From: Joerg Frohne Date: Wed, 31 Jul 2013 14:30:00 +0000 (+0000) Subject: copied step-42.cc from src/unified X-Git-Tag: v8.1.0~1171 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=cbf8050b31b30da4c68c3ca81185751bdca1f8d6;p=dealii.git copied step-42.cc from src/unified git-svn-id: https://svn.dealii.org/trunk@30195 0785d39b-7218-0410-832d-ea1e28bc413d --- diff --git a/deal.II/examples/step-42/step-42.cc b/deal.II/examples/step-42/step-42.cc index 2fd4630c01..2634a6161d 100644 --- a/deal.II/examples/step-42/step-42.cc +++ b/deal.II/examples/step-42/step-42.cc @@ -1,34 +1,25 @@ -/* --------------------------------------------------------------------- - * $Id$ - * - * Copyright (C) 1999 - 2013 by the deal.II authors - * - * This file is part of the deal.II library. - * - * The deal.II library is free software; you can use it, redistribute - * it, and/or modify it under the terms of the GNU Lesser General - * Public License as published by the Free Software Foundation; either - * version 2.1 of the License, or (at your option) any later version. - * The full text of the license can be found in the file LICENSE at - * the top level of the deal.II distribution. - * - * --------------------------------------------------------------------- - - * - * Author: Wolfgang Bangerth, University of Heidelberg, 1999 - */ - +/* $Id$ */ +/* Author: Wolfgang Bangerth, University of Heidelberg, 1999 */ + +/* $Id$ */ +/* */ +/* Copyright (C) 1999-2012 by the deal.II authors */ +/* */ +/* This file is subject to QPL and may not be distributed */ +/* without copyrightG and license information. Please refer */ +/* to the file deal.II/doc/license.html for the text and */ +/* further information on this license. */ // @sect3{Include files} - // We are using the the same // include files as in step-41: - #include #include #include +#include #include #include +#include #include #include #include @@ -44,7 +35,6 @@ #include #include #include -#include #include #include #include @@ -57,6 +47,7 @@ #include #include +#include #include #include #include @@ -65,6 +56,7 @@ #include #include +#include #include #include #include @@ -72,1571 +64,1987 @@ #include #include +#include #include -namespace Step42 -{ - using namespace dealii; - - // @sect3{The Input class template} - - // This class has the the only purpose - // to read in data from a picture file - // that has to be stored in pbm ascii - // format. This data will be bilinear - // interpolated and provides in this way - // a function which describes an obstacle. - // - // The data which we read in by the - // function read_obstacle () from the file - // "obstacle_file.pbm" will be stored - // in a double std::vector named - // obstacle_data. - // This vector composes the base - // to calculate a piecewise bilinear - // function as a polynomial interpolation. - // This will be done by obstacle_function (). - // - // In the function run () of the class - // PlasticityContactProblem we create - // an object of the class Input which will - // be used in the class Obstacle to - // supply the obstacle function in - // update_solution_and_constraints () of - // the class PlasticityContactProblem. - - template - class Input - { - public: - Input (const char *_name) : - name (_name), - mpi_communicator (MPI_COMM_WORLD), - pcout (std::cout, - (Utilities::MPI::this_mpi_process(mpi_communicator) == 0)), - obstacle_data (0), - hx (0), - hy (0), - nx (0), - ny (0) - { - read_obstacle (name); - } +namespace Step42 { +using namespace dealii; - double hv (int i, int j); +// @sect3{The Input class template} - double obstacle_function (double x,double y); +// This class has the the only purpose +// to read in data from a picture file +// that has to be stored in pbm ascii +// format. This data will be bilinear +// interpolated and provides in this way +// a function which describes an obstacle. +// +// The data which we read in by the +// function read_obstacle () from the file +// "obstacle_file.pbm" will be stored +// in a double std::vector named +// obstacle_data. +// This vector composes the base +// to calculate a piecewise bilinear +// function as a polynomial interpolation. +// This will be done by obstacle_function (). +// +// In the function run () of the class +// PlasticityContactProblem we create +// an object of the class Input which will +// be used in the class Obstacle to +// supply the obstacle function in +// update_solution_and_constraints () of +// the class PlasticityContactProblem. + +template +class Input { +public: + Input(const char* _name) : + name(_name), mpi_communicator(MPI_COMM_WORLD), pcout(std::cout, + (Utilities::MPI::this_mpi_process(mpi_communicator) == 0)), obstacle_data( + 0), hx(0), hy(0), nx(0), ny(0) { + read_obstacle(name); + } + + double + hv(int i, int j); + + double + obstacle_function(double x, double y); + + void + read_obstacle(const char* name); + +private: + const char* name; + MPI_Comm mpi_communicator; + ConditionalOStream pcout; + std::vector obstacle_data; + double hx, hy; + int nx, ny; +}; + +// This function is used in obstacle_function () +// to provide the proper value of the obstacle. +template +double Input::hv(int i, int j) { + assert(i >= 0 && i < nx); + assert(j >= 0 && j < ny); + return obstacle_data[nx * (ny - 1 - j) + i]; // i indiziert x-werte, j indiziert y-werte +} - void read_obstacle (const char *name); +// obstacle_function () calculates the bilinear interpolated +// value in the point (x,y). +template +double Input::obstacle_function(double x, double y) { + int ix = (int) (x / hx); + int iy = (int) (y / hy); + + if (ix < 0) + ix = 0; + + if (iy < 0) + iy = 0; + + if (ix >= nx - 1) + ix = nx - 2; + + if (iy >= ny - 1) + iy = ny - 2; + + double val = 0.0; + { + FullMatrix H(4, 4); + Vector X(4); + Vector b(4); + + double xx = 0.0; + double yy = 0.0; + + xx = ix * hx; + yy = iy * hy; + H(0, 0) = xx; + H(0, 1) = yy; + H(0, 2) = xx * yy; + H(0, 3) = 1.0; + b(0) = hv(ix, iy); + + xx = (ix + 1) * hx; + yy = iy * hy; + H(1, 0) = xx; + H(1, 1) = yy; + H(1, 2) = xx * yy; + H(1, 3) = 1.0; + b(1) = hv(ix + 1, iy); + + xx = (ix + 1) * hx; + yy = (iy + 1) * hy; + H(2, 0) = xx; + H(2, 1) = yy; + H(2, 2) = xx * yy; + H(2, 3) = 1.0; + b(2) = hv(ix + 1, iy + 1); + + xx = ix * hx; + yy = (iy + 1) * hy; + H(3, 0) = xx; + H(3, 1) = yy; + H(3, 2) = xx * yy; + H(3, 3) = 1.0; + b(3) = hv(ix, iy + 1); + + H.gauss_jordan(); + H.vmult(X, b); + + val = X(0) * x + X(1) * y + X(2) * x * y + X(3); + } + + return val; +} - private: - const char *name; - MPI_Comm mpi_communicator; - ConditionalOStream pcout; - std::vector obstacle_data; - double hx, hy; - int nx, ny; - }; +// As mentioned above this function reads in the +// obstacle datas and stores them in the std::vector +// obstacle_data. It will be used only in run (). +template +void Input::read_obstacle(const char* name) { + std::ifstream f(name); - // This function is used in obstacle_function () - // to provide the proper value of the obstacle. - template - double Input::hv (int i, int j) - { - assert(i>=0 && i=0 && j> temp >> nx >> ny; + assert(nx > 0 && ny > 0); - // obstacle_function () calculates the bilinear interpolated - // value in the point (x,y). - template - double Input::obstacle_function (double x,double y) - { - int ix = (int)(x/hx); - int iy = (int)(y/hy); + for (int k = 0; k < nx * ny; k++) { + double val; + f >> val; + obstacle_data.push_back(val); + } - if (ix<0) - ix = 0; + hx = 1.0 / (nx - 1); + hy = 1.0 / (ny - 1); - if (iy<0) - iy = 0; + pcout << "Resolution of the scanned obstacle picture: " << nx << " x " << ny + << std::endl; +} - if (ix>=nx-1) - ix = nx-2; +// @sect3{The ConstitutiveLaw class template} + +// This class provides an interface +// for a constitutive law. In this +// example we are using an elasto +// plastic material behavior with linear, +// isotropic hardening. +// For gamma = 0 we obtain perfect elasto +// plasticity behavior. +template +class ConstitutiveLaw { +public: + ConstitutiveLaw(double _E, double _nu, double _sigma_0, double _gamma, + MPI_Comm _mpi_communicator, ConditionalOStream _pcout); + + void + plast_linear_hardening(SymmetricTensor<4, dim> &stress_strain_tensor, + const SymmetricTensor<2, dim> &strain_tensor, + unsigned int &elast_points, unsigned int &plast_points, + double &yield); + void + linearized_plast_linear_hardening( + SymmetricTensor<4, dim> &stress_strain_tensor_linearized, + SymmetricTensor<4, dim> &stress_strain_tensor, + const SymmetricTensor<2, dim> &strain_tensor); + inline SymmetricTensor<2, dim> + get_strain(const FEValues &fe_values, const unsigned int shape_func, + const unsigned int q_point) const; + void set_sigma_0(double sigma_hlp) { + sigma_0 = sigma_hlp; + } + +private: + SymmetricTensor<4, dim> stress_strain_tensor_mu; + SymmetricTensor<4, dim> stress_strain_tensor_kappa; + double E; + double nu; + double sigma_0; + double gamma; + double mu; + double kappa; + MPI_Comm mpi_communicator; + ConditionalOStream pcout; +}; + +// The constructor of the ConstitutiveLaw class sets the +// required material parameter for our deformable body: +// E -> elastic modulus +// nu -> Passion's number +// sigma_0 -> yield stress +// gamma -> hardening parameter. +// Also it supplies the stress strain tensor of forth order +// of the volumetric and deviator part. For further details +// see the documentation above. +template +ConstitutiveLaw::ConstitutiveLaw(double _E, double _nu, double _sigma_0, + double _gamma, MPI_Comm _mpi_communicator, ConditionalOStream _pcout) : + E(_E), nu(_nu), sigma_0(_sigma_0), gamma(_gamma), mpi_communicator( + _mpi_communicator), pcout(_pcout) { + mu = E / (2 * (1 + nu)); + kappa = E / (3 * (1 - 2 * nu)); + stress_strain_tensor_kappa = kappa + * outer_product(unit_symmetric_tensor(), + unit_symmetric_tensor()); + stress_strain_tensor_mu = 2 * mu + * (identity_tensor() + - outer_product(unit_symmetric_tensor(), + unit_symmetric_tensor()) / 3.0); +} - if (iy>=ny-1) - iy = ny-2; +// @sect3{ConstitutiveLaw::ConstitutiveLaw} - double val = 0.0; - { - FullMatrix H(4,4); - Vector X(4); - Vector b(4); - - double xx = 0.0; - double yy = 0.0; - - xx = ix*hx; - yy = iy*hy; - H(0,0) = xx; - H(0,1) = yy; - H(0,2) = xx*yy; - H(0,3) = 1.0; - b(0) = hv (ix, iy); - - xx = (ix + 1)*hx; - yy = iy*hy; - H(1,0) = xx; - H(1,1) = yy; - H(1,2) = xx*yy; - H(1,3) = 1.0; - b(1) = hv (ix + 1, iy); - - xx = (ix + 1)*hx; - yy = (iy + 1)*hy; - H(2,0) = xx; - H(2,1) = yy; - H(2,2) = xx*yy; - H(2,3) = 1.0; - b(2) = hv (ix + 1, iy + 1); - - xx = ix*hx; - yy = (iy + 1)*hy; - H(3,0) = xx; - H(3,1) = yy; - H(3,2) = xx*yy; - H(3,3) = 1.0; - b(3) = hv (ix, iy + 1); - - H.gauss_jordan (); - H.vmult (X, b); - - val = X(0)*x + X(1)*y + X(2)*x*y + X(3); - } +// Calculates the strain for the shape functions. +template +inline SymmetricTensor<2, dim> ConstitutiveLaw::get_strain( + const FEValues &fe_values, const unsigned int shape_func, + const unsigned int q_point) const { + const FEValuesExtractors::Vector displacement(0); + SymmetricTensor < 2, dim > tmp; - return val; - } + tmp = fe_values[displacement].symmetric_gradient(shape_func, q_point); - // As mentioned above this function reads in the - // obstacle datas and stores them in the std::vector - // obstacle_data. It will be used only in run (). - template - void Input::read_obstacle (const char *name) - { - std::ifstream f(name); + return tmp; +} - std::string temp; - f >> temp >> nx >> ny; - assert(nx>0 && ny>0); +// @sect3{ConstitutiveLaw::plast_linear_hardening} + +// This is the implemented constitutive law. It projects the +// deviator part of the stresses in a quadrature point back to +// the yield stress plus the linear isotropic hardening. +// Also we sum up the elastic and the plastic quadrature +// points. +template +void ConstitutiveLaw::plast_linear_hardening( + SymmetricTensor<4, dim> &stress_strain_tensor, + const SymmetricTensor<2, dim> &strain_tensor, + unsigned int &elast_points, unsigned int &plast_points, double &yield) { + if (dim == 3) { + SymmetricTensor < 2, dim > stress_tensor; + stress_tensor = (stress_strain_tensor_kappa + stress_strain_tensor_mu) + * strain_tensor; + + SymmetricTensor < 2, dim > deviator_stress_tensor = deviator( + stress_tensor); + + double deviator_stress_tensor_norm = deviator_stress_tensor.norm(); + + yield = 0; + stress_strain_tensor = stress_strain_tensor_mu; + double beta = 1.0; + if (deviator_stress_tensor_norm > sigma_0) { + beta = sigma_0 / deviator_stress_tensor_norm; + stress_strain_tensor *= (gamma + (1 - gamma) * beta); + yield = 1; + plast_points += 1; + } else + elast_points += 1; + + stress_strain_tensor += stress_strain_tensor_kappa; + } +} - for (int k=0; k> val; - obstacle_data.push_back(val); - } +// @sect3{ConstitutiveLaw::linearized_plast_linear_hardening} + +// This function returns the linearized stress strain tensor. +// It contains the derivative of the nonlinear constitutive law. +template +void ConstitutiveLaw::linearized_plast_linear_hardening( + SymmetricTensor<4, dim> &stress_strain_tensor_linearized, + SymmetricTensor<4, dim> &stress_strain_tensor, + const SymmetricTensor<2, dim> &strain_tensor) { + if (dim == 3) { + SymmetricTensor < 2, dim > stress_tensor; + stress_tensor = (stress_strain_tensor_kappa + stress_strain_tensor_mu) + * strain_tensor; + + SymmetricTensor < 2, dim > deviator_stress_tensor = deviator( + stress_tensor); + + double deviator_stress_tensor_norm = deviator_stress_tensor.norm(); + + stress_strain_tensor = stress_strain_tensor_mu; + stress_strain_tensor_linearized = stress_strain_tensor_mu; + double beta = 1.0; + if (deviator_stress_tensor_norm > sigma_0) { + beta = sigma_0 / deviator_stress_tensor_norm; + stress_strain_tensor *= (gamma + (1 - gamma) * beta); + stress_strain_tensor_linearized *= (gamma + (1 - gamma) * beta); + deviator_stress_tensor /= deviator_stress_tensor_norm; + stress_strain_tensor_linearized -= (1 - gamma) * beta * 2 * mu + * outer_product(deviator_stress_tensor, + deviator_stress_tensor); + } + + stress_strain_tensor += stress_strain_tensor_kappa; + stress_strain_tensor_linearized += stress_strain_tensor_kappa; + } +} - hx = 1.0/(nx - 1); - hy = 1.0/(ny - 1); +namespace EquationData { +// It possible to apply an additional body force +// but in here it is set to zero. +template +class RightHandSide: public Function { +public: + RightHandSide() : + Function(dim) { + } + + virtual double + value(const Point &p, const unsigned int component = 0) const; + + virtual void + vector_value(const Point &p, Vector &values) const; +}; + +template +double RightHandSide::value(const Point &p, + const unsigned int component) const { + double return_value = 0.0; + + if (component == 0) + return_value = 0.0; + if (component == 1) + return_value = 0.0; + if (component == 2) + return_value = 0.0;//-26923.07692; + + return return_value; +} - pcout << "Resolution of the scanned obstacle picture: " << nx << " x " << ny << std::endl; - } +template +void RightHandSide::vector_value(const Point &p, + Vector &values) const { + for (unsigned int c = 0; c < this->n_components; ++c) + values(c) = RightHandSide::value(p, c); +} - // @sect3{The ConstitutiveLaw class template} - - // This class provides an interface - // for a constitutive law. In this - // example we are using an elasto - // plastic material behavior with linear, - // isotropic hardening. - // For gamma = 0 we obtain perfect elasto - // plasticity behavior. - template - class ConstitutiveLaw - { - public: - ConstitutiveLaw (double _E, - double _nu, - double _sigma_0, - double _gamma, - MPI_Comm _mpi_communicator, - ConditionalOStream _pcout); - - void plast_linear_hardening (SymmetricTensor<4,dim> &stress_strain_tensor, - const SymmetricTensor<2,dim> &strain_tensor, - unsigned int &elast_points, - unsigned int &plast_points, - double &yield); - void linearized_plast_linear_hardening (SymmetricTensor<4,dim> &stress_strain_tensor_linearized, - SymmetricTensor<4,dim> &stress_strain_tensor, - const SymmetricTensor<2,dim> &strain_tensor); - inline SymmetricTensor<2,dim> get_strain (const FEValues &fe_values, - const unsigned int shape_func, - const unsigned int q_point) const; - void set_sigma_0 (double sigma_hlp) - { - sigma_0 = sigma_hlp; - } +// This function class is used to describe the prescribed displacements +// at the boundary. But again we set this to zero. +template +class BoundaryValues: public Function { +public: + BoundaryValues() : + Function(dim) { + } + ; + + virtual double + value(const Point &p, const unsigned int component = 0) const; + + virtual void + vector_value(const Point &p, Vector &values) const; +}; + +template +double BoundaryValues::value(const Point &p, + const unsigned int component) const { + double return_value = 0; + + if (component == 0) + return_value = 0.0; + if (component == 1) + return_value = 0.0; + if (component == 2) + return_value = 0.0; + + return return_value; +} - private: - SymmetricTensor<4,dim> stress_strain_tensor_mu; - SymmetricTensor<4,dim> stress_strain_tensor_kappa; - double E; - double nu; - double sigma_0; - double gamma; - double mu; - double kappa; - MPI_Comm mpi_communicator; - ConditionalOStream pcout; - }; - - // The constructor of the ConstitutiveLaw class sets the - // required material parameter for our deformable body: - // E -> elastic modulus - // nu -> Passion's number - // sigma_0 -> yield stress - // gamma -> hardening parameter. - // Also it supplies the stress strain tensor of forth order - // of the volumetric and deviator part. For further details - // see the documentation above. - template - ConstitutiveLaw::ConstitutiveLaw(double _E, double _nu, double _sigma_0, double _gamma, MPI_Comm _mpi_communicator, ConditionalOStream _pcout) - :E (_E), - nu (_nu), - sigma_0 (_sigma_0), - gamma (_gamma), - mpi_communicator (_mpi_communicator), - pcout (_pcout) - { - mu = E/(2*(1+nu)); - kappa = E/(3*(1-2*nu)); - stress_strain_tensor_kappa = kappa*outer_product(unit_symmetric_tensor(), unit_symmetric_tensor()); - stress_strain_tensor_mu = 2*mu*(identity_tensor() - outer_product(unit_symmetric_tensor(), unit_symmetric_tensor())/3.0); - } +template +void BoundaryValues::vector_value(const Point &p, + Vector &values) const { + for (unsigned int c = 0; c < this->n_components; ++c) + values(c) = BoundaryValues::value(p, c); +} - // Calculates the strain for the shape functions. - template - inline - SymmetricTensor<2,dim> ConstitutiveLaw::get_strain (const FEValues &fe_values, - const unsigned int shape_func, - const unsigned int q_point) const - { - const FEValuesExtractors::Vector displacement (0); - SymmetricTensor<2,dim> tmp; +// This function is obviously implemented to +// define the obstacle that penetrates our deformable +// body. You can choose between two ways to define +// your obstacle: to read it from a file or to use +// a function (here a ball). +// z_max_domain is the z value of the surface of the work piece +template +class Obstacle: public Function { +public: + Obstacle(std_cxx1x::shared_ptr > const &_input, + bool _use_read_obstacle, double z_max_domain) : + Function(dim), input_obstacle_copy(_input), use_read_obstacle( + _use_read_obstacle), + z_max_domain(z_max_domain){ + } + + virtual double + value(const Point &p, const unsigned int component = 0) const; + + virtual void + vector_value(const Point &p, Vector &values) const; + +private: + std_cxx1x::shared_ptr > const &input_obstacle_copy; + bool use_read_obstacle; + double z_max_domain; +}; + +template +double Obstacle::value(const Point &p, + const unsigned int component) const { + if (component == 0) + return p(0); + if (component == 1) + return p(1); + + //component==2: + if (use_read_obstacle) + { + if (p(0) >= 0.0 && p(0) <= 1.0 && p(1) >= 0.0 && p(1) <= 1.0) + return z_max_domain + 0.999 - input_obstacle_copy->obstacle_function(p(0), p(1)); + else + return 10000.0; + } + else + { + //sphere: + return -std::sqrt( + 0.36 - (p(0) - 0.5) * (p(0) - 0.5) + - (p(1) - 0.5) * (p(1) - 0.5)) + z_max_domain + 0.59; + } +} - tmp = fe_values[displacement].symmetric_gradient (shape_func,q_point); +template +void Obstacle::vector_value(const Point &p, + Vector &values) const { + for (unsigned int c = 0; c < this->n_components; ++c) + values(c) = Obstacle::value(p, c); +} +} - return tmp; - } +// @sect3{The PlasticityContactProblem class template} + +// This class supplies all function +// and variables needed to describe +// the nonlinear contact problem. It is +// close to step-41 but with some additional +// features like: handling hanging nodes, +// a newton method, using Trilinos and p4est +// for parallel distributed computing. +// To deal with hanging nodes makes +// life a bit more complicated since +// we need an other ConstraintMatrix now. +// We create a newton method for the +// active set method for the contact +// situation and to handle the nonlinear +// operator for the constitutive law. + +template +class PlasticityContactProblem { +public: + PlasticityContactProblem(const ParameterHandler &prm); + void + run(); + + static void + declare(ParameterHandler &prm); + +private: + void + make_grid(); + void + setup_system(); + void + assemble_nl_system(TrilinosWrappers::MPI::Vector &u); + void + residual_nl_system(TrilinosWrappers::MPI::Vector &u); + void + assemble_mass_matrix_diagonal(TrilinosWrappers::SparseMatrix &mass_matrix); + void + update_solution_and_constraints(); + void + dirichlet_constraints(); + void + solve(); + void + solve_newton(); + void + refine_grid(); + void + move_mesh( + const TrilinosWrappers::MPI::Vector &_complete_displacement) const; + void + output_results(const std::string &title); + void + output_for_benchmark(const unsigned int cycle); + + double to_refine_factor; + double to_coarsen_factor; + unsigned int cycle; + + MPI_Comm mpi_communicator; + + parallel::distributed::Triangulation triangulation; + + FE_Q u; + FESystem fe; + DoFHandler dof_handler; + + std_cxx1x::shared_ptr< + parallel::distributed::SolutionTransfer > soltrans; + + IndexSet locally_owned_dofs; + IndexSet locally_relevant_dofs; + + unsigned int number_iterations; + + ConstraintMatrix constraints; + ConstraintMatrix constraints_hanging_nodes; + ConstraintMatrix constraints_dirichlet_hanging_nodes; + + TrilinosWrappers::SparseMatrix system_matrix_newton; + + TrilinosWrappers::MPI::Vector solution; + TrilinosWrappers::MPI::Vector system_rhs_newton; + TrilinosWrappers::MPI::Vector system_rhs_lambda; + TrilinosWrappers::MPI::Vector resid_vector; + TrilinosWrappers::MPI::Vector diag_mass_matrix_vector; + Vector cell_constitution; + IndexSet active_set; + + ConditionalOStream pcout; + + TrilinosWrappers::PreconditionAMG::AdditionalData additional_data; + TrilinosWrappers::PreconditionAMG preconditioner_u; + + std_cxx1x::shared_ptr > input_obstacle; + std_cxx1x::shared_ptr > plast_lin_hard; + + double sigma_0; // Yield stress + double gamma; // Parameter for the linear isotropic hardening + double e_modul; // E-Modul + double nu; // Poisson ratio + + TimerOutput computing_timer; + + unsigned int degree; + unsigned int n_initial_refinements; + struct RefinementStrategy + { + enum value + { + refine_global, + refine_percentage, + refine_fix_dofs + }; + }; + typename RefinementStrategy::value refinement_strategy; + unsigned int n_cycles; + std::string obstacle_filename; + std::string output_dir; + bool transfer_solution; + std::string base_mesh; +}; + +// @sect3{Implementation of the PlasticityContactProblem class} + +// Next for the implementation of the class +// template that makes use of the functions +// above. As before, we will write everything + +template +PlasticityContactProblem::PlasticityContactProblem( + const ParameterHandler &prm) : + mpi_communicator(MPI_COMM_WORLD), triangulation(mpi_communicator), + u(QGaussLobatto< 1 > (prm.get_integer("polynomial degree")+1)), + fe(u, dim), + dof_handler(triangulation), pcout( + std::cout, + (Utilities::MPI::this_mpi_process(mpi_communicator) == 0)), sigma_0( + 400.0), gamma(0.01), e_modul(2.0e+5), nu(0.3), computing_timer( + MPI_COMM_WORLD, pcout, TimerOutput::never, + TimerOutput::wall_times) { + // double _E, double _nu, double _sigma_0, double _gamma + plast_lin_hard.reset( + new ConstitutiveLaw(e_modul, nu, sigma_0, gamma, + mpi_communicator, pcout)); + + degree = prm.get_integer("polynomial degree"); + n_initial_refinements = prm.get_integer("number of initial refinements"); + std::string strat = prm.get("refinement strategy"); + if (strat == "global") + refinement_strategy = RefinementStrategy::refine_global; + else if (strat == "percentage") + refinement_strategy = RefinementStrategy::refine_percentage; + else if (strat == "fix dofs") + refinement_strategy = RefinementStrategy::refine_fix_dofs; + else + throw ExcNotImplemented(); + + n_cycles = prm.get_integer("number of cycles"); + obstacle_filename = prm.get("obstacle filename"); + output_dir = prm.get("output directory"); + if (output_dir!="" && *(output_dir.rbegin())!='/') + output_dir += "/"; + mkdir(output_dir.c_str(), 0777); + + transfer_solution = prm.get_bool("transfer solution"); + base_mesh = prm.get("base mesh"); + + pcout << " Using output directory '" << output_dir << "'" << std::endl; + pcout << " FE degree " << degree << std::endl; + pcout << " Obstacle '" << obstacle_filename << "'" << std::endl; + pcout << " transfer solution " << (transfer_solution?"true":"false") << std::endl; +} - // This is the implemented constitutive law. It projects the - // deviator part of the stresses in a quadrature point back to - // the yield stress plus the linear isotropic hardening. - // Also we sum up the elastic and the plastic quadrature - // points. - template - void ConstitutiveLaw::plast_linear_hardening (SymmetricTensor<4,dim> &stress_strain_tensor, - const SymmetricTensor<2,dim> &strain_tensor, - unsigned int &elast_points, - unsigned int &plast_points, - double &yield) - { - if (dim == 3) - { - SymmetricTensor<2,dim> stress_tensor; - stress_tensor = (stress_strain_tensor_kappa + stress_strain_tensor_mu)*strain_tensor; - - SymmetricTensor<2,dim> deviator_stress_tensor = deviator(stress_tensor); - - double deviator_stress_tensor_norm = deviator_stress_tensor.norm (); - - yield = 0; - stress_strain_tensor = stress_strain_tensor_mu; - double beta = 1.0; - if (deviator_stress_tensor_norm > sigma_0) - { - beta = sigma_0/deviator_stress_tensor_norm; - stress_strain_tensor *= (gamma + (1 - gamma)*beta); - yield = 1; - plast_points += 1; - } - else - elast_points += 1; +// @sect4{PlasticityContactProblem::declare} - stress_strain_tensor += stress_strain_tensor_kappa; - } - } +template +void +PlasticityContactProblem::declare(ParameterHandler &prm) +{ + prm.declare_entry("polynomial degree","1",Patterns::Integer(),"polynomial degree of the FE_Q finite element space, typically 1 or 2"); + prm.declare_entry("number of initial refinements","2",Patterns::Integer(),"number of initial global refinements before the first computation"); + prm.declare_entry("refinement strategy","percentage",Patterns::Selection("global|percentage|fix dofs"), + "refinement strategy for each cycle:\n" + " global: one global refinement\n" + "percentage: fixed percentage gets refined using kelly\n" + " fix dofs: tries to achieve 2^initial_refinement*300 dofs after cycle 1 (only use 2 cycles!). Changes the coarse mesh!"); + prm.declare_entry("number of cycles","5",Patterns::Integer(),"number of adaptive cycles to run"); + prm.declare_entry("obstacle filename","",Patterns::Anything(),"obstacle file to read, use 'obstacle_file.pbm' or leave empty to use a sphere"); + prm.declare_entry("output directory","",Patterns::Anything(),"directory to put output files (graphical output and benchmark statistics), leave empty to put into current directory"); + prm.declare_entry("transfer solution","false",Patterns::Bool(),"decide if the solution should be used as a starting guess for the finer mesh, use 0 otherwise."); + prm.declare_entry("base mesh","box",Patterns::Selection("box|half sphere"), + "select the shape of the work piece: 'box' or 'half sphere'"); + +} - // This function returns the linearized stress strain tensor. - // It contains the derivative of the nonlinear constitutive law. - template - void ConstitutiveLaw::linearized_plast_linear_hardening (SymmetricTensor<4,dim> &stress_strain_tensor_linearized, - SymmetricTensor<4,dim> &stress_strain_tensor, - const SymmetricTensor<2,dim> &strain_tensor) + Point<3> + rotate_half_sphere(const Point<3> &in) { - if (dim == 3) - { - SymmetricTensor<2,dim> stress_tensor; - stress_tensor = (stress_strain_tensor_kappa + stress_strain_tensor_mu)*strain_tensor; - - SymmetricTensor<2,dim> deviator_stress_tensor = deviator(stress_tensor); - - double deviator_stress_tensor_norm = deviator_stress_tensor.norm (); - - stress_strain_tensor = stress_strain_tensor_mu; - stress_strain_tensor_linearized = stress_strain_tensor_mu; - double beta = 1.0; - if (deviator_stress_tensor_norm > sigma_0) - { - beta = sigma_0/deviator_stress_tensor_norm; - stress_strain_tensor *= (gamma + (1 - gamma)*beta); - stress_strain_tensor_linearized *= (gamma + (1 - gamma)*beta); - deviator_stress_tensor /= deviator_stress_tensor_norm; - stress_strain_tensor_linearized -= (1 - gamma)*beta*2*mu*outer_product(deviator_stress_tensor, deviator_stress_tensor); - } - - stress_strain_tensor += stress_strain_tensor_kappa; - stress_strain_tensor_linearized += stress_strain_tensor_kappa; - } + return Point<3>(in(2), in(1), -in(0)); } - // In this namespace we provide three functions: - // one for the body force, one for the boundary displacement - // and one for the Obstacle. - namespace EquationData - { - // It possible to apply an additional body force - // but in here it is set to zero. - template - class RightHandSide : public Function - { - public: - RightHandSide () : Function(dim) {} - - virtual double value (const Point &p, - const unsigned int component = 0) const; - - virtual void vector_value (const Point &p, - Vector &values) const; - }; +// @sect4{PlasticityContactProblem::make_grid} + +template +void PlasticityContactProblem::make_grid() { - template - double RightHandSide::value (const Point &p, - const unsigned int component) const + if (base_mesh == "half sphere") { - double return_value = 0.0; - - if (component == 0) - return_value = 0.0; - if (component == 1) - return_value = 0.0; - if (component == 2) - return_value = 0.0; - - return return_value; + Point < dim > center(0, 0, 0); + double radius = 0.8; + GridGenerator::half_hyper_ball(triangulation, center, radius); + GridTools::transform(&rotate_half_sphere, triangulation); + Point < dim > shift(0.5, 0.5, 0.5); + GridTools::shift(shift, triangulation); + static HyperBallBoundary boundary_description(Point(0.5,0.5,0.5), radius); + triangulation.set_boundary (0, boundary_description); + + triangulation.refine_global(n_initial_refinements); + + to_refine_factor = 0.3; + to_coarsen_factor = 0.03; + return; } + + Point < dim > p1(0, 0, 0); + Point < dim > p2(1.0, 1.0, 1.0); + unsigned int ref = n_initial_refinements; - template - void RightHandSide::vector_value (const Point &p, - Vector &values) const + if (refinement_strategy == RefinementStrategy::refine_fix_dofs) { - for (unsigned int c=0; cn_components; ++c) - values(c) = RightHandSide::value (p, c); + /** + * This complicated logic creates a mesh and a refinement fraction to_refine_factor, + * so that the resulting mesh after adaptive refinement has approximately + * 2^n_refinements_global*300 dofs. This allows parallel scalability tests. + * About 5%-10% of the cells are being adaptively refined. + * We start with a 3x3,4x4, or 5x5 base mesh (whichever is closed in cell + * count). + */ + unsigned int ref = (n_initial_refinements + 1) / 3; + unsigned int remain = n_initial_refinements + 1 - ref * 3; + unsigned int rep = 3; + if (remain == 1) + rep = 4; + else if (remain == 2) + rep = 5; + + unsigned int n_cells_x = (1 << ref) * rep; + unsigned int goal_dofs = (1 << n_initial_refinements) * 300; + double goal_cells = std::pow(std::pow(goal_dofs / 3.0, 1.0 / 3.0) - 1.0, + 3.0); + double n_cells = std::pow(n_cells_x, 3.0); + to_refine_factor = (goal_cells - n_cells) / n_cells; + //convert from fraction of cells to add to fraction of cells to refine: + to_refine_factor /= 7.0; + to_coarsen_factor = 0.0; + + std::vector repet(3); + repet[0] = rep; + repet[1] = rep; + repet[2] = rep; + + GridGenerator::subdivided_hyper_rectangle(triangulation, repet, p1, p2); } - - // This function class is used to describe the prescribed displacements - // at the boundary. But again we set this to zero. - template - class BoundaryValues : public Function + else { - public: - BoundaryValues () : Function(dim) {}; - - virtual double value (const Point &p, - const unsigned int component = 0) const; + GridGenerator::hyper_rectangle(triangulation, p1, p2); + to_refine_factor = 0.3; + to_coarsen_factor = 0.03; + } - virtual void vector_value (const Point &p, - Vector &values) const; - }; - template - double BoundaryValues::value (const Point &p, - const unsigned int component) const - { - double return_value = 0; + Triangulation<3>::active_cell_iterator cell = triangulation.begin_active(), + endc = triangulation.end(); + + /* boundary_indicators: + _______ + / 1 /| + /______ / | + 8| | 8| + | 8 | / + |_______|/ + 6 + */ + + for (; cell != endc; ++cell) + for (unsigned int face = 0; + face < GeometryInfo < dim > ::faces_per_cell; ++face) { + if (cell->face(face)->center()[2] == p2(2)) + cell->face(face)->set_boundary_indicator(1); + if (cell->face(face)->center()[0] == p1(0) + || cell->face(face)->center()[0] == p2(0) + || cell->face(face)->center()[1] == p1(1) + || cell->face(face)->center()[1] == p2(1)) + cell->face(face)->set_boundary_indicator(8); + if (cell->face(face)->center()[2] == p1(2)) + cell->face(face)->set_boundary_indicator(6); + } + + triangulation.refine_global(ref); +} - if (component == 0) - return_value = 0.0; - if (component == 1) - return_value = 0.0; - if (component == 2) - return_value = 0.0; +template +void PlasticityContactProblem::setup_system() { + // setup dofs + { + TimerOutput::Scope t(computing_timer, "Setup: distribute DoFs"); + dof_handler.distribute_dofs(fe); + + locally_owned_dofs = dof_handler.locally_owned_dofs(); + locally_relevant_dofs.clear(); + DoFTools::extract_locally_relevant_dofs(dof_handler, + locally_relevant_dofs); + } + + // setup hanging nodes and dirichlet constraints + { + TimerOutput::Scope t(computing_timer, "Setup: constraints"); + constraints_hanging_nodes.reinit(locally_relevant_dofs); + DoFTools::make_hanging_node_constraints(dof_handler, + constraints_hanging_nodes); + constraints_hanging_nodes.close(); + + pcout << " Number of active cells: " + << triangulation.n_global_active_cells() << std::endl + << " Number of degrees of freedom: " << dof_handler.n_dofs() + << std::endl; + + dirichlet_constraints(); + } + + // Initialization for matrices and vectors + { + TimerOutput::Scope t(computing_timer, "Setup: vectors"); + solution.reinit(locally_relevant_dofs, mpi_communicator); + system_rhs_newton.reinit(locally_owned_dofs, mpi_communicator); + system_rhs_lambda.reinit(system_rhs_newton); + resid_vector.reinit(system_rhs_newton); + diag_mass_matrix_vector.reinit(system_rhs_newton); + cell_constitution.reinit(triangulation.n_active_cells()); + active_set.clear(); + active_set.set_size(locally_relevant_dofs.size()); + } + + // setup sparsity pattern + { + TimerOutput::Scope t(computing_timer, "Setup: matrix"); + TrilinosWrappers::SparsityPattern sp(locally_owned_dofs, + mpi_communicator); + + DoFTools::make_sparsity_pattern(dof_handler, sp, + constraints_dirichlet_hanging_nodes, false, + Utilities::MPI::this_mpi_process(mpi_communicator)); + + sp.compress(); + + system_matrix_newton.reinit(sp); + + // we are going to reuse the system + // matrix for assembling the diagonal + // of the mass matrix so that we do not + // need to allocate two sparse matrices + // at the same time: + TrilinosWrappers::SparseMatrix & mass_matrix = system_matrix_newton; + assemble_mass_matrix_diagonal(mass_matrix); + const unsigned int start = (system_rhs_newton.local_range().first), + end = (system_rhs_newton.local_range().second); + for (unsigned int j = start; j < end; j++) + diag_mass_matrix_vector(j) = mass_matrix.diag_element(j); + + number_iterations = 0; + + diag_mass_matrix_vector.compress(VectorOperation::insert); + + // remove the mass matrix entries from the matrix: + mass_matrix = 0; + } +} - return return_value; - } +template +void PlasticityContactProblem::assemble_nl_system( + TrilinosWrappers::MPI::Vector &u) { + TimerOutput::Scope t(computing_timer, "Assembling"); + + QGauss quadrature_formula(fe.degree + 1); + QGauss face_quadrature_formula(fe.degree + 1); + + FEValues < dim + > fe_values(fe, quadrature_formula, + UpdateFlags( + update_values | update_gradients | update_q_points + | update_JxW_values)); + + FEFaceValues < dim + > fe_values_face(fe, face_quadrature_formula, + update_values | update_quadrature_points + | update_JxW_values); + + const unsigned int dofs_per_cell = fe.dofs_per_cell; + const unsigned int n_q_points = quadrature_formula.size(); + const unsigned int n_face_q_points = face_quadrature_formula.size(); + + const EquationData::RightHandSide right_hand_side; + std::vector < Vector + > right_hand_side_values(n_q_points, Vector(dim)); + std::vector < Vector + > right_hand_side_values_face(n_face_q_points, Vector(dim)); + + FullMatrix cell_matrix(dofs_per_cell, dofs_per_cell); + Vector cell_rhs(dofs_per_cell); + + std::vector local_dof_indices(dofs_per_cell); + + typename DoFHandler::active_cell_iterator cell = + dof_handler.begin_active(), endc = dof_handler.end(); + + const FEValuesExtractors::Vector displacement(0); + + const double kappa = 1.0; + for (; cell != endc; ++cell) + if (cell->is_locally_owned()) { + fe_values.reinit(cell); + cell_matrix = 0; + cell_rhs = 0; + + right_hand_side.vector_value_list(fe_values.get_quadrature_points(), + right_hand_side_values); + + std::vector < SymmetricTensor<2, dim> > strain_tensor(n_q_points); + fe_values[displacement].get_function_symmetric_gradients(u, + strain_tensor); + + for (unsigned int q_point = 0; q_point < n_q_points; ++q_point) { + SymmetricTensor < 4, dim > stress_strain_tensor_linearized; + SymmetricTensor < 4, dim > stress_strain_tensor; + SymmetricTensor < 2, dim > stress_tensor; + + plast_lin_hard->linearized_plast_linear_hardening( + stress_strain_tensor_linearized, stress_strain_tensor, + strain_tensor[q_point]); + + for (unsigned int i = 0; i < dofs_per_cell; ++i) { + stress_tensor = stress_strain_tensor_linearized + * plast_lin_hard->get_strain(fe_values, i, q_point); + + for (unsigned int j = 0; j < dofs_per_cell; ++j) { + cell_matrix(i, j) += (stress_tensor + * plast_lin_hard->get_strain(fe_values, j, + q_point) * fe_values.JxW(q_point)); + } + + // the linearized part a(v^i;v^i,v) of the rhs + cell_rhs(i) += (stress_tensor * strain_tensor[q_point] + * fe_values.JxW(q_point)); + + // the residual part a(v^i;v) of the rhs + cell_rhs(i) -= (strain_tensor[q_point] + * stress_strain_tensor + * plast_lin_hard->get_strain(fe_values, i, q_point) + * fe_values.JxW(q_point)); + + // the residual part F(v) of the rhs + Tensor < 1, dim > rhs_values; + rhs_values = 0; + cell_rhs(i) += (fe_values[displacement].value(i, q_point) + * rhs_values * fe_values.JxW(q_point)); + } + } + + for (unsigned int face = 0; + face < GeometryInfo < dim > ::faces_per_cell; ++face) { + if (cell->face(face)->at_boundary() + && cell->face(face)->boundary_indicator() == 1) { + fe_values_face.reinit(cell, face); + + right_hand_side.vector_value_list( + fe_values_face.get_quadrature_points(), + right_hand_side_values_face); + + for (unsigned int q_point = 0; q_point < n_face_q_points; + ++q_point) { + Tensor < 1, dim > rhs_values; + rhs_values[2] = right_hand_side_values[q_point][2]; + for (unsigned int i = 0; i < dofs_per_cell; ++i) + cell_rhs(i) += (fe_values_face[displacement].value( + i, q_point) * rhs_values + * fe_values_face.JxW(q_point)); + } + } + } + + cell->get_dof_indices(local_dof_indices); + constraints.distribute_local_to_global(cell_matrix, cell_rhs, + local_dof_indices, system_matrix_newton, system_rhs_newton, + true); + + + }; + + system_matrix_newton.compress(VectorOperation::add); + system_rhs_newton.compress(VectorOperation::add); +} - template - void BoundaryValues::vector_value (const Point &p, - Vector &values) const - { - for (unsigned int c=0; cn_components; ++c) - values(c) = BoundaryValues::value (p, c); - } +template +void PlasticityContactProblem::residual_nl_system( + TrilinosWrappers::MPI::Vector &u) { + QGauss quadrature_formula(fe.degree + 1); + QGauss face_quadrature_formula(fe.degree + 1); + + FEValues < dim + > fe_values(fe, quadrature_formula, + UpdateFlags( + update_values | update_gradients | update_q_points + | update_JxW_values)); + + FEFaceValues < dim + > fe_values_face(fe, face_quadrature_formula, + update_values | update_quadrature_points + | update_JxW_values); + + const unsigned int dofs_per_cell = fe.dofs_per_cell; + const unsigned int n_q_points = quadrature_formula.size(); + const unsigned int n_face_q_points = face_quadrature_formula.size(); + + const EquationData::RightHandSide right_hand_side; + std::vector < Vector + > right_hand_side_values(n_q_points, Vector(dim)); + std::vector < Vector + > right_hand_side_values_face(n_face_q_points, Vector(dim)); + + Vector cell_rhs(dofs_per_cell); + + std::vector local_dof_indices(dofs_per_cell); + + const FEValuesExtractors::Vector displacement(0); + + typename DoFHandler::active_cell_iterator cell = + dof_handler.begin_active(), endc = dof_handler.end(); + + unsigned int elast_points = 0; + unsigned int plast_points = 0; + double yield = 0; + unsigned int cell_number = 0; + cell_constitution = 0; + + for (; cell != endc; ++cell) + if (cell->is_locally_owned()) { + fe_values.reinit(cell); + cell_rhs = 0; + + right_hand_side.vector_value_list(fe_values.get_quadrature_points(), + right_hand_side_values); + + std::vector < SymmetricTensor<2, dim> > strain_tensor(n_q_points); + fe_values[displacement].get_function_symmetric_gradients(u, + strain_tensor); + + for (unsigned int q_point = 0; q_point < n_q_points; ++q_point) { + SymmetricTensor < 4, dim > stress_strain_tensor; + SymmetricTensor < 2, dim > stress_tensor; + + plast_lin_hard->plast_linear_hardening(stress_strain_tensor, + strain_tensor[q_point], elast_points, plast_points, + yield); + + cell_constitution(cell_number) += yield; + for (unsigned int i = 0; i < dofs_per_cell; ++i) { + cell_rhs(i) -= (strain_tensor[q_point] + * stress_strain_tensor + * //(stress_tensor) * + plast_lin_hard->get_strain(fe_values, i, q_point) + * fe_values.JxW(q_point)); + + Tensor < 1, dim > rhs_values; + rhs_values = 0; + cell_rhs(i) += ((fe_values[displacement].value(i, q_point) + * rhs_values) * fe_values.JxW(q_point)); + }; + }; + + for (unsigned int face = 0; + face < GeometryInfo < dim > ::faces_per_cell; ++face) { + if (cell->face(face)->at_boundary() + && cell->face(face)->boundary_indicator() == 1) { + fe_values_face.reinit(cell, face); + + right_hand_side.vector_value_list( + fe_values_face.get_quadrature_points(), + right_hand_side_values_face); + + for (unsigned int q_point = 0; q_point < n_face_q_points; + ++q_point) { + Tensor < 1, dim > rhs_values; + rhs_values[2] = right_hand_side_values[q_point][2]; + for (unsigned int i = 0; i < dofs_per_cell; ++i) + cell_rhs(i) += (fe_values_face[displacement].value( + i, q_point) * rhs_values + * fe_values_face.JxW(q_point)); + } + } + } + + cell->get_dof_indices(local_dof_indices); + constraints_dirichlet_hanging_nodes.distribute_local_to_global( + cell_rhs, local_dof_indices, system_rhs_newton); + + for (unsigned int i=0; i - class Obstacle : public Function - { - public: - Obstacle (std_cxx1x::shared_ptr > const &_input, bool _use_read_obstacle) : - Function(dim), - input_obstacle_copy(_input), - use_read_obstacle(_use_read_obstacle) - {} - - virtual double value (const Point &p, - const unsigned int component = 0) const; - - virtual void vector_value (const Point &p, - Vector &values) const; - - private: - std_cxx1x::shared_ptr > const &input_obstacle_copy; - bool use_read_obstacle; - }; - - template - double Obstacle::value (const Point &p, - const unsigned int component) const - { - double R = 0.03; - double return_value = 100.0; - if (component == 0) - return_value = p(0); - if (component == 1) - return_value = p(1); - if (component == 2) - { - if (use_read_obstacle) - return_value = 1.999 - input_obstacle_copy->obstacle_function (p(0), p(1)); - else - return_value = -std::sqrt (0.36 - (p(0)-0.5)*(p(0)-0.5) - (p(1)-0.5)*(p(1)-0.5)) + 1.59; - } - return return_value; - } +template +void PlasticityContactProblem::assemble_mass_matrix_diagonal( + TrilinosWrappers::SparseMatrix &mass_matrix) { + QGaussLobatto < dim - 1 > face_quadrature_formula(fe.degree + 1); + + FEFaceValues < dim + > fe_values_face(fe, face_quadrature_formula, + update_values | update_quadrature_points + | update_JxW_values); + + const unsigned int dofs_per_cell = fe.dofs_per_cell; + const unsigned int n_face_q_points = face_quadrature_formula.size(); + + FullMatrix cell_matrix(dofs_per_cell, dofs_per_cell); + Tensor<1, dim, double> ones(dim); + for (unsigned i = 0; i < dim; i++) + ones[i] = 1.0; + + std::vector local_dof_indices(dofs_per_cell); + + const FEValuesExtractors::Vector displacement(0); + + typename DoFHandler::active_cell_iterator cell = + dof_handler.begin_active(), endc = dof_handler.end(); + + for (; cell != endc; ++cell) + if (cell->is_locally_owned()) + for (unsigned int face = 0; + face < GeometryInfo < dim > ::faces_per_cell; ++face) + if (cell->face(face)->at_boundary() + && cell->face(face)->boundary_indicator() == 1) { + fe_values_face.reinit(cell, face); + cell_matrix = 0; + + for (unsigned int q_point = 0; q_point < n_face_q_points; + ++q_point) + for (unsigned int i = 0; i < dofs_per_cell; ++i) + cell_matrix(i, i) += + (fe_values_face[displacement].value(i, + q_point) * ones + * fe_values_face.JxW(q_point)); + + cell->get_dof_indices(local_dof_indices); + +// constraints_dirichlet_hanging_nodes.distribute_local_to_global( +// cell_matrix, local_dof_indices, mass_matrix); + + for (unsigned int i=0; i - void Obstacle::vector_value (const Point &p, - Vector &values) const - { - for (unsigned int c=0; cn_components; ++c) - values(c) = Obstacle::value (p, c); - } - } +// @sect4{PlasticityContactProblem::update_solution_and_constraints} + +// Projection and updating of the active set +// for the dofs which penetrates the obstacle. +template +void PlasticityContactProblem::update_solution_and_constraints() { + const EquationData::Obstacle obstacle(input_obstacle, + (obstacle_filename!=""), + (base_mesh=="box"?1.0:0.5)); + std::vector vertex_touched(dof_handler.n_dofs(), false); + + typename DoFHandler::active_cell_iterator cell = + dof_handler.begin_active(), endc = dof_handler.end(); + + TrilinosWrappers::MPI::Vector distributed_solution(system_rhs_newton); + distributed_solution = solution; + TrilinosWrappers::MPI::Vector lambda(solution); + lambda = resid_vector; + TrilinosWrappers::MPI::Vector diag_mass_matrix_vector_relevant(solution); + diag_mass_matrix_vector_relevant = diag_mass_matrix_vector; + + constraints.reinit(locally_relevant_dofs); + active_set.clear(); + IndexSet active_set_locally_owned; + active_set_locally_owned.set_size(locally_owned_dofs.size()); + const double c = 100.0 * e_modul; + + Quadrature face_quadrature (fe.get_unit_face_support_points()); + FEFaceValues fe_values_face (fe, face_quadrature, update_quadrature_points); + + const unsigned int dofs_per_face = fe.dofs_per_face; + const unsigned int n_face_q_points = face_quadrature.size (); + + // pcout<< "dofs_per_face = " << dofs_per_face + // << "n_face_q_points = " << n_face_q_points + // <is_artificial()) + for (unsigned int face = 0; + face < GeometryInfo < dim > ::faces_per_cell; ++face) + if (cell->face(face)->at_boundary() + && cell->face(face)->boundary_indicator() == 1) + { + fe_values_face.reinit (cell, face); + std::vector dof_indices (dofs_per_face); + cell->face(face)->get_dof_indices (dof_indices); + + for (unsigned int q_point=0; q_point point(fe_values_face.quadrature_point(q_point)); + + double obstacle_value = obstacle.value(point, 2); + double solution_index_z = solution(index_z); + double gap = obstacle_value - point(2); + + if (lambda(index_z)/diag_mass_matrix_vector_relevant(index_z) + + c * (solution_index_z - gap) > 0 + && !(constraints_hanging_nodes.is_constrained( + index_z))) { + constraints.add_line(index_z); + constraints.set_inhomogeneity(index_z, gap); + distributed_solution(index_z) = gap; + + if (locally_owned_dofs.is_element(index_z)) { + active_set_locally_owned.add_index(index_z); + if (locally_relevant_dofs.is_element(index_z)) + active_set.add_index(index_z); + } + + } + else if (lambda(index_z)/diag_mass_matrix_vector_relevant(index_z) + + c * (solution_index_z - gap) > 0 + && constraints_hanging_nodes.is_constrained( + index_z)) + { + if (locally_owned_dofs.is_element(index_z)) + { + counter_hanging_nodes += 1; + +// std::cout << "index_z = " << index_z +// << ", lambda = " << lambda (index_z) +// << ", solution_index_z - gap = " << solution_index_z - gap +// << ", diag_mass_matrix_vector_relevant = " << diag_mass_matrix_vector_relevant (index_z) +// << ", x = " << point(0) +// << ", y = " << point(1) +// << std::endl; + } + } + } + } + } + distributed_solution.compress(VectorOperation::insert); + + unsigned int sum_contact_constraints = Utilities::MPI::sum( + active_set_locally_owned.n_elements(), mpi_communicator); + pcout << " Size of active set: " << sum_contact_constraints + << std::endl; + unsigned int sum_contact_hanging_nodes = Utilities::MPI::sum( + counter_hanging_nodes, mpi_communicator); + pcout << " Number of hanging nodes in contact: " << sum_contact_hanging_nodes + << std::endl; + + solution = distributed_solution; + + constraints.close(); + + // constraints_dirichlet_hanging_nodes.print (std::cout); + + constraints.merge(constraints_dirichlet_hanging_nodes); + + //constraints.print (std::cout); +} - // @sect3{The PlasticityContactProblem class template} - - // This class supplies all function - // and variables needed to describe - // the nonlinear contact problem. It is - // close to step-41 but with some additional - // features like: handling hanging nodes, - // a Newton method, using Trilinos and p4est - // for parallel distributed computing. - // To deal with hanging nodes makes - // life a bit more complicated since - // we need an other ConstraintMatrix now. - // We create a Newton method for the - // active set method for the contact - // situation and to handle the nonlinear - // operator for the constitutive law. - - template - class PlasticityContactProblem - { - public: - PlasticityContactProblem (int _n_refinements_global); - void run (); - - private: - void make_grid (); - void setup_system(); - void assemble_nl_system (TrilinosWrappers::MPI::Vector &u); - void residual_nl_system (TrilinosWrappers::MPI::Vector &u); - void assemble_mass_matrix_diagonal (TrilinosWrappers::SparseMatrix &mass_matrix); - void update_solution_and_constraints (); - void dirichlet_constraints (); - void solve (); - void solve_newton (); - void refine_grid (); - void move_mesh (const TrilinosWrappers::MPI::Vector &_complete_displacement) const; - void output_results (const std::string &title) const; - - unsigned int n_refinements_global; - unsigned int cycle; - bool use_read_obstacle; - - MPI_Comm mpi_communicator; - - parallel::distributed::Triangulation triangulation; - - FESystem fe; - DoFHandler dof_handler; - - std_cxx1x::shared_ptr > soltrans; - - IndexSet locally_owned_dofs; - IndexSet locally_relevant_dofs; - - unsigned int number_iterations; - - ConstraintMatrix constraints; - ConstraintMatrix constraints_hanging_nodes; - ConstraintMatrix constraints_dirichlet_hanging_nodes; - - TrilinosWrappers::SparseMatrix system_matrix_newton; - - TrilinosWrappers::MPI::Vector solution; - TrilinosWrappers::MPI::Vector system_rhs_newton; - TrilinosWrappers::MPI::Vector resid_vector; - TrilinosWrappers::MPI::Vector diag_mass_matrix_vector; - Vector cell_constitution; - IndexSet active_set; - - ConditionalOStream pcout; - - TrilinosWrappers::PreconditionAMG::AdditionalData additional_data; - TrilinosWrappers::PreconditionAMG preconditioner_u; - - std_cxx1x::shared_ptr > input_obstacle; - std_cxx1x::shared_ptr > plast_lin_hard; - - double sigma_0; // Yield stress - double gamma; // Parameter for the linear isotropic hardening - double e_modul; // E-Modul - double nu; // Poisson ratio - - TimerOutput computing_timer; - }; - - // @sect3{Implementation of the PlasticityContactProblem class} - - // Next for the implementation of the class - // template that makes use of the functions - // above. As before, we will write everything - - template - PlasticityContactProblem::PlasticityContactProblem (int _n_refinements_global) - : - n_refinements_global (_n_refinements_global), - mpi_communicator (MPI_COMM_WORLD), - triangulation (mpi_communicator), - fe (FE_Q(1), dim), - dof_handler (triangulation), - pcout (std::cout, - (Utilities::MPI::this_mpi_process(mpi_communicator) == 0)), - sigma_0 (400), - gamma (0.01), - e_modul (2.0e+5), - nu (0.3), - computing_timer (MPI_COMM_WORLD, - pcout, - TimerOutput::never, - TimerOutput::wall_times) - { - plast_lin_hard.reset (new ConstitutiveLaw (e_modul, nu, sigma_0, gamma, mpi_communicator, pcout)); - } +// @sect4{PlasticityContactProblem::dirichlet_constraints} + +// This function defines the new ConstraintMatrix +// constraints_dirichlet_hanging_nodes. It contains +// the dirichlet boundary values as well as the +// hanging nodes constraints. +template +void PlasticityContactProblem::dirichlet_constraints() { + /* boundary_indicators: + _______ + / 1 /| + /______ / | + 8| | 8| + | 8 | / + |_______|/ + 6 + */ + + constraints_dirichlet_hanging_nodes.reinit(locally_relevant_dofs); + constraints_dirichlet_hanging_nodes.merge(constraints_hanging_nodes); + + // interpolate all components of the solution + VectorTools::interpolate_boundary_values(dof_handler, base_mesh=="box"?6:0, + EquationData::BoundaryValues(), + constraints_dirichlet_hanging_nodes, ComponentMask()); + + // interpolate x- and y-components of the + // solution (this is a bit mask, so apply + // operator| ) + FEValuesExtractors::Scalar x_displacement(0); + FEValuesExtractors::Scalar y_displacement(1); + VectorTools::interpolate_boundary_values(dof_handler, 8, + EquationData::BoundaryValues(), + constraints_dirichlet_hanging_nodes, + (fe.component_mask(x_displacement) + | fe.component_mask(y_displacement))); + constraints_dirichlet_hanging_nodes.close(); +} - template - void PlasticityContactProblem::make_grid () - { - std::vector repet(3); - repet[0] = 1; - repet[1] = 1; - repet[2] = 1; - - Point p1 (0,0,0); - Point p2 (1.0, 1.0, 1.0); - GridGenerator::subdivided_hyper_rectangle (triangulation, repet, p1, p2); - - Triangulation<3>::active_cell_iterator - cell = triangulation.begin_active(), - endc = triangulation.end(); - - /* boundary_indicators: - _______ - / 9 /| - /______ / | - 8| | 8| - | 8 | / - |_______|/ - 6 - */ - - for (; cell!=endc; ++cell) - for (unsigned int face=0; face::faces_per_cell; ++face) - { - if (cell->face (face)->center ()[2] == p2(2)) - cell->face (face)->set_boundary_indicator (9); - if (cell->face (face)->center ()[0] == p1(0) || - cell->face (face)->center ()[0] == p2(0) || - cell->face (face)->center ()[1] == p1(1) || - cell->face (face)->center ()[1] == p2(1)) - cell->face (face)->set_boundary_indicator (8); - if (cell->face (face)->center ()[2] == p1(2)) - cell->face (face)->set_boundary_indicator (6); - } - - triangulation.refine_global (n_refinements_global); - } +// @sect4{PlasticityContactProblem::solve} - // In following function we setup the degrees of freedom before each refinement - // cycle. Except that we are using Trilinos here instead of PETSc most of it - // is similar to step-40. +// In addition to step-41 we have +// to deal with the hanging node +// constraints. Again we also consider +// the locally_owned_dofs only by +// creating the vector distributed_solution. +// +// For the hanging nodes we have to apply +// the set_zero function to system_rhs_newton. +// This is necessary if a hanging node value x_0 +// has one neighbor which is in contact with +// value x_0 and one neighbor which is not with +// value x_1. This leads to an inhomogeneity +// constraint with value x_1/2 = gap/2 in the +// ConstraintMatrix. +// So the corresponding entries in the +// ride-hang-side are non-zero with a +// meaningless value. These values have to +// to set to zero. + +// The rest of the function is similar to +// step-41 except that we use a FGMRES-solver +// instead of CG. For a very small hardening +// value gamma the linear system becomes +// almost semi definite but still symmetric. +template +void PlasticityContactProblem::solve() { + TimerOutput::Scope t(computing_timer, "Solve"); + + TrilinosWrappers::MPI::Vector distributed_solution(system_rhs_newton); + distributed_solution = solution; + + constraints_hanging_nodes.set_zero(distributed_solution); + constraints_hanging_nodes.set_zero(system_rhs_newton); + distributed_solution.compress(VectorOperation::insert); + system_rhs_newton.compress(VectorOperation::insert); + + { + TimerOutput::Scope t(computing_timer, "Solve: setup preconditioner"); + preconditioner_u.initialize(system_matrix_newton, additional_data); + } + + { + TimerOutput::Scope t(computing_timer, "Solve: iterate"); + + PrimitiveVectorMemory < TrilinosWrappers::MPI::Vector > mem; + TrilinosWrappers::MPI::Vector tmp(system_rhs_newton); + // 1e-4 seems to be the fasted option altogether, but to get more + // reproducible parallel benchmark results, we use a small residual: + double relative_accuracy = 1e-8; + if (output_dir.compare("its/") == 0) + relative_accuracy = 1e-4; + + const double solver_tolerance = relative_accuracy + * system_matrix_newton.residual(tmp, distributed_solution, + system_rhs_newton); + + SolverControl solver_control(system_matrix_newton.m(), + solver_tolerance); + SolverBicgstab < TrilinosWrappers::MPI::Vector + > solver(solver_control, mem/*, + SolverFGMRES:: + AdditionalData(30, true)*/); + solver.solve(system_matrix_newton, distributed_solution, + system_rhs_newton, preconditioner_u); + + pcout << " Error: " << solver_control.initial_value() << " -> " + << solver_control.last_value() << " in " + << solver_control.last_step() << " Bicgstab iterations." + << std::endl; + + number_iterations += solver_control.last_step(); + } + + constraints.distribute(distributed_solution); + + solution = distributed_solution; +} - // We are using TimerOutput to control the scaling for the distributing the dofs - // and setting of the sparsity pattern and the system matrix. - template - void PlasticityContactProblem::setup_system () - { - { - computing_timer.enter_section("Setup: distribute DoFs"); - dof_handler.distribute_dofs (fe); - - locally_owned_dofs = dof_handler.locally_owned_dofs (); - locally_relevant_dofs.clear(); - DoFTools::extract_locally_relevant_dofs (dof_handler, - locally_relevant_dofs); - computing_timer.exit_section("Setup: distribute DoFs"); - } +// @sect4{PlasticityContactProblem::solve_newton} + +// In this function the damped Newton method is implemented. +// That means two nested loops: the outer loop for the newton +// iteration and the inner loop for the damping steps which +// will be used only if necessary. To obtain a good and reasonable +// starting value we solve an elastic problem in very first step (j=1). +template +void PlasticityContactProblem::solve_newton() { + TimerOutput::Scope t(computing_timer, "solve newton setup"); + + double resid = 0; + double resid_old = 100000; + TrilinosWrappers::MPI::Vector old_solution(system_rhs_newton); + TrilinosWrappers::MPI::Vector res(system_rhs_newton); + TrilinosWrappers::MPI::Vector tmp_vector(system_rhs_newton); + + std::vector < std::vector > constant_modes; + DoFTools::extract_constant_modes(dof_handler, ComponentMask(), + constant_modes); + + double sigma_hlp = sigma_0; + + additional_data.constant_modes = constant_modes; + additional_data.elliptic = true; + additional_data.n_cycles = 1; + additional_data.w_cycle = false; + additional_data.output_details = false; + additional_data.smoother_sweeps = 2; + additional_data.aggregation_threshold = 1e-2; + + IndexSet active_set_old(active_set); + + t.stop(); // stop newton setup timer + + unsigned int j = 1; + unsigned int number_assemble_system = 0; + for (; j <= 100; j++) { + if (transfer_solution) + { + if (transfer_solution && j == 1 && cycle == 0) + plast_lin_hard->set_sigma_0(1e+10); + else if (transfer_solution && (j == 2 || cycle > 0)) + plast_lin_hard->set_sigma_0(sigma_hlp); + } + else + { + if (j == 1) + plast_lin_hard->set_sigma_0(1e+10); + else + plast_lin_hard->set_sigma_0(sigma_hlp); + } + + pcout << " " << std::endl; + pcout << " Newton iteration " << j << std::endl; + pcout << " Updating active set..." << std::endl; + + { + TimerOutput::Scope t(computing_timer, "update active set"); + update_solution_and_constraints(); + } + + pcout << " Assembling system... " << std::endl; + system_matrix_newton = 0; + system_rhs_newton = 0; + assemble_nl_system(solution); //compute Newton-Matrix + + number_assemble_system += 1; + + pcout << " Solving system... " << std::endl; + solve(); + + TrilinosWrappers::MPI::Vector distributed_solution(system_rhs_newton); + distributed_solution = solution; + + // We handle a highly nonlinear problem so we have to damp + // the Newtons method. We refer that we iterate the new solution + // in each Newton step and not only the solution update. + // Since the solution set is a convex set and not a space we + // compute for the damping a linear combination of the + // previous and the current solution to guarantee that the + // damped solution is in our solution set again. + // At most we apply 10 damping steps. + bool damped = false; + tmp_vector = old_solution; + double a = 0; + for (unsigned int i = 0; (i < 5) && (!damped); i++) { + a = std::pow(0.5, static_cast(i)); + old_solution = tmp_vector; + old_solution.sadd(1 - a, a, distributed_solution); + old_solution.compress(VectorOperation::add); + + TimerOutput::Scope t(computing_timer, "Residual and lambda"); + + system_rhs_newton = 0; + system_rhs_lambda = 0; + + solution = old_solution; + residual_nl_system(solution); + res = system_rhs_newton; + + const unsigned int start_res = (res.local_range().first), end_res = + (res.local_range().second); + for (unsigned int n = start_res; n < end_res; ++n) + if (constraints.is_inhomogeneously_constrained(n)) + res(n) = 0; + + res.compress(VectorOperation::insert); + + resid = res.l2_norm(); + + if (resid < resid_old) + damped = true; + + pcout << " Residual of the non-contact part of the system: " + << resid << std::endl + << " with a damping parameter alpha = " << a + << std::endl; + + // The previous iteration of step 0 is the solution of an elastic problem. + // So a linear combination of a plastic and an elastic solution makes no sense + // since the elastic solution is not in the convex set of the plastic solution. + if (!transfer_solution && j == 2) + break; + if (transfer_solution && j == 2 && cycle == 0) + break; + } + + resid_old = resid; + + resid_vector = system_rhs_lambda; + resid_vector.compress(VectorOperation::insert); + + int is_my_set_changed = (active_set == active_set_old) ? 0 : 1; + int num_changed = Utilities::MPI::sum(is_my_set_changed, + MPI_COMM_WORLD); + if (num_changed == 0) + { + pcout<< " Active set did not change!" <refine_grid function} - // Initialization for matrices and vectors. +template +void PlasticityContactProblem::refine_grid() { + if (refinement_strategy == RefinementStrategy::refine_global) { - solution.reinit (locally_relevant_dofs, mpi_communicator); - system_rhs_newton.reinit (locally_owned_dofs, mpi_communicator); - resid_vector.reinit (system_rhs_newton); - diag_mass_matrix_vector.reinit (system_rhs_newton); - cell_constitution.reinit (triangulation.n_active_cells ()); - active_set.clear (); - active_set.set_size (locally_relevant_dofs.size ()); + triangulation.refine_global(1); } - - // Here we setup sparsity pattern. + else { - computing_timer.enter_section("Setup: matrix"); - TrilinosWrappers::SparsityPattern sp (locally_owned_dofs, - mpi_communicator); - - DoFTools::make_sparsity_pattern (dof_handler, sp, constraints_dirichlet_hanging_nodes, false, - Utilities::MPI::this_mpi_process(mpi_communicator)); - - sp.compress(); + Vector estimated_error_per_cell(triangulation.n_active_cells()); + KellyErrorEstimator < dim + > ::estimate(dof_handler, QGauss < dim - 1 > (fe.degree + 2), + typename FunctionMap::type(), solution, + estimated_error_per_cell); - system_matrix_newton.reinit (sp); + parallel::distributed::GridRefinement::refine_and_coarsen_fixed_number( + triangulation, estimated_error_per_cell, 0.3, 0.03); - // we are going to reuse the system - // matrix for assembling the diagonal - // of the mass matrix so that we do not - // need to allocate two sparse matrices - // at the same time: - TrilinosWrappers::SparseMatrix &mass_matrix = system_matrix_newton; - assemble_mass_matrix_diagonal (mass_matrix); - const unsigned int - start = (system_rhs_newton.local_range().first), - end = (system_rhs_newton.local_range().second); - for (unsigned int j=start; jprepare_for_coarsening_and_refinement(solution); - diag_mass_matrix_vector.compress (VectorOperation::insert); - - // remove the mass matrix entries from the matrix: - mass_matrix = 0; - - computing_timer.exit_section("Setup: matrix"); + triangulation.execute_coarsening_and_refinement(); } - } - - template - void PlasticityContactProblem::assemble_nl_system (TrilinosWrappers::MPI::Vector &u) - { - computing_timer.enter_section("Assembling"); - - QGauss quadrature_formula(2); - QGauss face_quadrature_formula(2); - - FEValues fe_values (fe, quadrature_formula, - UpdateFlags(update_values | - update_gradients | - update_q_points | - update_JxW_values)); - - FEFaceValues fe_values_face (fe, face_quadrature_formula, - update_values | update_quadrature_points | - update_JxW_values); - - const unsigned int dofs_per_cell = fe.dofs_per_cell; - const unsigned int n_q_points = quadrature_formula.size (); - const unsigned int n_face_q_points = face_quadrature_formula.size(); - - const EquationData::RightHandSide right_hand_side; - std::vector > right_hand_side_values (n_q_points, - Vector(dim)); - std::vector > right_hand_side_values_face (n_face_q_points, - Vector(dim)); - - FullMatrix cell_matrix (dofs_per_cell, dofs_per_cell); - Vector cell_rhs (dofs_per_cell); - - std::vector local_dof_indices (dofs_per_cell); - - typename DoFHandler::active_cell_iterator cell = dof_handler.begin_active(), - endc = dof_handler.end(); - - const FEValuesExtractors::Vector displacement (0); - - const double kappa = 1.0; - for (; cell!=endc; ++cell) - if (cell->is_locally_owned()) - { - fe_values.reinit (cell); - cell_matrix = 0; - cell_rhs = 0; - - right_hand_side.vector_value_list (fe_values.get_quadrature_points(), - right_hand_side_values); - - std::vector > strain_tensor (n_q_points); - fe_values[displacement].get_function_symmetric_gradients (u, strain_tensor); - - for (unsigned int q_point=0; q_point stress_strain_tensor_linearized; - SymmetricTensor<4,dim> stress_strain_tensor; - SymmetricTensor<2,dim> stress_tensor; - - plast_lin_hard->linearized_plast_linear_hardening (stress_strain_tensor_linearized, - stress_strain_tensor, - strain_tensor[q_point]); - - for (unsigned int i=0; iget_strain(fe_values, i, q_point); - - for (unsigned int j=0; jget_strain(fe_values, j, q_point) * - fe_values.JxW (q_point)); - } - - // the linearized part a(v^i;v^i,v) of the rhs - cell_rhs(i) += (stress_tensor * - strain_tensor[q_point] * - fe_values.JxW (q_point)); - - // the residual part a(v^i;v) of the rhs - cell_rhs(i) -= (strain_tensor[q_point] * stress_strain_tensor * - plast_lin_hard->get_strain(fe_values, i, q_point) * - fe_values.JxW (q_point)); - - // the residual part F(v) of the rhs - Tensor<1,dim> rhs_values; - rhs_values = 0; - cell_rhs(i) += (fe_values[displacement].value (i, q_point) * - rhs_values * - fe_values.JxW (q_point)); - } - } - - for (unsigned int face=0; face::faces_per_cell; ++face) - { - if (cell->face (face)->at_boundary() - && cell->face (face)->boundary_indicator () == 9) - { - fe_values_face.reinit (cell, face); - - right_hand_side.vector_value_list (fe_values_face.get_quadrature_points(), - right_hand_side_values_face); - - for (unsigned int q_point=0; q_point rhs_values; - rhs_values = 0; - for (unsigned int i=0; iget_dof_indices (local_dof_indices); - constraints.distribute_local_to_global (cell_matrix, cell_rhs, - local_dof_indices, - system_matrix_newton, system_rhs_newton, true); - }; - - system_matrix_newton.compress (VectorOperation::add); - system_rhs_newton.compress (VectorOperation::add); - - computing_timer.exit_section("Assembling"); - } - - template - void PlasticityContactProblem::residual_nl_system (TrilinosWrappers::MPI::Vector &u) - { - QGauss quadrature_formula(2); - QGauss face_quadrature_formula(2); - - FEValues fe_values (fe, quadrature_formula, - UpdateFlags(update_values | - update_gradients | - update_q_points | - update_JxW_values)); - - FEFaceValues fe_values_face (fe, face_quadrature_formula, - update_values | update_quadrature_points | - update_JxW_values); - - const unsigned int dofs_per_cell = fe.dofs_per_cell; - const unsigned int n_q_points = quadrature_formula.size (); - const unsigned int n_face_q_points = face_quadrature_formula.size(); - - const EquationData::RightHandSide right_hand_side; - std::vector > right_hand_side_values (n_q_points, - Vector(dim)); - std::vector > right_hand_side_values_face (n_face_q_points, - Vector(dim)); - - Vector cell_rhs (dofs_per_cell); - - std::vector local_dof_indices (dofs_per_cell); - - const FEValuesExtractors::Vector displacement (0); - - typename DoFHandler::active_cell_iterator cell = dof_handler.begin_active(), - endc = dof_handler.end(); - - unsigned int elast_points = 0; - unsigned int plast_points = 0; - double yield = 0; - unsigned int cell_number = 0; - cell_constitution = 0; - - for (; cell!=endc; ++cell) - if (cell->is_locally_owned()) - { - fe_values.reinit (cell); - cell_rhs = 0; - - right_hand_side.vector_value_list (fe_values.get_quadrature_points(), - right_hand_side_values); - - std::vector > strain_tensor (n_q_points); - fe_values[displacement].get_function_symmetric_gradients (u, strain_tensor); - - for (unsigned int q_point=0; q_point stress_strain_tensor; - SymmetricTensor<2,dim> stress_tensor; - - plast_lin_hard->plast_linear_hardening (stress_strain_tensor, strain_tensor[q_point], - elast_points, plast_points, yield); - - cell_constitution (cell_number) += yield; - for (unsigned int i=0; iget_strain(fe_values, i, q_point) * - fe_values.JxW (q_point)); - - Tensor<1,dim> rhs_values; - rhs_values = 0; - cell_rhs(i) += ((fe_values[displacement].value (i, q_point) * - rhs_values) * - fe_values.JxW (q_point)); - }; - }; - - for (unsigned int face=0; face::faces_per_cell; ++face) - { - if (cell->face (face)->at_boundary() - && cell->face (face)->boundary_indicator () == 9) - { - fe_values_face.reinit (cell, face); - - right_hand_side.vector_value_list (fe_values_face.get_quadrature_points(), - right_hand_side_values_face); - - for (unsigned int q_point=0; q_point rhs_values; - rhs_values = 0; - for (unsigned int i=0; iget_dof_indices (local_dof_indices); - constraints_dirichlet_hanging_nodes.distribute_local_to_global (cell_rhs, - local_dof_indices, - system_rhs_newton); - - cell_number += 1; - } - else - { - cell_constitution (cell_number) = 0; - cell_number += 1; - }; - - cell_constitution /= n_q_points; - cell_constitution.compress (VectorOperation::add); - system_rhs_newton.compress (VectorOperation::add); - - unsigned int sum_elast_points = Utilities::MPI::sum(elast_points, mpi_communicator); - unsigned int sum_plast_points = Utilities::MPI::sum(plast_points, mpi_communicator); - pcout << " Number of elastic quadrature points: " << sum_elast_points - << " and plastic quadrature points: " << sum_plast_points << std::endl; - } - - template - void PlasticityContactProblem::assemble_mass_matrix_diagonal (TrilinosWrappers::SparseMatrix &mass_matrix) - { - QTrapez face_quadrature_formula; - - FEFaceValues fe_values_face (fe, face_quadrature_formula, - update_values | - update_quadrature_points | - update_JxW_values); - - const unsigned int dofs_per_cell = fe.dofs_per_cell; - const unsigned int n_face_q_points = face_quadrature_formula.size(); - - FullMatrix cell_matrix (dofs_per_cell, dofs_per_cell); - Tensor<1,dim,double> ones (dim); - for (unsigned i=0; i local_dof_indices (dofs_per_cell); - - const FEValuesExtractors::Vector displacement (0); - - typename DoFHandler::active_cell_iterator - cell = dof_handler.begin_active(), - endc = dof_handler.end(); - - for (; cell!=endc; ++cell) - if (cell->is_locally_owned()) - for (unsigned int face=0; face::faces_per_cell; ++face) - if (cell->face (face)->at_boundary() - && cell->face (face)->boundary_indicator () == 9) - { - fe_values_face.reinit (cell, face); - cell_matrix = 0; - - for (unsigned int q_point=0; q_pointget_dof_indices (local_dof_indices); - - constraints_dirichlet_hanging_nodes.distribute_local_to_global (cell_matrix, - local_dof_indices, - mass_matrix); - } - - mass_matrix.compress (VectorOperation::add); - } - - // @sect4{PlasticityContactProblem::update_solution_and_constraints} - - // Projection and updating of the active set - // for the dofs which penetrates the obstacle. - template - void PlasticityContactProblem::update_solution_and_constraints () - { - computing_timer.enter_section("Update solution and constraints"); - - const EquationData::Obstacle obstacle (input_obstacle, use_read_obstacle); - std::vector vertex_touched (dof_handler.n_dofs (), false); - - typename DoFHandler::active_cell_iterator - cell = dof_handler.begin_active(), - endc = dof_handler.end(); - - TrilinosWrappers::MPI::Vector distributed_solution (system_rhs_newton); - distributed_solution = solution; - TrilinosWrappers::MPI::Vector lambda (solution); - lambda = resid_vector; - TrilinosWrappers::MPI::Vector diag_mass_matrix_vector_relevant (solution); - diag_mass_matrix_vector_relevant = diag_mass_matrix_vector; - - constraints.reinit(locally_relevant_dofs); - active_set.clear (); - IndexSet active_set_locally_owned; - active_set_locally_owned.set_size (locally_owned_dofs.size ()); - const double c = 100.0*e_modul; - - for (; cell!=endc; ++cell) - if (cell->is_locally_owned()) - for (unsigned int face=0; face::faces_per_cell; ++face) - if (cell->face (face)->at_boundary() - && cell->face (face)->boundary_indicator () == 9) - for (unsigned int v=0; v::vertices_per_cell; ++v) - { - unsigned int index_z = cell->face (face)->vertex_dof_index (v,2); - - if (vertex_touched[cell->face (face)->vertex_index(v)] == false) - vertex_touched[cell->face (face)->vertex_index(v)] = true; - else - continue; - - // the local row where - Point point (cell->face (face)->vertex (v)[0], - cell->face (face)->vertex (v)[1], - cell->face (face)->vertex (v)[2]); - - double obstacle_value = obstacle.value (point, 2); - double solution_index_z = solution (index_z); - double gap = obstacle_value - point (2); - - -// std::cout << "lambda = " << lambda (index_z) -// << ", solution_index_z - gap = " << solution_index_z - gap -// << ", diag_mass_matrix_vector_relevant = " << diag_mass_matrix_vector_relevant (index_z) -// << std::endl; - - if (lambda (index_z) + - c * - diag_mass_matrix_vector_relevant (index_z) * - (solution_index_z - gap) - > 0 && - !(constraints_hanging_nodes.is_constrained(index_z))) - { - constraints.add_line (index_z); - constraints.set_inhomogeneity (index_z, gap); - - distributed_solution (index_z) = gap; - - if (locally_relevant_dofs.is_element (index_z)) - active_set.add_index (index_z); - - if (locally_owned_dofs.is_element (index_z)) - active_set_locally_owned.add_index (index_z); - } - } - distributed_solution.compress (VectorOperation::insert); - - unsigned int sum_contact_constraints = Utilities::MPI::sum(active_set_locally_owned.n_elements (), - mpi_communicator); - pcout << " Size of active set: " << sum_contact_constraints < - void PlasticityContactProblem::dirichlet_constraints () - { - /* boundary_indicators: - _______ - / 9 /| - /______ / | - 8| | 8| - | 8 | / - |_______|/ - 6 - */ - - constraints_dirichlet_hanging_nodes.reinit (locally_relevant_dofs); - constraints_dirichlet_hanging_nodes.merge (constraints_hanging_nodes); - - // interpolate all components of the solution - VectorTools::interpolate_boundary_values (dof_handler, - 6, - EquationData::BoundaryValues(), - constraints_dirichlet_hanging_nodes, - ComponentMask()); - - // interpolate x- and y-components of the - // solution (this is a bit mask, so apply - // operator| ) - FEValuesExtractors::Scalar x_displacement(0); - FEValuesExtractors::Scalar y_displacement(1); - VectorTools::interpolate_boundary_values (dof_handler, - 8, - EquationData::BoundaryValues(), - constraints_dirichlet_hanging_nodes, - (fe.component_mask(x_displacement) - | - fe.component_mask(y_displacement))); - constraints_dirichlet_hanging_nodes.close (); - } - - // @sect4{PlasticityContactProblem::solve} - - // In addition to step-41 we have - // to deal with the hanging node - // constraints. Again we also consider - // the locally_owned_dofs only by - // creating the vector distributed_solution. - // - // For the hanging nodes we have to apply - // the set_zero function to system_rhs_newton. - // This is necessary if a hanging node value x_0 - // has one neighbor which is in contact with - // value x_0 and one neighbor which is not with - // value x_1. This leads to an inhomogeneity - // constraint with value x_1/2 = gap/2 in the - // ConstraintMatrix. - // So the corresponding entries in the - // ride-hang-side are non-zero with a - // meaningless value. These values have to - // to set to zero. - - // The rest of the function is similar to - // step-41 except that we use a FGMRES-solver - // instead of CG. For a very small hardening - // value gamma the linear system becomes - // almost semi definite but still symmetric. - template - void PlasticityContactProblem::solve () - { - computing_timer.enter_section ("Solve"); - - TrilinosWrappers::MPI::Vector distributed_solution (system_rhs_newton); - distributed_solution = solution; - - constraints_hanging_nodes.set_zero (distributed_solution); - constraints_hanging_nodes.set_zero (system_rhs_newton); - distributed_solution.compress(VectorOperation::insert); - system_rhs_newton.compress(VectorOperation::insert); - - computing_timer.enter_section("Solve: setup preconditioner"); - - preconditioner_u.initialize (system_matrix_newton, additional_data); - - computing_timer.exit_section("Solve: setup preconditioner"); - - computing_timer.enter_section("Solve: iterate"); - - PrimitiveVectorMemory mem; - TrilinosWrappers::MPI::Vector tmp (system_rhs_newton); - const double solver_tolerance = 1e-3 * - system_matrix_newton.residual (tmp, distributed_solution, system_rhs_newton); - -// SolverControl solver_control (system_matrix_newton.m(), solver_tolerance); -// SolverFGMRES -// solver(solver_control, mem, -// SolverFGMRES:: -// AdditionalData(30, true)); -// -// solver.solve(system_matrix_newton, distributed_solution, system_rhs_newton, preconditioner_u); -// -// pcout << " Error: " << solver_control.initial_value() -// << " -> " << solver_control.last_value() -// << " in " << solver_control.last_step() -// << " FGMRES iterations." -// << std::endl; - - SolverControl solver_control (system_matrix_newton.m(), solver_tolerance); - SolverBicgstab - solver(solver_control, mem, - SolverBicgstab:: - AdditionalData(false, 1.e-10)); - - solver.solve(system_matrix_newton, distributed_solution, system_rhs_newton, preconditioner_u); - - pcout << " Error: " << solver_control.initial_value() - << " -> " << solver_control.last_value() - << " in " << solver_control.last_step() - << " Bicgstab iterations." - << std::endl; - - computing_timer.exit_section("Solve: iterate"); - - number_iterations += solver_control.last_step(); - - constraints.distribute (distributed_solution); - - solution = distributed_solution; - - computing_timer.exit_section("Solve"); - } - - // @sect4{PlasticityContactProblem::solve_newton} - - // In this function the damped Newton method is implemented. - // That means two nested loops: the outer loop for the newton - // iteration and the inner loop for the damping steps which - // will be used only if necessary. To obtain a good and reasonable - // starting value we solve an elastic problem in very first step (j=1). - template - void PlasticityContactProblem::solve_newton () - { - double resid=0; - double resid_old=100000; - TrilinosWrappers::MPI::Vector old_solution (system_rhs_newton); - TrilinosWrappers::MPI::Vector res (system_rhs_newton); - TrilinosWrappers::MPI::Vector tmp_vector (system_rhs_newton); - - std::vector > constant_modes; - DoFTools::extract_constant_modes (dof_handler, - ComponentMask(), - constant_modes); - - double sigma_hlp = sigma_0; - - additional_data.constant_modes = constant_modes; - additional_data.elliptic = true; - additional_data.n_cycles = 1; - additional_data.w_cycle = false; - additional_data.output_details = false; - additional_data.smoother_sweeps = 2; - additional_data.aggregation_threshold = 1e-2; - - IndexSet active_set_old (active_set); - unsigned int j = 1; - unsigned int number_assemble_system = 0; - for (; j<=100; j++) - { - if (j == 1 && cycle == 0) - plast_lin_hard->set_sigma_0 (1e+10); - else if (j == 2 || cycle > 0) - plast_lin_hard->set_sigma_0 (sigma_hlp); - - pcout << " " <(i)); - old_solution = tmp_vector; - old_solution.sadd(1-a,a, distributed_solution); - old_solution.compress (VectorOperation::add); - - computing_timer.enter_section("Residual and lambda"); - - system_rhs_newton = 0; - - solution = old_solution; - residual_nl_system (solution); - res = system_rhs_newton; - - const unsigned int - start_res = (res.local_range().first), - end_res = (res.local_range().second); - for (unsigned int n=start_res; n::type_dof_data, - data_component_interpretation); - data_out.add_data_vector (lambda, std::vector(dim, "Residual"), - DataOut::type_dof_data, - data_component_interpretation); - data_out.add_data_vector (active_set, std::vector(dim, "ActiveSet"), - DataOut::type_dof_data, - data_component_interpretation); - - Vector subdomain (triangulation.n_active_cells()); - for (unsigned int i=0; i filenames; - for (unsigned int i=0; - imove_mesh function} + +template +void PlasticityContactProblem::move_mesh( + const TrilinosWrappers::MPI::Vector &_complete_displacement) const { + std::vector vertex_touched(triangulation.n_vertices(), false); + + for (typename DoFHandler::active_cell_iterator cell = + dof_handler.begin_active(); cell != dof_handler.end(); ++cell) + if (cell->is_locally_owned()) + for (unsigned int v = 0; + v < GeometryInfo < dim > ::vertices_per_cell; ++v) { + if (vertex_touched[cell->vertex_index(v)] == false) { + vertex_touched[cell->vertex_index(v)] = true; + + Point < dim > vertex_displacement; + for (unsigned int d = 0; d < dim; ++d) { + if (_complete_displacement(cell->vertex_dof_index(v, d)) + != 0) + vertex_displacement[d] = _complete_displacement( + cell->vertex_dof_index(v, d)); + } + + cell->vertex(v) += vertex_displacement; + } + } +} +// @sect4{PlasticityContactProblem::output_results} + +template +void PlasticityContactProblem::output_results( + const std::string &title) { + move_mesh(solution); + + // Calculation of the contact forces + TrilinosWrappers::MPI::Vector lambda(solution); + TrilinosWrappers::MPI::Vector distributed_lambda(system_rhs_newton); + const unsigned int start_res = (resid_vector.local_range().first), end_res = + (resid_vector.local_range().second); + for (unsigned int n = start_res; n < end_res; ++n) + if (constraints.is_inhomogeneously_constrained(n)) + distributed_lambda(n) = resid_vector(n)/diag_mass_matrix_vector(n); + distributed_lambda.compress(VectorOperation::insert); + constraints_hanging_nodes.distribute(distributed_lambda); + lambda = distributed_lambda; + TrilinosWrappers::MPI::Vector resid_vector_relevant(solution); + TrilinosWrappers::MPI::Vector distributed_resid_vector(resid_vector); + constraints_hanging_nodes.distribute(distributed_resid_vector); + resid_vector_relevant = distributed_resid_vector; + + DataOut < dim > data_out; + + data_out.attach_dof_handler(dof_handler); + + const std::vector data_component_interpretation( + dim, DataComponentInterpretation::component_is_part_of_vector); + data_out.add_data_vector(solution, + std::vector < std::string > (dim, "Displacement"), + DataOut < dim > ::type_dof_data, data_component_interpretation); + data_out.add_data_vector(lambda, + std::vector < std::string > (dim, "ContactForce"), + DataOut < dim > ::type_dof_data, data_component_interpretation); + data_out.add_data_vector(active_set, + std::vector < std::string > (dim, "ActiveSet"), + DataOut < dim > ::type_dof_data, data_component_interpretation); + data_out.add_data_vector(resid_vector_relevant, + std::vector < std::string > (dim, "Residual"), + DataOut < dim > ::type_dof_data, data_component_interpretation); + + Vector subdomain(triangulation.n_active_cells()); + for (unsigned int i = 0; i < subdomain.size(); ++i) + subdomain(i) = triangulation.locally_owned_subdomain(); + data_out.add_data_vector(subdomain, "subdomain"); + + data_out.add_data_vector(cell_constitution, "CellConstitution"); + + data_out.build_patches(); + + const std::string filename = (output_dir + title + "-" + + Utilities::int_to_string(triangulation.locally_owned_subdomain(), + 4)); + + std::ofstream output_vtu((filename + ".vtu").c_str()); + data_out.write_vtu(output_vtu); + pcout << output_dir + title << ".pvtu" << std::endl; + + if (Utilities::MPI::this_mpi_process(mpi_communicator) == 0) { + std::vector filenames; + for (unsigned int i = 0; + i < Utilities::MPI::n_mpi_processes(mpi_communicator); ++i) + filenames.push_back( + title + "-" + Utilities::int_to_string(i, 4) + ".vtu"); + + std::ofstream master_output((output_dir + title + ".pvtu").c_str()); + data_out.write_pvtu_record(master_output, filenames); + } + + TrilinosWrappers::MPI::Vector tmp(solution); + tmp *= -1; + move_mesh(tmp); +} +// @sect4{PlasticityContactProblem::output_for_benchmark} + +template +void PlasticityContactProblem::output_for_benchmark( + const unsigned int cycle) { + Functions::FEFieldFunction, + TrilinosWrappers::MPI::Vector> solution_function(dof_handler, + solution); + std::cout.precision(10); + + Vector solution_p1(dim); + std::vector < Tensor<1, dim> > solution_gradient_p1(dim); + + const Point p1_of_interest(0.5001, 0.5001, 0.9501); + bool point1_found = true; + bool point2_found = true; + + // Calculation of the contact forces + TrilinosWrappers::MPI::Vector lambda(solution); + TrilinosWrappers::MPI::Vector distributed_lambda(system_rhs_newton); + const unsigned int start_res = (resid_vector.local_range().first), end_res = + (resid_vector.local_range().second); + for (unsigned int n = start_res; n < end_res; ++n) + if (constraints.is_inhomogeneously_constrained(n)) + distributed_lambda(n) = resid_vector(n)/diag_mass_matrix_vector(n); + else + distributed_lambda(n) = 0; + distributed_lambda.compress(VectorOperation::insert); + constraints_hanging_nodes.distribute(distributed_lambda); + lambda = distributed_lambda; + Functions::FEFieldFunction, + TrilinosWrappers::MPI::Vector> lambda_function(dof_handler, + lambda); + const Point p2_of_interest(0.49, 0.5001, 1.0); + Vector lambda_p2(dim); + + MPI_Barrier(MPI_COMM_WORLD); + try { + lambda_function.vector_value(p2_of_interest, lambda_p2); + } catch (const typename Functions::FEFieldFunction, + TrilinosWrappers::MPI::Vector>::ExcPointNotAvailableHere &) { + point2_found = false; + } + + if (point2_found == true) { + std::cout << "PoI lambda_z: " << lambda_p2(2) << std::endl; + } + + // Integral of the contact force in z-direction over the whole contact area. + double contact_force = 0.0; + { + QGauss< dim - 1 > face_quadrature_formula(fe.degree + 1); + + FEFaceValues < dim > fe_values_face(fe, face_quadrature_formula, + update_values | update_quadrature_points + | update_JxW_values); + + const unsigned int n_face_q_points = face_quadrature_formula.size(); + + const FEValuesExtractors::Vector displacement(0); + + typename DoFHandler::active_cell_iterator cell = + dof_handler.begin_active(), endc = dof_handler.end(); + for (; cell != endc; ++cell) + if (cell->is_locally_owned()) + for (unsigned int face = 0; + face < GeometryInfo < dim > ::faces_per_cell; ++face) + if (cell->face(face)->at_boundary() + && cell->face(face)->boundary_indicator() == 1) { + fe_values_face.reinit(cell, face); + + std::vector < Tensor<1, dim> + > lambda_values(n_face_q_points); + fe_values_face[displacement].get_function_values(lambda, + lambda_values); + + for (unsigned int q_point = 0; + q_point < n_face_q_points; ++q_point) + { + contact_force += lambda_values[q_point][2] + * fe_values_face.JxW(q_point); + } + } + contact_force = Utilities::MPI::sum(contact_force, + MPI_COMM_WORLD); + pcout << "Contact force = " << contact_force << std::endl; + } + + // To calculate the contact area between deformable body and obstacle + double contact_area = 0.0; + { + move_mesh(solution); + + QGaussLobatto < dim - 1 > face_quadrature_formula(fe.degree + 1); + + FEFaceValues < dim > fe_values_face(fe, face_quadrature_formula, + update_values | update_quadrature_points + | update_JxW_values); + + const unsigned int dofs_per_face = fe.dofs_per_face; + const unsigned int n_face_q_points = face_quadrature_formula.size(); + + const FEValuesExtractors::Vector displacement(0); + typename DoFHandler::active_cell_iterator cell = + dof_handler.begin_active(), endc = dof_handler.end(); + for (; cell != endc; ++cell) + if (cell->is_locally_owned()) + for (unsigned int face = 0; + face < GeometryInfo < dim > ::faces_per_cell; ++face){ + if (cell->face(face)->at_boundary() + && cell->face(face)->boundary_indicator() == 1) { + fe_values_face.reinit(cell, face); + + unsigned int contact_counter = 0; + std::vector dof_indices (dofs_per_face); + cell->face(face)->get_dof_indices (dof_indices); + + for (unsigned int q_point=0; q_point - void PlasticityContactProblem::run () - { - use_read_obstacle = false; - if (use_read_obstacle) - { - pcout << "Read the obstacle from a file." << std::endl; - input_obstacle.reset (new Input("obstacle_file.pbm")); - pcout << "Obstacle is available now." << std::endl; - } - - const unsigned int n_cycles = 6; - for (cycle=0; cycle(dof_handler)); - refine_grid (); - computing_timer.exit_section("Setup: refine mesh"); - } +// @sect4{PlasticityContactProblem::run} - setup_system (); +template +void PlasticityContactProblem::run() { - if (cycle > 0) - { - TrilinosWrappers::MPI::Vector distributed_solution (system_rhs_newton); - distributed_solution = solution; - soltrans->interpolate(distributed_solution); - solution = distributed_solution; + if (obstacle_filename!="") + { + pcout << "Read the obstacle from '" << obstacle_filename + << "' ... " << std::flush; + input_obstacle.reset(new Input(obstacle_filename.c_str())); + pcout << "done." << std::endl; } - computing_timer.exit_section("Setup"); - - solve_newton (); - - pcout << " Writing graphical output..." << std::endl; - computing_timer.enter_section("Graphical output"); - - std::ostringstream filename_solution; - filename_solution << "solution-"; - filename_solution << cycle; - output_results (filename_solution.str ()); - - computing_timer.exit_section("Graphical output"); - - computing_timer.print_summary(); - computing_timer.reset(); - } - } + computing_timer.reset(); + for (cycle = 0; cycle < n_cycles; ++cycle) { + { + TimerOutput::Scope t(computing_timer, "Setup"); + + pcout << std::endl; + pcout << "Cycle " << cycle << ':' << std::endl; + + if (cycle == 0) { + make_grid(); + } else { + TimerOutput::Scope t(computing_timer, "Setup: refine mesh"); + if (transfer_solution) + soltrans.reset (new parallel::distributed::SolutionTransfer(dof_handler)); + refine_grid(); + } + + setup_system(); + + if (transfer_solution && cycle > 0) + { + TrilinosWrappers::MPI::Vector distributed_solution( + system_rhs_newton); + distributed_solution = solution; + soltrans->interpolate(distributed_solution); + solution = distributed_solution; + residual_nl_system(solution); + resid_vector = system_rhs_lambda; + resid_vector.compress(VectorOperation::insert); + } + + } + + solve_newton(); + + if (true) //Utilities::MPI::n_mpi_processes(mpi_communicator) <= 64) + { + pcout << " Writing graphical output... " << std::flush; + + TimerOutput::Scope t(computing_timer, "Graphical output"); + + std::ostringstream filename_solution; + filename_solution << "solution-"; + filename_solution << Utilities::int_to_string(cycle, 2); + output_results(filename_solution.str()); + } + + computing_timer.print_summary(); + computing_timer.reset(); + + Utilities::System::MemoryStats stats; + Utilities::System::get_memory_stats(stats); + pcout << "VMPEAK, Resident in kB: " << stats.VmSize << " " + << stats.VmRSS << std::endl; + + if (base_mesh=="box") + output_for_benchmark(cycle); + } +} } // @sect3{The main function} -int main (int argc, char *argv[]) -{ - using namespace dealii; - using namespace Step42; - - deallog.depth_console (0); - - Utilities::MPI::MPI_InitFinalize mpi_initialization (argc, argv); - { - int _n_refinements_global = 3; - - if (argc == 2) - _n_refinements_global = atoi(argv[1]); - - PlasticityContactProblem<3> laplace_problem_3d (_n_refinements_global); - laplace_problem_3d.run (); - } - - return 0; +int main(int argc, char *argv[]) { + using namespace dealii; + using namespace Step42; + + deallog.depth_console(0); + ParameterHandler prm; + PlasticityContactProblem<3>::declare(prm); + if (argc!=2) + { + prm.print_parameters(std::cout, ParameterHandler::Text); + return 0; + } + + prm.read_input(argv[1]); + Utilities::MPI::MPI_InitFinalize mpi_initialization(argc, argv); + { + PlasticityContactProblem<3> problem(prm); + problem.run(); + } + + return 0; }