixCreator::create_mass_matrix (const DoFHandler &dof, +void MatrixCreator::create_mass_matrix (const Mapping &mapping, + const DoFHandler &dof, const Quadrature &q, SparseMatrix &matrix, const Function * const coefficient) @@ -57,7 +57,7 @@ void MatrixCreator::create_mass_matrix (const DoFHandler &dof, if (coefficient != 0) update_flags = UpdateFlags (update_flags | update_q_points); - FEValues fe_values (dof.get_fe(), q, update_flags); + FEValues fe_values (mapping, dof.get_fe(), q, update_flags); const unsigned int dofs_per_cell = fe_values.dofs_per_cell, n_q_points = fe_values.n_quadrature_points; @@ -116,9 +116,22 @@ void MatrixCreator::create_mass_matrix (const DoFHandler &dof, }; - template void MatrixCreator::create_mass_matrix (const DoFHandler &dof, + const Quadrature &q, + SparseMatrix &matrix, + const Function * const coefficient) +{ + static const MappingQ1 mapping; + create_mass_matrix(mapping, dof, q, matrix, coefficient); +} + + +// TODO:[RH, WB] extend this function to use vector valued coefficient functions for system elements. +// TODO:[WB] implement multithreading for this function. +template +void MatrixCreator::create_mass_matrix (const Mapping &mapping, + const DoFHandler &dof, const Quadrature &q, SparseMatrix &matrix, const Function &rhs, @@ -131,7 +144,7 @@ void MatrixCreator::create_mass_matrix (const DoFHandler &dof, if (coefficient != 0) update_flags = UpdateFlags (update_flags | update_q_points); - FEValues fe_values (dof.get_fe(), q, update_flags); + FEValues fe_values (mapping, dof.get_fe(), q, update_flags); const unsigned int dofs_per_cell = fe_values.dofs_per_cell, n_q_points = fe_values.n_quadrature_points; @@ -206,6 +219,18 @@ void MatrixCreator::create_mass_matrix (const DoFHandler &dof, }; +template +void MatrixCreator::create_mass_matrix (const DoFHandler &dof, + const Quadrature &q, + SparseMatrix &matrix, + const Function &rhs, + Vector &rhs_vector, + const Function * const coefficient) +{ + static const MappingQ1 mapping; + create_mass_matrix(mapping, dof, q, matrix, rhs, rhs_vector, coefficient); +} + #if deal_II_dimension == 1 @@ -221,14 +246,32 @@ void MatrixCreator<1>::create_boundary_mass_matrix (const DoFHandler<1> &, Assert (false, ExcNotImplemented()); }; + +template <> +void MatrixCreator<1>::create_boundary_mass_matrix (const Mapping<1> &, + const DoFHandler<1> &, + const Quadrature<0> &, + SparseMatrix &, + const FunctionMap &, + Vector &, + std::vector &, + const Function<1> *) +{ + Assert (false, ExcNotImplemented()); +}; + + #endif +// TODO:[RH, WB] extend this function to use vector valued coefficient functions for system elements. +// TODO:[WB] implement multithreading for this function. template -void MatrixCreator::create_boundary_mass_matrix (const DoFHandler &dof, +void MatrixCreator::create_boundary_mass_matrix (const Mapping &mapping, + const DoFHandler &dof, const Quadrature &q, SparseMatrix &matrix, - const FunctionMap &rhs, + const FunctionMap &boundary_functions, Vector &rhs_vector, std::vector &dof_to_boundary_mapping, const Function *a) @@ -237,14 +280,14 @@ void MatrixCreator::create_boundary_mass_matrix (const DoFHandler const unsigned int n_components = fe.n_components(); const bool fe_is_system = (n_components != 1); - Assert (matrix.n() == dof.n_boundary_dofs(rhs), ExcInternalError()); + Assert (matrix.n() == dof.n_boundary_dofs(boundary_functions), ExcInternalError()); Assert (matrix.n() == matrix.m(), ExcInternalError()); Assert (matrix.n() == rhs_vector.size(), ExcInternalError()); - Assert (rhs.size() != 0, ExcInternalError()); + Assert (boundary_functions.size() != 0, ExcInternalError()); Assert (dof.get_fe() == fe, ExcInternalError()); Assert (dof_to_boundary_mapping.size() == dof.n_dofs(), ExcInternalError()); - Assert (n_components == rhs.begin()->second->n_components, + Assert (n_components == boundary_functions.begin()->second->n_components, ExcComponentMismatch()); #ifdef DEBUG if (true) @@ -269,7 +312,7 @@ void MatrixCreator::create_boundary_mass_matrix (const DoFHandler UpdateFlags update_flags = UpdateFlags (update_values | update_JxW_values | update_q_points); - FEFaceValues fe_values (mapping_q1, fe, q, update_flags); + FEFaceValues fe_values (mapping, fe, q, update_flags); // two variables for the coefficient, // one for the two cases indicated in @@ -292,7 +335,7 @@ void MatrixCreator::create_boundary_mass_matrix (const DoFHandler for (unsigned int face=0; face::faces_per_cell; ++face) // check if this face is on that part of // the boundary we are interested in - if (rhs.find(cell->face(face)->boundary_indicator()) != rhs.end()) + if (boundary_functions.find(cell->face(face)->boundary_indicator()) != boundary_functions.end()) { cell_matrix.clear (); cell_vector.clear (); @@ -305,7 +348,7 @@ void MatrixCreator::create_boundary_mass_matrix (const DoFHandler if (fe_is_system) // FE has several components { - rhs.find(cell->face(face)->boundary_indicator()) + boundary_functions.find(cell->face(face)->boundary_indicator()) ->second->vector_value_list (fe_values.get_quadrature_points(), rhs_values_system); @@ -356,7 +399,7 @@ void MatrixCreator::create_boundary_mass_matrix (const DoFHandler else // FE is a scalar one { - rhs.find(cell->face(face)->boundary_indicator()) + boundary_functions.find(cell->face(face)->boundary_indicator()) ->second->value_list (fe_values.get_quadrature_points(), rhs_values_scalar); if (a != 0) @@ -473,7 +516,11 @@ void MatrixCreator::create_boundary_mass_matrix (const DoFHandler if (fabs(cell_matrix(i,i)) > max_diag_entry) max_diag_entry = fabs(cell_matrix(i,i)); #endif - +//TODO: [WB] check this place for more efficient alternatives +//in the innermost loop, we traverse a set twice in "find", but +//this could be made much faster, e.g. by first building a vector +//that already stores the result of find beforehand +// (then remove dofs_on_face altogether) for (unsigned int i=0; i::create_boundary_mass_matrix (const DoFHandler }; +template +void MatrixCreator::create_boundary_mass_matrix (const DoFHandler &dof, + const Quadrature &q, + SparseMatrix &matrix, + const FunctionMap &rhs, + Vector &rhs_vector, + std::vector &dof_to_boundary_mapping, + const Function *a) +{ + static const MappingQ1 mapping; + create_boundary_mass_matrix(mapping, dof, q, matrix, rhs, rhs_vector, + dof_to_boundary_mapping, a); +} + +// TODO:[RH, WB] extend this function to use vector valued coefficient functions for system elements. +// TODO:[WB] implement multithreading for this function. template -void MatrixCreator::create_laplace_matrix (const DoFHandler &dof, +void MatrixCreator::create_laplace_matrix (const Mapping &mapping, + const DoFHandler &dof, const Quadrature &q, SparseMatrix &matrix, const Function * const coefficient) @@ -515,7 +579,7 @@ void MatrixCreator::create_laplace_matrix (const DoFHandler &dof, if (coefficient != 0) update_flags = UpdateFlags (update_flags | update_q_points); - FEValues fe_values (dof.get_fe(), q, update_flags); + FEValues fe_values (mapping, dof.get_fe(), q, update_flags); const unsigned int dofs_per_cell = fe_values.dofs_per_cell, n_q_points = fe_values.n_quadrature_points; @@ -576,6 +640,16 @@ void MatrixCreator::create_laplace_matrix (const DoFHandler &dof, +template +void MatrixCreator::create_laplace_matrix (const DoFHandler &dof, + const Quadrature &q, + SparseMatrix &matrix, + const Function * const coefficient) +{ + static const MappingQ1 mapping; + create_laplace_matrix(mapping, dof, q, matrix, coefficient); +} + //TODO:[GK,RH] maybe recreate this function /* @@ -614,10 +688,11 @@ void MatrixCreator::create_level_laplace_matrix (unsigned int level, - - +// TODO:[RH, WB] extend this function to use vector valued coefficient functions for system elements. +// TODO:[WB] implement multithreading for this function. template -void MatrixCreator::create_laplace_matrix (const DoFHandler &dof, +void MatrixCreator::create_laplace_matrix (const Mapping &mapping, + const DoFHandler &dof, const Quadrature &q, SparseMatrix &matrix, const Function &rhs, @@ -631,7 +706,7 @@ void MatrixCreator::create_laplace_matrix (const DoFHandler &dof, if (coefficient != 0) update_flags = UpdateFlags (update_flags | update_q_points); - FEValues fe_values (dof.get_fe(), q, update_flags); + FEValues fe_values (mapping, dof.get_fe(), q, update_flags); const unsigned int dofs_per_cell = fe_values.dofs_per_cell, n_q_points = fe_values.n_quadrature_points; @@ -709,6 +784,18 @@ void MatrixCreator::create_laplace_matrix (const DoFHandler &dof, +template +void MatrixCreator::create_laplace_matrix (const DoFHandler &dof, + const Quadrature &q, + SparseMatrix &matrix, + const Function &rhs, + Vector &rhs_vector, + const Function * const coefficient) +{ + static const MappingQ1 mapping; + create_laplace_matrix(mapping, dof, q, matrix, rhs, rhs_vector, coefficient); +} + template template