From: Wolfgang Bangerth Date: Sat, 1 Mar 2008 14:13:11 +0000 (+0000) Subject: Fix up a few doxygen problems in the new step-33. X-Git-Tag: v8.0.0~9336 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=cdd30b4d44fd2b7f452c0fd62a4454637c40aa42;p=dealii.git Fix up a few doxygen problems in the new step-33. git-svn-id: https://svn.dealii.org/trunk@15824 0785d39b-7218-0410-832d-ea1e28bc413d --- diff --git a/deal.II/doc/doxygen/deal.dox b/deal.II/doc/doxygen/deal.dox index 54d075f5d8..93268dc288 100644 --- a/deal.II/doc/doxygen/deal.dox +++ b/deal.II/doc/doxygen/deal.dox @@ -46,4 +46,5 @@ IMAGE_PATH = images \ ../../examples/step-27/doc \ ../../examples/step-28/doc \ ../../examples/step-29/doc \ - ../../examples/step-31/doc + ../../examples/step-31/doc \ + ../../examples/step-33/doc diff --git a/deal.II/examples/step-33/step-33.cc b/deal.II/examples/step-33/step-33.cc index bb2389e563..96f991f8cf 100644 --- a/deal.II/examples/step-33/step-33.cc +++ b/deal.II/examples/step-33/step-33.cc @@ -1,2114 +1,2115 @@ -/* step-12.cc,v 1.33 2005/08/08 16:41:40 wolf Exp */ -/* Author: David Neckels, Boulder Colorado 2007 */ -/* step-12.cc,v 1.33 2005/08/08 16:41:40 wolf Exp */ -/* Version: Version-5-2-0 */ -/* */ -/* Copyright (C) 2001, 2002, 2003, 2004, 2005 by the deal.II authors */ -/* */ -/* This file is subject to QPL and may not be distributed */ -/* without copyright and license information. Please refer */ -/* to the file deal.II/doc/license.html for the text and */ -/* further information on this license. */ - - // This program solves the Euler equations - // of gas dynamics for a given configuration - // file. It uses a standard Galerkin approach - // with weakly applied boundary conditions. - - // @sect3{Include files} - - // Aztecoo require mpi (even though we run on only - // one processor in this example). -#include - - // Here we have the necessary TRILINOS includes. - // - // Epetra is the basic trilinos vector/matrix library. -#include -#include -#include -#include -#include - // Teuchos is a Trilinos utility library that is used - // to set parameters within the Aztec solver library. -#include "Teuchos_ParameterList.hpp" - // Aztec is the iterative solver library. -#include -#include -#define HAVE_IFPACK_TEUCHOS -#include - - // Amesos is a direct solver package within Trilinos. -#include - // Sacado is the automatic differentiation package, which - // is used to find the jacobian for a fully implicit Newton - // iteration. -#include - - // A standard set of dealii includes. Nothing special to - // comment on here. -#include -#include -#include -#include - -#include -#include -#include - -#include -#include -#include -#include -#include -#include -#include - -#include -#include - -#include -#include -#include - -#include -#include -#include - -#include -#include -#include - // And this again is C++: -#include -#include -#include - - // Introduce the dealii library into the current namespace. -using namespace dealii; - - // We define a shorter name for the automatic differentiation - // type. -typedef Sacado::Fad::DFad fad_double; -typedef unsigned int UInt; - // The Epetra library requires a 'communicator', which describes - // the layout of a parallel (or serial) set of processors. -Epetra_MpiComm *Comm; - - //@sect3{Flux function definition} - // Here we define the flux function for this system of conservation - // laws. Note: it would be terribly difficult to use this example - // to solve some other system of conservation laws. - // - // We define the number of components in the system. Euler's has - // one entry for momenta in each spatial direction, plus the energy - // and density components. -#define N_COMP (2 + DIMENSION) - // Define a handle to the density and energy indices. We have arrange - // the momenta to be first, then density, and, lastly, energy. -#define DENS_IDX DIMENSION -#define ENERGY_IDX (DIMENSION+1) - - // The gas constant. This value is representative of air. -const double GAMMA = 1.4; - // We define the flux functions as one large matrix. Each row of this - // matrix represents a scalar conservation law for the component in - // that row. We template the numerical type of the flux function - // so that we may use the automatic differentiation type here. - // The flux functions are defined in terms of the - // conserved variables $\rho w_0, \dots, \rho w_{d-1}, \rho, E$, - // so they do not look exactly like the Euler equations one is - // used to seeing. We evaluate the flux at a single quadrature - // point. -template -void Flux(std::vector > &flux, - const Point &point, - const std::vector &W) -{ - - // Pressure is a dependent variable: $p = - // (\gamma - 1)(E-\frac{1}{2} \rho |v|^2)$. - number rho_normVsqr; - for (int d0 = 0; d0 < dim; d0++) rho_normVsqr += W[d0]*W[d0]; - // Since W are $\rho v$, we get a $\rho^2$ in the - // numerator, so dividing a $\rho$ out gives the desired $ \rho |v|^2$. - rho_normVsqr /= W[DENS_IDX]; - - number pressure = (GAMMA-1.0)*(W[ENERGY_IDX] - number(0.5)*(rho_normVsqr)); - - // We compute the momentum terms. We divide by the - // density here to get $v_i \rho v_j$ - for (int d = 0; d < dim; d++) { - for (int d1 = 0; d1 < dim; d1++) { - flux[d][d1] = W[d]*W[d1]/W[DENS_IDX]; - } - // The pressure contribution, along the diagonal: - flux[d][d] += pressure; - // Advection/conservation of density: - flux[DENS_IDX][d] = W[d]; - // And, lastly, conservation of energy. - flux[ENERGY_IDX][d] = W[d]/W[DENS_IDX]* - (W[ENERGY_IDX] + pressure); // energy - } -} - - // On the boundaries of the domain and across `hanging nodes` we use - // a numerical flux function to enforce boundary conditions. This routine - // is the basic Lax-Friedrich's flux with a stabilization parameter - // $\alpha$. -template -void LFNumFlux( - std::vector > &nflux, - const std::vector > &points, - const std::vector > &normals, - const std::vector > &Wplus, - const std::vector > &Wminus, - double alpha) -{ - int n_q_points = points.size(); - - // We evaluate the flux at each of the quadrature points. - for (int q = 0; q < n_q_points; q++) { - std::vector > iflux(N_COMP, - std::vector(dim, 0)); - std::vector > oflux(N_COMP, - std::vector(dim, 0)); - - Flux(iflux, points[q], Wplus[q]); - Flux(oflux, points[q], Wminus[q]); - - for (int di = 0; di < N_COMP; di++) { - nflux[q][di] = 0; - for (int d = 0; d < dim; d++) { - nflux[q][di] += 0.5*(iflux[di][d] + oflux[di][d])*normals[q](d); - } - nflux[q][di] += 0.5*alpha*(Wplus[q][di] - Wminus[q][di]); - } - } - -} - - // @sect3{Initial and side condition parsing} - // For the initial condition we use the expression parser function - // object. -template -class InitialCondition : public FunctionParser -{ - public: - InitialCondition (); - - // This function should be called after parsing, but before using - // the object. It formalizes the expressions and initializes the - // function parser with the appropriate expressions. - void Init(); - - // During parsing we call this function as the initial condition - // for one of the $\mathbf{w}$ variables is encountered. - - void set_ic(int _row, std::string &expr) { - expressions[_row] = expr; - } - - virtual void vector_value_list (const std::vector > &points, - std::vector > &value_list) const; - private: - std::vector expressions; -}; - -template -InitialCondition::InitialCondition () : - FunctionParser (N_COMP), - expressions(N_COMP, "0.0") -{} - - // Here we set up x,y,z as the variables that one should use in the input - // deck to describe their initial condition. -template -void InitialCondition::Init() { - std::map constants; - constants["M_PI"] = M_PI; - std::string variables = (dim == 2 ? "x,y" : "x,y,z"); - - FunctionParser::initialize(variables, expressions, constants); - -} - -template -void InitialCondition::vector_value_list (const std::vector > &points, - std::vector > &value_list) const -{ - const unsigned int n_points = points.size(); - - Assert (value_list.size() == n_points, - ExcDimensionMismatch (value_list.size(), n_points)); - - for (unsigned int p=0; p::vector_value (points[p], - value_list[p]); -} - - // As above, we use the expression function parser for boundary conditions. -template -class SideCondition : public FunctionParser -{ - public: - SideCondition (int ncomp); - ~SideCondition (); - - // As above. - void Init(); - // As above. - void set_coeff_row(int _row_n, std::string &expr); - - virtual void vector_value_list (const std::vector > &points, - std::vector > &value_list) const; - private: - std::vector expressions; -}; - -template -SideCondition::SideCondition (int ncomp) : - FunctionParser (ncomp), - expressions(ncomp, "0.0") -{ -} -template -void SideCondition::set_coeff_row (int _row_n, std::string &expr) -{ - expressions[_row_n] = expr; -} - -template -void SideCondition::Init() { - std::map constants; - constants["M_PI"] = M_PI; - std::string variables = (dim == 2 ? "x,y" : "x,y,z"); - - FunctionParser::initialize(variables, expressions, constants); - -} - -template -SideCondition::~SideCondition () -{ -} - -template -void SideCondition::vector_value_list (const std::vector > &points, - std::vector > &value_list) const -{ - const unsigned int n_points = points.size(); - - Assert (value_list.size() == n_points, - ExcDimensionMismatch (value_list.size(), n_points)); - - for (unsigned int p=0; p::vector_value (points[p], - value_list[p]); -} - //@sect3{Conservation Law class} - // Here we define a Conservation Law class that helps group - // operations and data for our Euler equations into a manageable - // entity. Functions will be described as their definitions appear. -template -class ConsLaw -{ - public: - ConsLaw (); - ~ConsLaw (); - - void run (); - void declare_parameters(); - void load_parameters(const char *); - - private: - void build_fe(); - void setup_system (); - void initialize_system (); - void assemble_system (double &res_norm); - void solve (Vector &solution, int &, double &); - void refine_grid (); - void output_results (const unsigned int cycle) const; - void initialize(); - void zero_matrix(); - void estimate(); - void postprocess(); - void compute_predictor(); - - Triangulation triangulation; - const MappingQ1 mapping; - - - FESystem *fe_ptr; - - DoFHandler dof_handler; - - SparsityPattern sparsity_pattern; - const QGauss quadrature; - const QGauss face_quadrature; - - // The actual solution to the Euler equation - Vector solution; - // The current value of the solution during the Newton iteration - Vector nlsolution; - // An estimate of the next time value; used for adaptivity and as a - // guess for the next Newton iteration. - Vector predictor; - // Values after post-processing (used to output the physical variables). - Vector ppsolution; - // The solution to the linear problem during the Newton iteration - Vector dsolution; - Vector right_hand_side; - - public: - - void assemble_cell_term(const FEValues& fe_v, - std::vector &dofs, - unsigned int cell_no - ); - - void assemble_face_term( - int face_no, - const FEFaceValuesBase& fe_v, - const FEFaceValuesBase& fe_v_neighbor, - std::vector &dofs, - std::vector &dofs_neighbor, - int boundary = -1 - ); - - unsigned int get_n_components() const { return N_COMP;} - - private: - // T = current time, dT = time step, TF = final time. - double T, dT, TF; - double face_diameter; - double cell_diameter; - // An object to handle parsing the input deck. - ParameterHandler prm; - // Name of the mesh to read in. - string mesh; - InitialCondition ic; - - // Enums for the various supported boundary conditions. - typedef enum {INFLOW_BC = 1, OUTFLOW_BC=2, NO_PENETRATION_BC=3, PRESSURE_BC=4} bc_type; - - // For each boundary we store a map from boundary # to the type - // of boundary condition. If the boundary condition is prescribed, - // we store a pointer to a function object that will hold the expression - // for that boundary condition. - typedef typename std::map, Function*> > bdry_map_type; - bdry_map_type bdry_map; - - void add_boundary(unsigned int bd, std::vector& flags, Function *bf); - - // An object to store parameter information about the Aztec solver. - typedef struct { - int LIN_OUTPUT; - typedef enum { GMRES = 0, DIRECT = 1} solver_type; - solver_type SOLVER; - typedef enum { QUIET = 0, VERBOSE = 1 } output_type; - output_type OUTPUT; - // Linear residual tolerance. - double RES; - int MAX_ITERS; - // We use the ILUT preconditioner. This is similar - // to the ILU. FILL is the number of extra entries - // to add when forming the ILU decomposition. - double ILUT_FILL; - // When forming the preconditioner, for certain problems - // bad conditioning (or just bad luck) can cause the - // preconditioner to be very poorly conditioned. Hence - // it can help to add diagonal perturbations to the - // original matrix and form the preconditioner for this - // slightly better matrix. ATOL is an absolute perturbation - // that is added to the diagonal before forming the - // prec, and RTOL is a scaling factor $rtol >= 1$. - double ILUT_ATOL; - double ILUT_RTOL; - // The ILUT will drop any values that have magnitude less - // than this value. This is a way to - // manage the amount of memory used by this preconditioner. - double ILUT_DROP; - } solver_params_type; - - solver_params_type solver_params; - - // Some refinement parameters. - typedef struct { - typedef enum { NONE = 0, FIXED_NUMBER = 1, SHOCK = 2} refine_type; - double high_frac; - double low_frac; - refine_type refine; - double high_frac_sav; - double max_cells; - double shock_val; - double shock_levels; - } refinement_params_type; - - refinement_params_type refinement_params; - - // The user can set the stabilization parameter $\alpha$ - // in the Lax-Friedrich's flux. - typedef struct { - typedef enum {CONSTANT=1,MESH=2} LF_stab_type; - LF_stab_type LF_stab; - double LF_stab_value; - } flux_params_type; - - flux_params_type flux_params; - - bool is_stationary; - - // Power for the mesh stabilization term. - double diffusion_power; - double gravity; - // If true, we output the squared gradient of the - // density instead of density. Using this one can - // create shock plots. - bool schlieren_plot; - // How often to create an output file. - double output_step; - - Epetra_CrsMatrix *Matrix; - Epetra_Map *Map; - Vector indicator; - - // Crank-Nicolson value - const double theta; - -}; - - - // Asign a row of the conservation law a specified - // boundary type and (possibly) function. -template -void ConsLaw::add_boundary(unsigned int bd, - std::vector &flags, Function *bf) { - - std::pair, Function *> entry(flags, bf); - bdry_map[bd] = entry; -} - - - // Apply the initialial condition. Simultaneously - // initialize the non-linear solution. -template -void ConsLaw::initialize() { - VectorTools::interpolate(dof_handler, - ic, solution); - VectorTools::interpolate(dof_handler, - ic, nlsolution); - -} - - // @sect3{Assembly} - // @sect4{Function: assemble_cell_term} - // - // Assembles the cell term, adding minus the residual - // to the right hand side, and adding in the Jacobian - // contributions. -template -void ConsLaw::assemble_cell_term( - const FEValues &fe_v, - std::vector &dofs, - unsigned int cell_no - ) -{ - // The residual for each row (i) will be accumulating - // into this fad variable. At the end of the assembly - // for this row, we will query for the sensitivities - // to this variable and add them into the Jacobian. - fad_double F_i; - int dofs_per_cell = fe_v.dofs_per_cell; - int n_q_points = fe_v.n_quadrature_points; - - // We will define the dofs on this cell in these fad variables. - std::vector DOF(dofs_per_cell); - - // Values of the conservative variables at the quadrature points. - std::vector > W (n_q_points, - std::vector(get_n_components())); - - // Values at the last time step of the conservative variables. - // Note that these do not use fad variables, since they do - // not depend on the 'variables to be sought'=DOFS. - std::vector > Wl (n_q_points, - std::vector(get_n_components())); - - // Here we will hold the averaged values of the conservative - // variables that we will linearize around (cn=Crank Nicholson). - std::vector > Wcn (n_q_points, - std::vector(get_n_components())); - - // Gradients of the current variables. It is a - // bit of a shame that we have to compute these; we almost don't. - // The nice thing about a simple conservation law is that the - // the flux doesn't generally involve any gradients. We do - // need these, however, for the diffusion stabilization. - std::vector > > Wgrads (n_q_points, - std::vector >(get_n_components(), - std::vector(dim))); - - - const std::vector &JxW = fe_v.get_JxW_values (); - - - // Here is the magical point where we declare a subset - // of the fad variables as degrees of freedom. All - // calculations that reference these variables (either - // directly or indirectly) will accumulate sensitivies - // with respect to these dofs. - for (int in = 0; in < dofs_per_cell; in++) { - DOF[in] = nlsolution(dofs[in]); - DOF[in].diff(in, dofs_per_cell); - } - - // Here we compute the shape function values and gradients - // at the quadrature points. Ideally, we could call into - // something like get_function_values, get_function_grads, - // but since we don't want to make the entire solution vector - // fad types, only the local cell variables, we explicitly - // code this loop; - for (int q = 0; q < n_q_points; q++) { - for (int di = 0; di < get_n_components(); di++) { - W[q][di] = 0; - Wl[q][di] = 0; - Wcn[q][di] = 0; - for (int d = 0; d < dim; d++) { - Wgrads[q][di][d] = 0; - } - } - for (int sf = 0; sf < dofs_per_cell; sf++) { - int di = fe_v.get_fe().system_to_component_index(sf).first; - W[q][di] += - DOF[sf]*fe_v.shape_value_component(sf, q, di); - Wl[q][di] += - solution(dofs[sf])*fe_v.shape_value_component(sf, q, di); - Wcn[q][di] += - (theta*DOF[sf]+(1-theta)*solution(dofs[sf]))*fe_v.shape_value_component(sf, q, di); - - for (int d = 0; d < dim; d++) { - Wgrads[q][di][d] += DOF[sf]* - fe_v.shape_grad_component(sf, q, di)[d]; - } // for d - - } - - } // for q - - // Gather the flux values for all components at - // all of the quadrature points. This also - // computes the matrix of sensitivities. Perhaps - // this could be done in a better way, since this - // could be a rather large object, but for now it - // seems to work just fine. - std::vector > > flux(n_q_points, - std::vector >(get_n_components(), - std::vector(dim, 0))); - - for (unsigned int q=0; q < n_q_points; ++q) { - Flux(flux[q], fe_v.get_quadrature_points()[q], Wcn[q]); - } - - // We now have all of the function values/grads/fluxes, - // so perform the assembly. We have an outer loop - // through the components of the system, and an - // inner loop over the quadrature points, where we - // accumulate contributions to the ith residual. - // - // We initialy sum all contributions of the residual - // in the positive sense, so that we don't need to - // negative the Jacobian entries. Then, when we sum - // into the right_hand_side vector, - // we negate this residual. - for (unsigned int i=0; iSumIntoGlobalValues(dofs[i], - dofs_per_cell, &values[0], reinterpret_cast(&dofs[0])); - - // Add minus the residual to the right hand side. - right_hand_side(dofs[i]) -= F_i.val(); - - } // for i -} - // @sect4{Function: assemble_face_term} - // These are either - // boundary terms or terms across differing - // levels of refinement. In the first case, - // fe_v==fe_v_neighbor and dofs==dofs_neighbor. - // The int boundary < 0 if not at a boundary, - // otherwise it is the boundary indicator. -template -void ConsLaw::assemble_face_term( - int face_no, - const FEFaceValuesBase& fe_v, - const FEFaceValuesBase& fe_v_neighbor, - std::vector &dofs, - std::vector &dofs_neighbor, - int boundary - ) -{ - fad_double F_i; - const unsigned int n_q_points = fe_v.n_quadrature_points; - const unsigned int dofs_per_cell = fe_v.get_fe().dofs_per_cell; - const unsigned int ndofs_per_cell = fe_v_neighbor.get_fe().dofs_per_cell; - Assert(dofs_per_cell == ndofs_per_cell, - ExcDimensionMismatch(dofs_per_cell, ndofs_per_cell)); - - // As above, the fad degrees of freedom - std::vector DOF(dofs_per_cell+ndofs_per_cell); - - // The conservative variables for this cell, - // and for - std::vector > Wplus (n_q_points, - std::vector(get_n_components())); - std::vector > Wminus (n_q_points, - std::vector(get_n_components())); - - - const std::vector &JxW = fe_v.get_JxW_values (); - const std::vector > &normals = fe_v.get_normal_vectors (); - - - // If we are at a boundary, then dofs_neighbor are - // the same as dofs, so we do not want to duplicate them. - // If there is a neighbor cell, then we want to include - // them. - int ndofs = (boundary < 0 ? dofs_per_cell + ndofs_per_cell : dofs_per_cell); - // Set the local DOFS. - for (int in = 0; in < dofs_per_cell; in++) { - DOF[in] = nlsolution(dofs[in]); - DOF[in].diff(in, ndofs); - } - // If present, set the neighbor dofs. - if (boundary < 0) - for (int in = 0; in < ndofs_per_cell; in++) { - DOF[in+dofs_per_cell] = nlsolution(dofs_neighbor[in]); - DOF[in+dofs_per_cell].diff(in+dofs_per_cell, ndofs); - } - - // Set the values of the local conservative variables. - // Initialize all variables to zero. - for (int q = 0; q < n_q_points; q++) { - for (int di = 0; di < get_n_components(); di++) { - Wplus[q][di] = 0; - Wminus[q][di] = 0; - } - for (int sf = 0; sf < dofs_per_cell; sf++) { - int di = fe_v.get_fe().system_to_component_index(sf).first; - Wplus[q][di] += - (theta*DOF[sf]+(1.0-theta)*solution(dofs[sf]))*fe_v.shape_value_component(sf, q, di); - } - - - // If there is a cell across, then initialize - // the exterior trace as a function of the other - // cell degrees of freedom. - if (boundary < 0) { - for (int sf = 0; sf < ndofs_per_cell; sf++) { - int di = fe_v_neighbor.get_fe().system_to_component_index(sf).first; - Wminus[q][di] += - (theta*DOF[sf+dofs_per_cell]+(1.0-theta)*solution(dofs_neighbor[sf]))* - fe_v_neighbor.shape_value_component(sf, q, di); - } - } - } // for q - - // If this is a boundary, then the values of $W^-$ will - // be either functions of $W^+$, or they will be prescribed. - // This switch sets them appropriately. Since we are - // using fad variables here, sensitivities will be updated - // appropriately. These sensitivities would be tremendously - // difficult to manage without fad!!! - if (boundary >= 0) { - // Get the boundary descriptor. - typename bdry_map_type::iterator bme = bdry_map.find(boundary); - assert(bme != bdry_map.end()); - - // Evaluate the function object. This is a bit - // tricky; a given boundary might have both prescribed - // and implicit values. If a particular component is not - // prescribed, the values evaluate to zero and are - // ignored, below. - std::vector > bvals(n_q_points, Vector(N_COMP)); - bme->second.second->vector_value_list(fe_v.get_quadrature_points(), bvals); - - // We loop the quadrature points, and we treat each - // component individualy. - for (int q = 0; q < n_q_points; q++) { - for (int di = 0; di < get_n_components(); di++) { - - // An inflow/dirichlet type of boundary condition - if (bme->second.first[di] == INFLOW_BC) { - Wminus[q][di] = bvals[q](di); - } else if (bme->second.first[di] == PRESSURE_BC) { - // A prescribed pressure boundary condition. This boundary - // condition is complicated by the fact that even though - // the pressure is prescribed, we really are setting - // the energy index here, which will depend on velocity - // and pressure. So even though this seems like a dirichlet - // type boundary condition, we get sensitivities of - // energy to velocity and density (unless these - // are also prescribed. - fad_double rho_vel_sqr = 0; - fad_double dens; - - dens = bme->second.first[DENS_IDX] == INFLOW_BC ? bvals[q](DENS_IDX) : - Wplus[q][DENS_IDX]; - - for (int d=0; d < dim; d++) { - if (bme->second.first[d] == INFLOW_BC) - rho_vel_sqr += bvals[q](d)*bvals[q](d); - else - rho_vel_sqr += Wplus[q][d]*Wplus[q][d]; - } - rho_vel_sqr /= dens; - // Finally set the energy value as determined by the - // prescribed pressure and the other variables. - Wminus[q][di] = bvals[q](di)/(GAMMA-1.0) + - 0.5*rho_vel_sqr; - - } else if (bme->second.first[di] == OUTFLOW_BC) { - // A free/outflow boundary, very simple. - Wminus[q][di] = Wplus[q][di]; - - } else { - // We must be at a no-penetration boundary. We - // prescribe the velocity (we are dealing with a - // particular component here so that the average - // of the velocities is orthogonal to the surface - // normal. This creates sensitivies of across - // the velocity components. - fad_double vdotn = 0; - for (int d = 0; d < dim; d++) { - vdotn += Wplus[q][d]*normals[q](d); - } - - Wminus[q][di] = Wplus[q][di] - 2.0*vdotn*normals[q](di); - } - } - } // for q - } // b>= 0 - - // Determine the Lax-Friedrich's stability parameter, - // and evaluate the numerical flux function at the quadrature points - std::vector > nflux(n_q_points, std::vector(get_n_components(), 0)); - double alpha = 1; - - switch(flux_params.LF_stab) { - case flux_params_type::CONSTANT: - alpha = flux_params.LF_stab_value; - break; - case flux_params_type::MESH: - alpha = face_diameter/(2.0*dT); - break; - } - - LFNumFlux(nflux, fe_v.get_quadrature_points(), normals, Wplus, Wminus, - alpha); - - // Now assemble the face term - for (unsigned int i=0; iSumIntoGlobalValues(dofs[i], - dofs_per_cell, &values[0], reinterpret_cast(&dofs[0])); - if (boundary < 0) { - Matrix->SumIntoGlobalValues(dofs[i], - dofs_per_cell, &values[dofs_per_cell], reinterpret_cast(&dofs_neighbor[0])); - } - - // And add into the residual - right_hand_side(dofs[i]) -= F_i.val(); - } - -} - // @sect4{Assembling the whole system} - // Now we put all of the assembly pieces together - // in a routine that dispatches the correct - // piece for each cell/face. We keep track of - // the norm of the resdual for the Newton iteration. -template -void ConsLaw::assemble_system (double &res_norm) -{ - FESystem &fe = *fe_ptr; - const unsigned int dofs_per_cell = dof_handler.get_fe().dofs_per_cell; - - // We track the dofs on this cell and (if necessary) - // the adjacent cell. - std::vector dofs (dofs_per_cell); - std::vector dofs_neighbor (dofs_per_cell); - - // First we create the - // ``UpdateFlags'' for the - // ``FEValues'' and the - // ``FEFaceValues'' objects. - UpdateFlags update_flags = update_values - | update_gradients - | update_q_points - | update_JxW_values; - - // Note, that on faces we do not - // need gradients but we need - // normal vectors. - UpdateFlags face_update_flags = update_values - | update_q_points - | update_JxW_values - | update_normal_vectors; - - // On the neighboring cell we only - // need the shape values. Given a - // specific face, the quadrature - // points and `JxW values' are the - // same as for the current cells, - // the normal vectors are known to - // be the negative of the normal - // vectors of the current cell. - UpdateFlags neighbor_face_update_flags = update_values; - - // Then we create the ``FEValues'' - // object. Note, that since version - // 3.2.0 of deal.II the constructor - // of this class takes a - // ``Mapping'' object as first - // argument. Although the - // constructor without ``Mapping'' - // argument is still supported it - // is recommended to use the new - // constructor. This reduces the - // effect of `hidden magic' (the - // old constructor implicitely - // assumes a ``MappingQ1'' mapping) - // and makes it easier to change - // the mapping object later. - FEValues fe_v ( - mapping, fe, quadrature, update_flags); - - // Similarly we create the - // ``FEFaceValues'' and - // ``FESubfaceValues'' objects for - // both, the current and the - // neighboring cell. Within the - // following nested loop over all - // cells and all faces of the cell - // they will be reinited to the - // current cell and the face (and - // subface) number. - FEFaceValues fe_v_face ( - mapping, fe, face_quadrature, face_update_flags); - FESubfaceValues fe_v_subface ( - mapping, fe, face_quadrature, face_update_flags); - FEFaceValues fe_v_face_neighbor ( - mapping, fe, face_quadrature, neighbor_face_update_flags); - FESubfaceValues fe_v_subface_neighbor ( - mapping, fe, face_quadrature, neighbor_face_update_flags); - - // Furthermore we need some cell - // iterators. - typename DoFHandler::active_cell_iterator - cell = dof_handler.begin_active(), - endc = dof_handler.end(); - - // Now we start the loop over all - // active cells. - int fdofs_per_cell = fe_v.dofs_per_cell; - int fn_q_points = face_quadrature.n_quadrature_points; - - unsigned int cell_no = 0; - for (;cell!=endc; ++cell, ++cell_no) - { - - // Now we reinit the ``FEValues'' - // object for the current cell - fe_v.reinit (cell); - - // Collect the local dofs and - // asssemble the cell term. - cell->get_dof_indices (dofs); - - cell_diameter = cell->diameter(); - - assemble_cell_term(fe_v, - dofs, - cell_no); - - // We use the DG style loop through faces - // to determine if we need to apply a - // 'hanging node' flux calculation or a boundary - // computation. - for (unsigned int face_no=0; face_no::faces_per_cell; ++face_no) - { - // First we set the face - // iterator - typename DoFHandler::face_iterator face=cell->face(face_no); - face_diameter = face->diameter(); - - if (face->at_boundary()) - { - // We reinit the - // ``FEFaceValues'' - // object to the - // current face - fe_v_face.reinit (cell, face_no); - - // and assemble the - // corresponding face - // terms. We send the same - // fe_v and dofs as described - // in the assembly routine. - assemble_face_term( - face_no, fe_v_face, - fe_v_face, - dofs, - dofs, - face->boundary_indicator()); - } - else - { - // Now we are not on - // the boundary of the - // domain, therefore - // there must exist a - // neighboring cell. - typename DoFHandler::cell_iterator neighbor= - cell->neighbor(face_no);; - - if (face->has_children()) - { - // case I: This cell refined compared to neighbor - - const unsigned int neighbor2= - cell->neighbor_of_neighbor(face_no); - - - // We loop over - // subfaces - for (unsigned int subface_no=0; - subface_no::subfaces_per_face; - ++subface_no) - { - typename DoFHandler::active_cell_iterator - neighbor_child - = cell->neighbor_child_on_subface (face_no, subface_no); - - face_diameter = neighbor_child->diameter(); // working on subface - - Assert (neighbor_child->face(neighbor2) == face->child(subface_no), - ExcInternalError()); - Assert (!neighbor_child->has_children(), ExcInternalError()); - - fe_v_subface.reinit (cell, face_no, subface_no); - fe_v_face_neighbor.reinit (neighbor_child, neighbor2); - neighbor_child->get_dof_indices (dofs_neighbor); - - // Assemble as if we are working with - // a DG element. - assemble_face_term( - face_no, fe_v_subface, - fe_v_face_neighbor, - dofs, - dofs_neighbor); - - } - // End of ``if - // (face->has_children())'' - } - else - { - // We have no children, but - // the neighbor cell may be refine - // compared to use - neighbor->get_dof_indices (dofs_neighbor); - if (neighbor->level() != cell->level()) - { - // case II: This is refined compared to neighbor - Assert(neighbor->level() < cell->level(), ExcInternalError()); - const std::pair faceno_subfaceno= - cell->neighbor_of_coarser_neighbor(face_no); - const unsigned int neighbor_face_no=faceno_subfaceno.first, - neighbor_subface_no=faceno_subfaceno.second; - - Assert (neighbor->neighbor_child_on_subface (neighbor_face_no, - neighbor_subface_no) - == cell, - ExcInternalError()); - - // Reinit the - // appropriate - // ``FEFaceValues'' - // and assemble - // the face - // terms. - fe_v_face.reinit (cell, face_no); - fe_v_subface_neighbor.reinit (neighbor, neighbor_face_no, - neighbor_subface_no); - - assemble_face_term( - face_no, fe_v_face, - fe_v_subface_neighbor, - dofs, - dofs_neighbor); - - } - - } - // End of ``face not at boundary'': - } - // End of loop over all faces: - } - - // End iteration through cells. - } - - // Notify Epetra that the matrix is done. - Matrix->FillComplete(); - - // Compute the nonlinear residual. - res_norm = right_hand_side.l2_norm(); - -} - - // Create a conservation law with some defaults. -template -ConsLaw::ConsLaw () - : - mapping (), - fe_ptr(NULL), - dof_handler (triangulation), - quadrature (2), - face_quadrature (2), - T(0), - dT(0.05), - TF(10), - Map(NULL), - Matrix(NULL), - is_stationary(false), - theta(0.5) -{} - - // At one time this example could work for both DG and - // continuous finite elements. The choice was made here. -template -void ConsLaw::build_fe() { - fe_ptr = new FESystem(FE_Q(1), N_COMP); -} - - // Bye bye Conservation law. -template -ConsLaw::~ConsLaw () -{ - dof_handler.clear (); - delete fe_ptr; -} - - // @sect3{Initialize System} - // Sizes all of the vectors and sets up the - // sparsity patter. This function is called at - // the very beginning of a simulation. The function - // setup_system repeats some of these - // chores and is called after adaptivity in leiu - // of this function. -template -void ConsLaw::initialize_system () -{ - // First we need to distribute the - // DoFs. - dof_handler.clear(); - dof_handler.distribute_dofs (*fe_ptr); - - // Size all of the fields. - solution.reinit (dof_handler.n_dofs()); - nlsolution.reinit (dof_handler.n_dofs()); - predictor.reinit (dof_handler.n_dofs()); - ppsolution.reinit (dof_handler.n_dofs()); - dsolution.reinit (dof_handler.n_dofs()); - right_hand_side.reinit (dof_handler.n_dofs()); - indicator.reinit(triangulation.n_active_cells()); -} - - // @sect3{Setup System} - // We call this function to build the sparsity - // and the matrix. -template -void ConsLaw::setup_system () -{ - - // The DoFs of a cell are coupled - // with all DoFs of all neighboring - // cells. Therefore the maximum - // number of matrix entries per row - // is needed when all neighbors of - // a cell are once more refined - // than the cell under - // consideration. - sparsity_pattern.reinit (dof_handler.n_dofs(), - dof_handler.n_dofs(), - (GeometryInfo::faces_per_cell - *GeometryInfo::subfaces_per_face+1)*fe_ptr->dofs_per_cell); - - // Since the continuous sparsity pattern is - // a subset of the DG one, and since we need - // the DG terms for handling hanging nodes, we use - // the flux pattern. - DoFTools::make_flux_sparsity_pattern (dof_handler, sparsity_pattern); - - sparsity_pattern.compress(); - - // Rebuild the map. In serial this doesn't do much, - // but is needed. In parallel, this would desribe - // the parallel dof layout. - if (Map) delete Map; - Map = new Epetra_Map(dof_handler.n_dofs(), 0, *Comm); - - // Epetra can build a more efficient matrix if - // one knows ahead of time the maxiumum number of - // columns in any row entry. We traverse the sparsity - // to discover this. - int cur_row = 0; - int cur_col = 0; - int max_df = -1; - for (SparsityPattern::iterator s_i = sparsity_pattern.begin(); - s_i != sparsity_pattern.end(); s_i++) { - if (s_i->row() != cur_row) { - cur_col = 0; - cur_row = s_i->row(); - } - cur_col++; - if (cur_col >= max_df) max_df = cur_col; - } - - if (cur_col >= max_df) max_df = cur_col; - std::cout << "max_df:" << max_df << std::endl; - - // Now we build the matrix, using the constructor - // that optimizes with the max_df variable. - if (Matrix) delete Matrix; - Matrix = new Epetra_CrsMatrix(Copy, *Map, max_df+1, true); - - // We add the sparsity pattern to the matrix by - // inserting zeros. - std::vector vals(max_df, 0); - std::vector row_indices(max_df); - - cur_row = 0; - cur_col = 0; - for (SparsityPattern::iterator s_i = sparsity_pattern.begin(); - s_i != sparsity_pattern.end(); s_i++) { - if (s_i->row() != cur_row) { - Matrix->InsertGlobalValues(cur_row, cur_col, &vals[0], &row_indices[0]); - cur_col = 0; - cur_row = s_i->row(); - } - row_indices[cur_col++] = s_i->column(); - } - // The last row. - Matrix->InsertGlobalValues(cur_row, cur_col, &vals[0], &row_indices[0]); - - // Epetra requires this function after building or - // filling a matrix. It typically does some parallel - // bookeeping; perhaps more. - Matrix->FillComplete(); - -} - - // @sect3{Solving the linear system} - // Actually solve the linear system, using either - // Aztec of Amesos. -template -void ConsLaw::solve (Vector &dsolution, int &niter, double &lin_residual) -{ - - // We must hand the solvers Epetra vectors. - // Luckily, they support the concept of a - // 'view', so we just send in a pointer to our - // dealii vectors. - Epetra_Vector x(View, *Map, dsolution.begin()); - Epetra_Vector b(View, *Map, right_hand_side.begin()); - - // The Direct option selects the Amesos solver. - if (solver_params.SOLVER == solver_params_type::DIRECT) { - - // Setup for solving with - // Amesos. - Epetra_LinearProblem prob; - prob.SetOperator(Matrix); - Amesos_BaseSolver *solver; - Amesos Factory; - - // Other solvers are available - // and may be selected by changing this - // string. - char *stype = "Amesos_Klu"; - - solver = Factory.Create(stype, prob); - - Assert (solver != NULL, ExcInternalError()); - - // There are two parts to the direct solve. - // As I understand, the symbolic part figures - // out the sparsity patterns, and then the - // numerical part actually performs Gaussian - // elimination or whatever the approach is. - if (solver_params.OUTPUT == solver_params_type::VERBOSE) - std::cout << "Starting Symbolic fact\n" << std::flush; - - solver->SymbolicFactorization(); - - if (solver_params.OUTPUT == solver_params_type::VERBOSE) - std::cout << "Starting Numeric fact\n" << std::flush; - - solver->NumericFactorization(); - - - // Define the linear problem by setting the - // right hand and left hand sides. - prob.SetRHS(&b); - prob.SetLHS(&x); - // And finally solve the problem. - if (solver_params.OUTPUT == solver_params_type::VERBOSE) - std::cout << "Starting solve\n" << std::flush; - solver->Solve(); - niter = 0; - lin_residual = 0; - - // We must free the solver that was created - // for us. - delete solver; - - } else if (solver_params.SOLVER == solver_params_type::GMRES) { - - // For the iterative solvers, we use Aztec. - AztecOO Solver; - - // Select the appropriate level of verbosity. - if (solver_params.OUTPUT == solver_params_type::QUIET) - Solver.SetAztecOption(AZ_output, AZ_none); - - if (solver_params.OUTPUT == solver_params_type::VERBOSE) - Solver.SetAztecOption(AZ_output, AZ_all); - - // Select gmres. Other solvers are available. - Solver.SetAztecOption(AZ_solver, AZ_gmres); - Solver.SetRHS(&b); - Solver.SetLHS(&x); - - // Set up the ILUT preconditioner. I do not know - // why, but we must pretend like we are in parallel - // using domain decomposition or the preconditioner - // refuses to activate. - Solver.SetAztecOption(AZ_precond, AZ_dom_decomp); - Solver.SetAztecOption(AZ_subdomain_solve, AZ_ilut); - Solver.SetAztecOption(AZ_overlap, 0); - Solver.SetAztecOption(AZ_reorder, 0); - - // ILUT parameters as described above. - Solver.SetAztecParam(AZ_drop, solver_params.ILUT_DROP); - Solver.SetAztecParam(AZ_ilut_fill, solver_params.ILUT_FILL); - Solver.SetAztecParam(AZ_athresh, solver_params.ILUT_ATOL); - Solver.SetAztecParam(AZ_rthresh, solver_params.ILUT_RTOL); - Solver.SetUserMatrix(Matrix); - - // Run the solver iteration. Collect the number - // of iterations and the residual. - Solver.Iterate(solver_params.MAX_ITERS, solver_params.RES); - niter = Solver.NumIters(); - lin_residual = Solver.TrueResidual(); - } -} - - // @sect3{Postprocessing and Output} - // Recover the physical variables from the conservative - // variables so that output will be (perhaps) more - // meaningfull. -template -void ConsLaw::postprocess() { - const unsigned int dofs_per_cell = dof_handler.get_fe().dofs_per_cell; - std::vector dofs (dofs_per_cell); - UpdateFlags update_flags = update_values - | update_gradients - | update_q_points - | update_JxW_values; - UpdateFlags update_flags1 = update_values - | update_gradients - | update_q_points - | update_JxW_values; - - QGauss quadrature_formula(4); - - const std::vector > &us = fe_ptr->base_element(0).get_unit_support_points(); - - - Quadrature unit_support(us); - - int n_q_points = quadrature_formula.n_quadrature_points; - int n_uq_points = unit_support.n_quadrature_points; - - FEValues fe_v ( - mapping, *fe_ptr, quadrature_formula, update_flags); - - FEValues fe_v_unit ( - mapping, *fe_ptr, unit_support, update_flags1); - - std::vector > U(n_uq_points, - Vector(get_n_components())); - std::vector > UU(n_q_points, - Vector(get_n_components())); - std::vector > > dU(n_uq_points, - std::vector >(get_n_components())); - - typename DoFHandler::active_cell_iterator - cell = dof_handler.begin_active(), - endc = dof_handler.end(); - - // Loop the cells - for (unsigned int cell_no=0; cell!=endc; ++cell, ++cell_no) { - cell->get_dof_indices (dofs); - fe_v_unit.reinit(cell); - fe_v.reinit(cell); - - fe_v_unit.get_function_values(solution, U); - fe_v_unit.get_function_grads(solution, dU); - fe_v.get_function_values(solution, UU); - - const std::vector &JxW = fe_v.get_JxW_values (); - - for (int q = 0; q < fe_v.get_fe().base_element(0).n_dofs_per_cell(); q++) { - unsigned int didx = fe_v.get_fe().component_to_system_index(DENS_IDX, q); - unsigned int eidx = fe_v.get_fe().component_to_system_index(ENERGY_IDX, q); - double rho_normVsqr = 0; - for (int d = 0; d < dim; d++) { - unsigned int vidx = fe_v.get_fe().component_to_system_index(d, q); - ppsolution(dofs[vidx]) = solution(dofs[vidx])/solution(dofs[didx]); - rho_normVsqr += solution(dofs[vidx])*solution(dofs[vidx]); - } - rho_normVsqr /= solution(dofs[didx]); - // Pressure - ppsolution(dofs[eidx]) = (GAMMA-1.0)*(solution(dofs[eidx]) - 0.5*rho_normVsqr); - - // Either output density or gradient squared of density, - // depending on what the user wants. - if (!schlieren_plot) { - ppsolution(dofs[didx]) = solution(dofs[didx]); - } else { - double ng = 0; - for (int i = 0; i < dim; i++) ng += dU[q][DENS_IDX][i]*dU[q][DENS_IDX][i]; - ng = std::sqrt(ng); - ppsolution(dofs[didx]) = ng; - } - } - - } // cell - -} - - // Loop and assign a value for refinement. We - // simply use the density squared, which selects - // shocks with some success. -template -void ConsLaw::estimate() { - - const unsigned int dofs_per_cell = dof_handler.get_fe().dofs_per_cell; - std::vector dofs (dofs_per_cell); - UpdateFlags update_flags = update_values - | update_gradients - | update_q_points - | update_JxW_values; - - QGauss quadrature_formula(1); - int n_q_points = quadrature_formula.n_quadrature_points; - - - FEValues fe_v ( - mapping, *fe_ptr, quadrature_formula, update_flags); - - std::vector > U(n_q_points, - Vector(get_n_components())); - std::vector > > dU(n_q_points, - std::vector >(get_n_components())); - - typename DoFHandler::active_cell_iterator - cell = dof_handler.begin_active(), - endc = dof_handler.end(); - for (unsigned int cell_no=0; cell!=endc; ++cell, ++cell_no) { - fe_v.reinit(cell); - - fe_v.get_function_values(predictor, U); - fe_v.get_function_grads(predictor, dU); - - indicator(cell_no) = 0; - for (int q = 0; q < n_q_points; q++) { - double ng = 0; - for (int d = 0; d < dim; d++) ng += dU[q][DENS_IDX][d]*dU[q][DENS_IDX][d]; - - indicator(cell_no) += std::log(1+std::sqrt(ng)); - - } - indicator(cell_no) /= n_q_points; - - } -} - -template -void ConsLaw::refine_grid () -{ - - SolutionTransfer soltrans(dof_handler); - - typename DoFHandler::active_cell_iterator - cell = dof_handler.begin_active(), - endc = dof_handler.end(); - - // Loop cells. If the indicator - // for the cell matches the refinement criterion, - // refine, else unrefine. The unrefinement has - // a slight hysterisis to avoid 'flashing' from refined - // to unrefined. - for (unsigned int cell_no=0; cell!=endc; ++cell, ++cell_no) { - cell->clear_coarsen_flag(); - cell->clear_refine_flag(); - if (cell->level() < refinement_params.shock_levels && - std::fabs(indicator(cell_no)) > refinement_params.shock_val ) { - cell->set_refine_flag(); - } else { - if (cell->level() > 0 && - std::fabs(indicator(cell_no)) < 0.75*refinement_params.shock_val) - cell->set_coarsen_flag(); - } - } - - // The following code prolongs the solution - // to the new grid and carries out the refinement. - std::vector > interp_in; - std::vector > interp_out; - - interp_in.push_back(solution); - interp_in.push_back(predictor); - - triangulation.prepare_coarsening_and_refinement(); - soltrans.prepare_for_coarsening_and_refinement(interp_in); - - triangulation.execute_coarsening_and_refinement (); - - dof_handler.clear(); - dof_handler.distribute_dofs (*fe_ptr); - - { - Vector new_solution(1); - Vector new_predictor(1); - - interp_out.push_back(new_solution); - interp_out.push_back(new_predictor); - interp_out[0].reinit(dof_handler.n_dofs()); - interp_out[1].reinit(dof_handler.n_dofs()); - } - - soltrans.interpolate(interp_in, interp_out); - - // Let the vector delete a very small vector - solution.reinit(1); - predictor.reinit(1); - solution.swap(interp_out[0]); - predictor.swap(interp_out[1]); - - // resize these vectors for the new grid. - nlsolution.reinit(dof_handler.n_dofs()); - ppsolution.reinit(dof_handler.n_dofs()); - nlsolution = solution; - dsolution.reinit (dof_handler.n_dofs()); - right_hand_side.reinit (dof_handler.n_dofs()); - - indicator.reinit(triangulation.n_active_cells()); - -} - -template -void ConsLaw::output_results (const unsigned int cycle) const -{ - char filename[512]; - std::sprintf(filename, "solution-%03d.vtk", cycle); - std::ofstream output (filename); - - DataOut data_out; - data_out.attach_dof_handler (dof_handler); - std::vector solution_names; - - // Rename the output with the physical variable - // names. Send the post-processed values. - solution_names.clear(); - for (int i = 0; i < dim; i++) { - char buf[512]; - std::sprintf(buf, "v_%d", i); - solution_names.push_back (buf); - } - solution_names.push_back("density"); - solution_names.push_back("pressure"); - data_out.add_data_vector (ppsolution, solution_names); - - data_out.add_data_vector (indicator, "error"); - data_out.build_patches (); - data_out.write_vtk (output); - - output.close(); -} - - // @sect3{Parsing the Input Deck} - // Declare the parameters for the - // input deck. We assume a certain - // maximum number of boundaries and process - // any boundary the user supplies up to - // that maximum number. We - // leave a detailed explanation of these - // parameters to our description of the input - // sample file. -const UInt MAX_BD = 10; -template -void ConsLaw::declare_parameters() { - - // Global scope parameters/ - prm.declare_entry("mesh", "grid.inp", - Patterns::Anything(), - "intput file"); - - prm.declare_entry("diffusion power", "2.0", - Patterns::Double(), - "power of mesh size for diffusion"); - - prm.declare_entry("gravity", "0.0", - Patterns::Double(), - "gravity forcing"); - - // Time stepping block - prm.enter_subsection("time stepping"); - prm.declare_entry("time step", "0.1", - Patterns::Double(), - "simulation time step"); - prm.declare_entry("final time", "10.0", - Patterns::Double(), - "simulation end time"); - prm.leave_subsection(); - - - // Declare the boundary parameters - for (int b = 0; b < MAX_BD; b++) { - char bd[512]; - std::sprintf(bd, "boundary_%d", b); - prm.enter_subsection(bd); - prm.declare_entry("no penetration", "false", - Patterns::Selection("true|false"), - ""); - // declare a slot for each of the conservative - // variables. - for (int di = 0; di < N_COMP; di++) { - char var[512]; - std::sprintf(var, "w_%d", di); - prm.declare_entry(var, "outflow", - Patterns::Selection( - "inflow|outflow|pressure"), - ""); - - // for dirichlet, a function in x,y,z - std::sprintf(var, "w_%d value", di); - prm.declare_entry(var, "0.0", - Patterns::Anything(), - "expression in x,y,z"); - } - - prm.leave_subsection(); - } - - // Initial condition block. - prm.enter_subsection("initial condition"); - for (int di = 0; di < N_COMP; di++) { - char var[512]; - std::sprintf(var, "w_%d", di); - - // for dirichlet, a function in x,y,z - std::sprintf(var, "w_%d value", di); - prm.declare_entry(var, "0.0", - Patterns::Anything(), - "expression in x,y,z"); - } - prm.leave_subsection(); - - // The linear solver block. - prm.enter_subsection("linear solver"); - prm.declare_entry("output", "quiet", - Patterns::Selection( - "quiet|verbose"), - ""); - prm.declare_entry("method", "gmres", - Patterns::Selection( - "gmres|direct"), - ""); - prm.declare_entry("residual", "1e-10", - Patterns::Double(), - "linear solver residual"); - prm.declare_entry("max iters", "300", - Patterns::Double(), - "maximum solver iterations"); - prm.declare_entry("ilut fill", "2", - Patterns::Double(), - "ilut preconditioner fill"); - prm.declare_entry("ilut absolute tolerance", "1e-9", - Patterns::Double(), - "ilut preconditioner tolerance"); - prm.declare_entry("ilut relative tolerance", "1.1", - Patterns::Double(), - "rel tol"); - prm.declare_entry("ilut drop tolerance", "1e-10", - Patterns::Double(), - "ilut drop tol"); - prm.leave_subsection(); - - - // A refinement controller block. - prm.enter_subsection("refinement"); - prm.declare_entry("refinement", "none", - Patterns::Selection( - "none|fixed number|shock"), - ""); - prm.declare_entry("refinement fraction", "0.1", - Patterns::Double(), - "Fraction of high refinement"); - prm.declare_entry("unrefinement fraction", "0.1", - Patterns::Double(), - "Fraction of low unrefinement"); - prm.declare_entry("max elements", "1000000", - Patterns::Double(), - "maximum number of elements"); - prm.declare_entry("shock value", "4.0", - Patterns::Double(), - "value for shock indicator"); - prm.declare_entry("shock levels", "3.0", - Patterns::Double(), - "number of shock refinement levels"); - prm.leave_subsection(); - - // Output control. - prm.enter_subsection("output"); - prm.declare_entry("density", "standard", - Patterns::Selection( - "standard|schlieren"), - ""); - prm.declare_entry("step", "-1", - Patterns::Double(), - "output once per this period"); - prm.leave_subsection(); - - // Flux control - prm.enter_subsection("flux"); - prm.declare_entry("stab", "alpha", - Patterns::Selection( - "alpha|constant|mesh"), - ""); - prm.declare_entry("stab value", "1", - Patterns::Double(), - "alpha stabilization"); - prm.leave_subsection(); - - -} - - // Code to actually parse an input file. This function - // matches the declarations above. -template -void ConsLaw::load_parameters(const char *infile){ - - prm.read_input(infile); - - // The global parameters. - mesh = prm.get("mesh"); - - diffusion_power = prm.get_double("diffusion power"); - - gravity = prm.get_double("gravity"); - - // The time stepping. - prm.enter_subsection("time stepping"); - dT = prm.get_double("time step"); - std::cout << "dT=" << dT << std::endl; - if (dT == 0) { - is_stationary = true; - dT = 1.0; - TF = 1.0; - std::cout << "Stationary mode" << std::endl; - } - TF = prm.get_double("final time"); - std::cout << "TF=" << TF << std::endl; - prm.leave_subsection(); - - // The boundary info - for (int b = 0; b < MAX_BD; b++) { - std::vector flags(N_COMP, OUTFLOW_BC); - - // Define a parser for every boundary, though it may be - // unused. - SideCondition *sd = new SideCondition(N_COMP); - char bd[512]; - std::sprintf(bd, "boundary_%d", b); - prm.enter_subsection(bd); - - const std::string &nopen = prm.get("no penetration"); - - // Determine how each component is handled. - for (int di = 0; di < N_COMP; di++) { - char var[512]; - std::sprintf(var, "w_%d", di); - std::string btype = prm.get(var); - std::sprintf(var, "w_%d value", di); - std::string var_value = prm.get(var); - - if (di < dim && nopen == "true") { - flags[di] = NO_PENETRATION_BC; - } else if (btype == "inflow") { - flags[di] = INFLOW_BC; - sd->set_coeff_row(di, var_value); - } else if (btype == "pressure") { - flags[di] = PRESSURE_BC; - sd->set_coeff_row(di, var_value); - } - } - prm.leave_subsection(); - - // Add the boundary condition to the law. - sd->Init(); - add_boundary(b, flags, sd); - } - - // Initial conditions. - prm.enter_subsection("initial condition"); - for (int di = 0; di < N_COMP; di++) { - char var[512]; - - std::sprintf(var, "w_%d value", di); - std::string var_value = prm.get(var); - ic.set_ic(di, var_value); - } - ic.Init(); - prm.leave_subsection(); - - // The linear solver. - prm.enter_subsection("linear solver"); - const std::string &op = prm.get("output"); - if (op == "verbose") solver_params.OUTPUT = solver_params_type::VERBOSE; - if (op == "quiet") solver_params.OUTPUT = solver_params_type::QUIET; - const std::string &sv = prm.get("method"); - if (sv == "direct") { - solver_params.SOLVER = solver_params_type::DIRECT; - } else if (sv == "gmres") { - solver_params.SOLVER = solver_params_type::GMRES; - } - - solver_params.RES = prm.get_double("residual"); - solver_params.MAX_ITERS = (int) prm.get_double("max iters"); - solver_params.ILUT_FILL = prm.get_double("ilut fill"); - solver_params.ILUT_ATOL = prm.get_double("ilut absolute tolerance"); - solver_params.ILUT_RTOL = prm.get_double("ilut relative tolerance"); - solver_params.ILUT_DROP = prm.get_double("ilut drop tolerance"); - solver_params.RES = prm.get_double("residual"); - prm.leave_subsection(); - - - // And refiement. - prm.enter_subsection("refinement"); - const std::string &ref = prm.get("refinement"); - if (ref == "none") { - refinement_params.refine = refinement_params_type::NONE; - } else if (ref == "fixed number") { - refinement_params.refine = refinement_params_type::FIXED_NUMBER; - } else if (ref == "shock") { - refinement_params.refine = refinement_params_type::SHOCK; - } else - refinement_params.high_frac = prm.get_double("refinement fraction"); - refinement_params.high_frac_sav = refinement_params.high_frac; - refinement_params.low_frac = prm.get_double("unrefinement fraction"); - refinement_params.max_cells = prm.get_double("max elements"); - refinement_params.shock_val = prm.get_double("shock value"); - refinement_params.shock_levels = prm.get_double("shock levels"); - prm.leave_subsection(); - - // Output control. - prm.enter_subsection("output"); - const std::string &dens = prm.get("density"); - schlieren_plot = dens == "schlieren" ? true : false; - output_step = prm.get_double("step"); - prm.leave_subsection(); - - // Flux control. - prm.enter_subsection("flux"); - const std::string &stab = prm.get("stab"); - if (stab == "constant") { - flux_params.LF_stab = flux_params_type::CONSTANT; - } else if (stab == "mesh ") { - flux_params.LF_stab = flux_params_type::MESH; - } - flux_params.LF_stab_value = prm.get_double("stab value"); - prm.leave_subsection(); - - -} - -template -void ConsLaw::zero_matrix() { - Matrix->PutScalar(0); Matrix->FillComplete(); -} - - // We use a predictor to try and make adaptivity - // work better. The idea is to try and refine ahead - // of a front, rather than stepping into a coarse - // set of elements and smearing the solution. This - // simple time extrapolator does the job. -template -void ConsLaw::compute_predictor() { - predictor = nlsolution; - predictor.sadd(3/2.0, -1/2.0, solution); -} - - // @sect3{Run the simulation} Contains the initialization, - // the time loop, and the inner Newton iteration. -template -void ConsLaw::run () -{ - - // Open and load the mesh. - GridIn grid_in; - grid_in.attach_triangulation(triangulation); - std::cout << "Opening mesh <" << mesh << ">" << std::endl; - std::ifstream input_file(mesh.c_str(), std::ios::in); - - Assert (infile, - ExcFileNotOpen()); - - grid_in.read_ucd(input_file); - input_file.close(); - - build_fe(); - - unsigned int nstep = 0; - - // Initialize fields and matrices. - initialize_system (); - setup_system(); - initialize(); - predictor = solution; - - // Initial refinement. We apply the ic, - // estimate, refine, and repeat until - // happy. - if (refinement_params.refine != refinement_params_type::NONE) - for (int i = 0; i < refinement_params.shock_levels; i++) { - estimate(); - refine_grid(); - setup_system(); - initialize(); - predictor = solution; - } - postprocess(); - output_results (nstep); - - // Determine when we will output next. - double next_output = T + output_step; - - // @sect4{Main time stepping loop} - predictor = solution; - while(T < TF) - { - std::cout << "T=" << T << ", "; - - - std::cout << " Number of active cells: " - << triangulation.n_active_cells() - << std::endl; - - - std::cout << " Number of degrees of freedom: " - << dof_handler.n_dofs() - << std::endl; - - bool nonlin_done = false; - double res_norm; - int lin_iter; - - // Print some relevant information during the - // Newton iteration. - std::cout << "NonLin Res: Lin Iter Lin Res" << std::endl; - std::cout << "______________________________________" << std::endl; - - int max_nonlin = 7; - int nonlin_iter = 0; - double lin_res; - - // @sect5{Newton iteration} - nlsolution = predictor; - while (!nonlin_done) { - lin_iter = 0; - zero_matrix(); - right_hand_side = 0; - assemble_system (res_norm); - // Flash a star to the screen so one can - // know when the assembly has stopped and the linear - // solution is starting. - std::cout << "* " << std::flush; - - // Test against a (hardcoded) nonlinear tolderance. - // Do not solve the linear system at the last step - // (since it would be a waste). - - if (fabs(res_norm) < 1e-10) { - nonlin_done = true; - } else { - // Solve the linear system and update with the - // delta. - dsolution = 0; - solve (dsolution, lin_iter, lin_res); - nlsolution.add(1.0, dsolution); - } - - // Print the residuals. - std::printf("%-16.3e %04d %-5.2e\n", - res_norm, lin_iter, lin_res); - - nonlin_iter++; - } - - // Various post convergence tasks. - compute_predictor(); - - solution = nlsolution; - - - estimate(); - - postprocess(); - - T += dT; - - // Output if it is time. - if (output_step < 0) { - output_results (++nstep); - } else if (T >= next_output) { - output_results (++nstep); - next_output += output_step; - } - - // Refine, if refinement is selected. - if (refinement_params.refine != refinement_params_type::NONE) { - refine_grid(); - setup_system(); - } - } -} - - // The following ``main'' function is - // similar to previous examples and - // need not to be commented on. -int main (int argc, char *argv[]) -{ - - MPI_Init(&argc, &argv); - Comm = new Epetra_MpiComm(MPI_COMM_WORLD); - - if (argc != 2) { - std::cout << "Usage:" << argv[0] << " infile" << std::endl; - std::exit(1); - } - try - { - ConsLaw cons; - cons.declare_parameters(); - cons.load_parameters(argv[1]); - cons.run (); - } - catch (std::exception &exc) - { - std::cerr << std::endl << std::endl - << "----------------------------------------------------" - << std::endl; - std::cerr << "Exception on processing: " << std::endl - << exc.what() << std::endl - << "Aborting!" << std::endl - << "----------------------------------------------------" - << std::endl; - return 1; - } - catch (...) - { - std::cerr << std::endl << std::endl - << "----------------------------------------------------" - << std::endl; - std::cerr << "Unknown exception!" << std::endl - << "Aborting!" << std::endl - << "----------------------------------------------------" - << std::endl; - return 1; - }; - - return 0; -} - +/* step-12.cc,v 1.33 2005/08/08 16:41:40 wolf Exp */ +/* Author: David Neckels, Boulder Colorado 2007 */ +/* step-12.cc,v 1.33 2005/08/08 16:41:40 wolf Exp */ +/* Version: Version-5-2-0 */ +/* */ +/* Copyright (C) 2001, 2002, 2003, 2004, 2005, 2008 by the deal.II authors */ +/* */ +/* This file is subject to QPL and may not be distributed */ +/* without copyright and license information. Please refer */ +/* to the file deal.II/doc/license.html for the text and */ +/* further information on this license. */ + + // This program solves the Euler equations + // of gas dynamics for a given configuration + // file. It uses a standard Galerkin approach + // with weakly applied boundary conditions. + + //

Include files

+ + // Aztecoo require mpi (even though we run on only + // one processor in this example). +#include + + // Here we have the necessary TRILINOS includes. + // + // Epetra is the basic trilinos vector/matrix library. +#include +#include +#include +#include +#include + // Teuchos is a Trilinos utility library that is used + // to set parameters within the Aztec solver library. +#include "Teuchos_ParameterList.hpp" + // Aztec is the iterative solver library. +#include +#include +#define HAVE_IFPACK_TEUCHOS +#include + + // Amesos is a direct solver package within Trilinos. +#include + // Sacado is the automatic differentiation package, which + // is used to find the jacobian for a fully implicit Newton + // iteration. +#include + + // A standard set of dealii includes. Nothing special to + // comment on here. +#include +#include +#include +#include + +#include +#include +#include + +#include +#include +#include +#include +#include +#include +#include + +#include +#include + +#include +#include +#include + +#include +#include +#include + +#include +#include +#include + // And this again is C++: +#include +#include +#include + + // Introduce the dealii library into the current namespace. +using namespace dealii; + + // We define a shorter name for the automatic differentiation + // type. +typedef Sacado::Fad::DFad fad_double; +typedef unsigned int UInt; + // The Epetra library requires a 'communicator', which describes + // the layout of a parallel (or serial) set of processors. +Epetra_MpiComm *Comm; + + //

Flux function definition

+ // Here we define the flux function for this system of conservation + // laws. Note: it would be terribly difficult to use this example + // to solve some other system of conservation laws. + // + // We define the number of components in the system. Euler's has + // one entry for momenta in each spatial direction, plus the energy + // and density components. +#define N_COMP (2 + DIMENSION) + // Define a handle to the density and energy indices. We have arrange + // the momenta to be first, then density, and, lastly, energy. +#define DENS_IDX DIMENSION +#define ENERGY_IDX (DIMENSION+1) + + // The gas constant. This value is representative of air. +const double GAMMA = 1.4; + // We define the flux functions as one large matrix. Each row of this + // matrix represents a scalar conservation law for the component in + // that row. We template the numerical type of the flux function + // so that we may use the automatic differentiation type here. + // The flux functions are defined in terms of the + // conserved variables $\rho w_0, \dots, \rho w_{d-1}, \rho, E$, + // so they do not look exactly like the Euler equations one is + // used to seeing. We evaluate the flux at a single quadrature + // point. +template +void Flux(std::vector > &flux, + const Point &point, + const std::vector &W) +{ + + // Pressure is a dependent variable: $p = + // (\gamma - 1)(E-\frac{1}{2} \rho |v|^2)$. + number rho_normVsqr; + for (int d0 = 0; d0 < dim; d0++) rho_normVsqr += W[d0]*W[d0]; + // Since W are $\rho v$, we get a $\rho^2$ in the + // numerator, so dividing a $\rho$ out gives the desired $ \rho |v|^2$. + rho_normVsqr /= W[DENS_IDX]; + + number pressure = (GAMMA-1.0)*(W[ENERGY_IDX] - number(0.5)*(rho_normVsqr)); + + // We compute the momentum terms. We divide by the + // density here to get $v_i \rho v_j$ + for (int d = 0; d < dim; d++) { + for (int d1 = 0; d1 < dim; d1++) { + flux[d][d1] = W[d]*W[d1]/W[DENS_IDX]; + } + // The pressure contribution, along the diagonal: + flux[d][d] += pressure; + // Advection/conservation of density: + flux[DENS_IDX][d] = W[d]; + // And, lastly, conservation of energy. + flux[ENERGY_IDX][d] = W[d]/W[DENS_IDX]* + (W[ENERGY_IDX] + pressure); // energy + } +} + + // On the boundaries of the domain and across `hanging nodes` we use + // a numerical flux function to enforce boundary conditions. This routine + // is the basic Lax-Friedrich's flux with a stabilization parameter + // $\alpha$. +template +void LFNumFlux( + std::vector > &nflux, + const std::vector > &points, + const std::vector > &normals, + const std::vector > &Wplus, + const std::vector > &Wminus, + double alpha) +{ + int n_q_points = points.size(); + + // We evaluate the flux at each of the quadrature points. + for (int q = 0; q < n_q_points; q++) { + std::vector > iflux(N_COMP, + std::vector(dim, 0)); + std::vector > oflux(N_COMP, + std::vector(dim, 0)); + + Flux(iflux, points[q], Wplus[q]); + Flux(oflux, points[q], Wminus[q]); + + for (int di = 0; di < N_COMP; di++) { + nflux[q][di] = 0; + for (int d = 0; d < dim; d++) { + nflux[q][di] += 0.5*(iflux[di][d] + oflux[di][d])*normals[q](d); + } + nflux[q][di] += 0.5*alpha*(Wplus[q][di] - Wminus[q][di]); + } + } + +} + + //

Initial and side condition parsing

+ // For the initial condition we use the expression parser function + // object. +template +class InitialCondition : public FunctionParser +{ + public: + InitialCondition (); + + // This function should be called after parsing, but before using + // the object. It formalizes the expressions and initializes the + // function parser with the appropriate expressions. + void Init(); + + // During parsing we call this function as the initial condition + // for one of the $\mathbf{w}$ variables is encountered. + + void set_ic(int _row, std::string &expr) { + expressions[_row] = expr; + } + + virtual void vector_value_list (const std::vector > &points, + std::vector > &value_list) const; + private: + std::vector expressions; +}; + +template +InitialCondition::InitialCondition () : + FunctionParser (N_COMP), + expressions(N_COMP, "0.0") +{} + + // Here we set up x,y,z as the variables that one should use in the input + // deck to describe their initial condition. +template +void InitialCondition::Init() { + std::map constants; + constants["M_PI"] = M_PI; + std::string variables = (dim == 2 ? "x,y" : "x,y,z"); + + FunctionParser::initialize(variables, expressions, constants); + +} + +template +void InitialCondition::vector_value_list (const std::vector > &points, + std::vector > &value_list) const +{ + const unsigned int n_points = points.size(); + + Assert (value_list.size() == n_points, + ExcDimensionMismatch (value_list.size(), n_points)); + + for (unsigned int p=0; p::vector_value (points[p], + value_list[p]); +} + + // As above, we use the expression function parser for boundary conditions. +template +class SideCondition : public FunctionParser +{ + public: + SideCondition (int ncomp); + ~SideCondition (); + + // As above. + void Init(); + // As above. + void set_coeff_row(int _row_n, std::string &expr); + + virtual void vector_value_list (const std::vector > &points, + std::vector > &value_list) const; + private: + std::vector expressions; +}; + +template +SideCondition::SideCondition (int ncomp) : + FunctionParser (ncomp), + expressions(ncomp, "0.0") +{ +} +template +void SideCondition::set_coeff_row (int _row_n, std::string &expr) +{ + expressions[_row_n] = expr; +} + +template +void SideCondition::Init() { + std::map constants; + constants["M_PI"] = M_PI; + std::string variables = (dim == 2 ? "x,y" : "x,y,z"); + + FunctionParser::initialize(variables, expressions, constants); + +} + +template +SideCondition::~SideCondition () +{ +} + +template +void SideCondition::vector_value_list (const std::vector > &points, + std::vector > &value_list) const +{ + const unsigned int n_points = points.size(); + + Assert (value_list.size() == n_points, + ExcDimensionMismatch (value_list.size(), n_points)); + + for (unsigned int p=0; p::vector_value (points[p], + value_list[p]); +} + //

Conservation Law class

+ // Here we define a Conservation Law class that helps group + // operations and data for our Euler equations into a manageable + // entity. Functions will be described as their definitions appear. +template +class ConsLaw +{ + public: + ConsLaw (); + ~ConsLaw (); + + void run (); + void declare_parameters(); + void load_parameters(const char *); + + private: + void build_fe(); + void setup_system (); + void initialize_system (); + void assemble_system (double &res_norm); + void solve (Vector &solution, int &, double &); + void refine_grid (); + void output_results (const unsigned int cycle) const; + void initialize(); + void zero_matrix(); + void estimate(); + void postprocess(); + void compute_predictor(); + + Triangulation triangulation; + const MappingQ1 mapping; + + + FESystem *fe_ptr; + + DoFHandler dof_handler; + + SparsityPattern sparsity_pattern; + const QGauss quadrature; + const QGauss face_quadrature; + + // The actual solution to the Euler equation + Vector solution; + // The current value of the solution during the Newton iteration + Vector nlsolution; + // An estimate of the next time value; used for adaptivity and as a + // guess for the next Newton iteration. + Vector predictor; + // Values after post-processing (used to output the physical variables). + Vector ppsolution; + // The solution to the linear problem during the Newton iteration + Vector dsolution; + Vector right_hand_side; + + public: + + void assemble_cell_term(const FEValues& fe_v, + std::vector &dofs, + unsigned int cell_no + ); + + void assemble_face_term( + int face_no, + const FEFaceValuesBase& fe_v, + const FEFaceValuesBase& fe_v_neighbor, + std::vector &dofs, + std::vector &dofs_neighbor, + int boundary = -1 + ); + + unsigned int get_n_components() const { return N_COMP;} + + private: + // T = current time, dT = time step, TF = final time. + double T, dT, TF; + double face_diameter; + double cell_diameter; + // An object to handle parsing the input deck. + ParameterHandler prm; + // Name of the mesh to read in. + string mesh; + InitialCondition ic; + + // Enums for the various supported boundary conditions. + typedef enum {INFLOW_BC = 1, OUTFLOW_BC=2, NO_PENETRATION_BC=3, PRESSURE_BC=4} bc_type; + + // For each boundary we store a map from boundary # to the type + // of boundary condition. If the boundary condition is prescribed, + // we store a pointer to a function object that will hold the expression + // for that boundary condition. + typedef typename std::map, Function*> > bdry_map_type; + bdry_map_type bdry_map; + + void add_boundary(unsigned int bd, std::vector& flags, Function *bf); + + // An object to store parameter information about the Aztec solver. + typedef struct { + int LIN_OUTPUT; + typedef enum { GMRES = 0, DIRECT = 1} solver_type; + solver_type SOLVER; + typedef enum { QUIET = 0, VERBOSE = 1 } output_type; + output_type OUTPUT; + // Linear residual tolerance. + double RES; + int MAX_ITERS; + // We use the ILUT preconditioner. This is similar + // to the ILU. FILL is the number of extra entries + // to add when forming the ILU decomposition. + double ILUT_FILL; + // When forming the preconditioner, for certain problems + // bad conditioning (or just bad luck) can cause the + // preconditioner to be very poorly conditioned. Hence + // it can help to add diagonal perturbations to the + // original matrix and form the preconditioner for this + // slightly better matrix. ATOL is an absolute perturbation + // that is added to the diagonal before forming the + // prec, and RTOL is a scaling factor $rtol >= 1$. + double ILUT_ATOL; + double ILUT_RTOL; + // The ILUT will drop any values that have magnitude less + // than this value. This is a way to + // manage the amount of memory used by this preconditioner. + double ILUT_DROP; + } solver_params_type; + + solver_params_type solver_params; + + // Some refinement parameters. + typedef struct { + typedef enum { NONE = 0, FIXED_NUMBER = 1, SHOCK = 2} refine_type; + double high_frac; + double low_frac; + refine_type refine; + double high_frac_sav; + double max_cells; + double shock_val; + double shock_levels; + } refinement_params_type; + + refinement_params_type refinement_params; + + // The user can set the stabilization parameter $\alpha$ + // in the Lax-Friedrich's flux. + typedef struct { + typedef enum {CONSTANT=1,MESH=2} LF_stab_type; + LF_stab_type LF_stab; + double LF_stab_value; + } flux_params_type; + + flux_params_type flux_params; + + bool is_stationary; + + // Power for the mesh stabilization term. + double diffusion_power; + double gravity; + // If true, we output the squared gradient of the + // density instead of density. Using this one can + // create shock plots. + bool schlieren_plot; + // How often to create an output file. + double output_step; + + Epetra_CrsMatrix *Matrix; + Epetra_Map *Map; + Vector indicator; + + // Crank-Nicolson value + const double theta; + +}; + + + // Asign a row of the conservation law a specified + // boundary type and (possibly) function. +template +void ConsLaw::add_boundary(unsigned int bd, + std::vector &flags, Function *bf) { + + std::pair, Function *> entry(flags, bf); + bdry_map[bd] = entry; +} + + + // Apply the initialial condition. Simultaneously + // initialize the non-linear solution. +template +void ConsLaw::initialize() { + VectorTools::interpolate(dof_handler, + ic, solution); + VectorTools::interpolate(dof_handler, + ic, nlsolution); + +} + + //

Assembly

+ //
Function: assemble_cell_term
+ // + // Assembles the cell term, adding minus the residual + // to the right hand side, and adding in the Jacobian + // contributions. +template +void ConsLaw::assemble_cell_term( + const FEValues &fe_v, + std::vector &dofs, + unsigned int cell_no + ) +{ + // The residual for each row (i) will be accumulating + // into this fad variable. At the end of the assembly + // for this row, we will query for the sensitivities + // to this variable and add them into the Jacobian. + fad_double F_i; + int dofs_per_cell = fe_v.dofs_per_cell; + int n_q_points = fe_v.n_quadrature_points; + + // We will define the dofs on this cell in these fad variables. + std::vector DOF(dofs_per_cell); + + // Values of the conservative variables at the quadrature points. + std::vector > W (n_q_points, + std::vector(get_n_components())); + + // Values at the last time step of the conservative variables. + // Note that these do not use fad variables, since they do + // not depend on the 'variables to be sought'=DOFS. + std::vector > Wl (n_q_points, + std::vector(get_n_components())); + + // Here we will hold the averaged values of the conservative + // variables that we will linearize around (cn=Crank Nicholson). + std::vector > Wcn (n_q_points, + std::vector(get_n_components())); + + // Gradients of the current variables. It is a + // bit of a shame that we have to compute these; we almost don't. + // The nice thing about a simple conservation law is that the + // the flux doesn't generally involve any gradients. We do + // need these, however, for the diffusion stabilization. + std::vector > > Wgrads (n_q_points, + std::vector >(get_n_components(), + std::vector(dim))); + + + const std::vector &JxW = fe_v.get_JxW_values (); + + + // Here is the magical point where we declare a subset + // of the fad variables as degrees of freedom. All + // calculations that reference these variables (either + // directly or indirectly) will accumulate sensitivies + // with respect to these dofs. + for (int in = 0; in < dofs_per_cell; in++) { + DOF[in] = nlsolution(dofs[in]); + DOF[in].diff(in, dofs_per_cell); + } + + // Here we compute the shape function values and gradients + // at the quadrature points. Ideally, we could call into + // something like get_function_values, get_function_grads, + // but since we don't want to make the entire solution vector + // fad types, only the local cell variables, we explicitly + // code this loop; + for (int q = 0; q < n_q_points; q++) { + for (int di = 0; di < get_n_components(); di++) { + W[q][di] = 0; + Wl[q][di] = 0; + Wcn[q][di] = 0; + for (int d = 0; d < dim; d++) { + Wgrads[q][di][d] = 0; + } + } + for (int sf = 0; sf < dofs_per_cell; sf++) { + int di = fe_v.get_fe().system_to_component_index(sf).first; + W[q][di] += + DOF[sf]*fe_v.shape_value_component(sf, q, di); + Wl[q][di] += + solution(dofs[sf])*fe_v.shape_value_component(sf, q, di); + Wcn[q][di] += + (theta*DOF[sf]+(1-theta)*solution(dofs[sf]))*fe_v.shape_value_component(sf, q, di); + + for (int d = 0; d < dim; d++) { + Wgrads[q][di][d] += DOF[sf]* + fe_v.shape_grad_component(sf, q, di)[d]; + } // for d + + } + + } // for q + + // Gather the flux values for all components at + // all of the quadrature points. This also + // computes the matrix of sensitivities. Perhaps + // this could be done in a better way, since this + // could be a rather large object, but for now it + // seems to work just fine. + std::vector > > flux(n_q_points, + std::vector >(get_n_components(), + std::vector(dim, 0))); + + for (unsigned int q=0; q < n_q_points; ++q) { + Flux(flux[q], fe_v.get_quadrature_points()[q], Wcn[q]); + } + + // We now have all of the function values/grads/fluxes, + // so perform the assembly. We have an outer loop + // through the components of the system, and an + // inner loop over the quadrature points, where we + // accumulate contributions to the ith residual. + // + // We initialy sum all contributions of the residual + // in the positive sense, so that we don't need to + // negative the Jacobian entries. Then, when we sum + // into the right_hand_side vector, + // we negate this residual. + for (unsigned int i=0; iSumIntoGlobalValues(dofs[i], + dofs_per_cell, &values[0], reinterpret_cast(&dofs[0])); + + // Add minus the residual to the right hand side. + right_hand_side(dofs[i]) -= F_i.val(); + + } // for i +} + //
Function: assemble_face_term
+ // These are either + // boundary terms or terms across differing + // levels of refinement. In the first case, + // fe_v==fe_v_neighbor and dofs==dofs_neighbor. + // The int boundary < 0 if not at a boundary, + // otherwise it is the boundary indicator. +template +void ConsLaw::assemble_face_term( + int face_no, + const FEFaceValuesBase& fe_v, + const FEFaceValuesBase& fe_v_neighbor, + std::vector &dofs, + std::vector &dofs_neighbor, + int boundary + ) +{ + fad_double F_i; + const unsigned int n_q_points = fe_v.n_quadrature_points; + const unsigned int dofs_per_cell = fe_v.get_fe().dofs_per_cell; + const unsigned int ndofs_per_cell = fe_v_neighbor.get_fe().dofs_per_cell; + Assert(dofs_per_cell == ndofs_per_cell, + ExcDimensionMismatch(dofs_per_cell, ndofs_per_cell)); + + // As above, the fad degrees of freedom + std::vector DOF(dofs_per_cell+ndofs_per_cell); + + // The conservative variables for this cell, + // and for + std::vector > Wplus (n_q_points, + std::vector(get_n_components())); + std::vector > Wminus (n_q_points, + std::vector(get_n_components())); + + + const std::vector &JxW = fe_v.get_JxW_values (); + const std::vector > &normals = fe_v.get_normal_vectors (); + + + // If we are at a boundary, then dofs_neighbor are + // the same as dofs, so we do not want to duplicate them. + // If there is a neighbor cell, then we want to include + // them. + int ndofs = (boundary < 0 ? dofs_per_cell + ndofs_per_cell : dofs_per_cell); + // Set the local DOFS. + for (int in = 0; in < dofs_per_cell; in++) { + DOF[in] = nlsolution(dofs[in]); + DOF[in].diff(in, ndofs); + } + // If present, set the neighbor dofs. + if (boundary < 0) + for (int in = 0; in < ndofs_per_cell; in++) { + DOF[in+dofs_per_cell] = nlsolution(dofs_neighbor[in]); + DOF[in+dofs_per_cell].diff(in+dofs_per_cell, ndofs); + } + + // Set the values of the local conservative variables. + // Initialize all variables to zero. + for (int q = 0; q < n_q_points; q++) { + for (int di = 0; di < get_n_components(); di++) { + Wplus[q][di] = 0; + Wminus[q][di] = 0; + } + for (int sf = 0; sf < dofs_per_cell; sf++) { + int di = fe_v.get_fe().system_to_component_index(sf).first; + Wplus[q][di] += + (theta*DOF[sf]+(1.0-theta)*solution(dofs[sf]))*fe_v.shape_value_component(sf, q, di); + } + + + // If there is a cell across, then initialize + // the exterior trace as a function of the other + // cell degrees of freedom. + if (boundary < 0) { + for (int sf = 0; sf < ndofs_per_cell; sf++) { + int di = fe_v_neighbor.get_fe().system_to_component_index(sf).first; + Wminus[q][di] += + (theta*DOF[sf+dofs_per_cell]+(1.0-theta)*solution(dofs_neighbor[sf]))* + fe_v_neighbor.shape_value_component(sf, q, di); + } + } + } // for q + + // If this is a boundary, then the values of $W^-$ will + // be either functions of $W^+$, or they will be prescribed. + // This switch sets them appropriately. Since we are + // using fad variables here, sensitivities will be updated + // appropriately. These sensitivities would be tremendously + // difficult to manage without fad!!! + if (boundary >= 0) { + // Get the boundary descriptor. + typename bdry_map_type::iterator bme = bdry_map.find(boundary); + assert(bme != bdry_map.end()); + + // Evaluate the function object. This is a bit + // tricky; a given boundary might have both prescribed + // and implicit values. If a particular component is not + // prescribed, the values evaluate to zero and are + // ignored, below. + std::vector > bvals(n_q_points, Vector(N_COMP)); + bme->second.second->vector_value_list(fe_v.get_quadrature_points(), bvals); + + // We loop the quadrature points, and we treat each + // component individualy. + for (int q = 0; q < n_q_points; q++) { + for (int di = 0; di < get_n_components(); di++) { + + // An inflow/dirichlet type of boundary condition + if (bme->second.first[di] == INFLOW_BC) { + Wminus[q][di] = bvals[q](di); + } else if (bme->second.first[di] == PRESSURE_BC) { + // A prescribed pressure boundary condition. This boundary + // condition is complicated by the fact that even though + // the pressure is prescribed, we really are setting + // the energy index here, which will depend on velocity + // and pressure. So even though this seems like a dirichlet + // type boundary condition, we get sensitivities of + // energy to velocity and density (unless these + // are also prescribed. + fad_double rho_vel_sqr = 0; + fad_double dens; + + dens = bme->second.first[DENS_IDX] == INFLOW_BC ? bvals[q](DENS_IDX) : + Wplus[q][DENS_IDX]; + + for (int d=0; d < dim; d++) { + if (bme->second.first[d] == INFLOW_BC) + rho_vel_sqr += bvals[q](d)*bvals[q](d); + else + rho_vel_sqr += Wplus[q][d]*Wplus[q][d]; + } + rho_vel_sqr /= dens; + // Finally set the energy value as determined by the + // prescribed pressure and the other variables. + Wminus[q][di] = bvals[q](di)/(GAMMA-1.0) + + 0.5*rho_vel_sqr; + + } else if (bme->second.first[di] == OUTFLOW_BC) { + // A free/outflow boundary, very simple. + Wminus[q][di] = Wplus[q][di]; + + } else { + // We must be at a no-penetration boundary. We + // prescribe the velocity (we are dealing with a + // particular component here so that the average + // of the velocities is orthogonal to the surface + // normal. This creates sensitivies of across + // the velocity components. + fad_double vdotn = 0; + for (int d = 0; d < dim; d++) { + vdotn += Wplus[q][d]*normals[q](d); + } + + Wminus[q][di] = Wplus[q][di] - 2.0*vdotn*normals[q](di); + } + } + } // for q + } // b>= 0 + + // Determine the Lax-Friedrich's stability parameter, + // and evaluate the numerical flux function at the quadrature points + std::vector > nflux(n_q_points, std::vector(get_n_components(), 0)); + double alpha = 1; + + switch(flux_params.LF_stab) { + case flux_params_type::CONSTANT: + alpha = flux_params.LF_stab_value; + break; + case flux_params_type::MESH: + alpha = face_diameter/(2.0*dT); + break; + } + + LFNumFlux(nflux, fe_v.get_quadrature_points(), normals, Wplus, Wminus, + alpha); + + // Now assemble the face term + for (unsigned int i=0; iSumIntoGlobalValues(dofs[i], + dofs_per_cell, &values[0], reinterpret_cast(&dofs[0])); + if (boundary < 0) { + Matrix->SumIntoGlobalValues(dofs[i], + dofs_per_cell, &values[dofs_per_cell], reinterpret_cast(&dofs_neighbor[0])); + } + + // And add into the residual + right_hand_side(dofs[i]) -= F_i.val(); + } + +} + //
Assembling the whole system
+ // Now we put all of the assembly pieces together + // in a routine that dispatches the correct + // piece for each cell/face. We keep track of + // the norm of the resdual for the Newton iteration. +template +void ConsLaw::assemble_system (double &res_norm) +{ + FESystem &fe = *fe_ptr; + const unsigned int dofs_per_cell = dof_handler.get_fe().dofs_per_cell; + + // We track the dofs on this cell and (if necessary) + // the adjacent cell. + std::vector dofs (dofs_per_cell); + std::vector dofs_neighbor (dofs_per_cell); + + // First we create the + // ``UpdateFlags'' for the + // ``FEValues'' and the + // ``FEFaceValues'' objects. + UpdateFlags update_flags = update_values + | update_gradients + | update_q_points + | update_JxW_values; + + // Note, that on faces we do not + // need gradients but we need + // normal vectors. + UpdateFlags face_update_flags = update_values + | update_q_points + | update_JxW_values + | update_normal_vectors; + + // On the neighboring cell we only + // need the shape values. Given a + // specific face, the quadrature + // points and `JxW values' are the + // same as for the current cells, + // the normal vectors are known to + // be the negative of the normal + // vectors of the current cell. + UpdateFlags neighbor_face_update_flags = update_values; + + // Then we create the ``FEValues'' + // object. Note, that since version + // 3.2.0 of deal.II the constructor + // of this class takes a + // ``Mapping'' object as first + // argument. Although the + // constructor without ``Mapping'' + // argument is still supported it + // is recommended to use the new + // constructor. This reduces the + // effect of `hidden magic' (the + // old constructor implicitely + // assumes a ``MappingQ1'' mapping) + // and makes it easier to change + // the mapping object later. + FEValues fe_v ( + mapping, fe, quadrature, update_flags); + + // Similarly we create the + // ``FEFaceValues'' and + // ``FESubfaceValues'' objects for + // both, the current and the + // neighboring cell. Within the + // following nested loop over all + // cells and all faces of the cell + // they will be reinited to the + // current cell and the face (and + // subface) number. + FEFaceValues fe_v_face ( + mapping, fe, face_quadrature, face_update_flags); + FESubfaceValues fe_v_subface ( + mapping, fe, face_quadrature, face_update_flags); + FEFaceValues fe_v_face_neighbor ( + mapping, fe, face_quadrature, neighbor_face_update_flags); + FESubfaceValues fe_v_subface_neighbor ( + mapping, fe, face_quadrature, neighbor_face_update_flags); + + // Furthermore we need some cell + // iterators. + typename DoFHandler::active_cell_iterator + cell = dof_handler.begin_active(), + endc = dof_handler.end(); + + // Now we start the loop over all + // active cells. + int fdofs_per_cell = fe_v.dofs_per_cell; + int fn_q_points = face_quadrature.n_quadrature_points; + + unsigned int cell_no = 0; + for (;cell!=endc; ++cell, ++cell_no) + { + + // Now we reinit the ``FEValues'' + // object for the current cell + fe_v.reinit (cell); + + // Collect the local dofs and + // asssemble the cell term. + cell->get_dof_indices (dofs); + + cell_diameter = cell->diameter(); + + assemble_cell_term(fe_v, + dofs, + cell_no); + + // We use the DG style loop through faces + // to determine if we need to apply a + // 'hanging node' flux calculation or a boundary + // computation. + for (unsigned int face_no=0; face_no::faces_per_cell; ++face_no) + { + // First we set the face + // iterator + typename DoFHandler::face_iterator face=cell->face(face_no); + face_diameter = face->diameter(); + + if (face->at_boundary()) + { + // We reinit the + // ``FEFaceValues'' + // object to the + // current face + fe_v_face.reinit (cell, face_no); + + // and assemble the + // corresponding face + // terms. We send the same + // fe_v and dofs as described + // in the assembly routine. + assemble_face_term( + face_no, fe_v_face, + fe_v_face, + dofs, + dofs, + face->boundary_indicator()); + } + else + { + // Now we are not on + // the boundary of the + // domain, therefore + // there must exist a + // neighboring cell. + typename DoFHandler::cell_iterator neighbor= + cell->neighbor(face_no);; + + if (face->has_children()) + { + // case I: This cell refined compared to neighbor + + const unsigned int neighbor2= + cell->neighbor_of_neighbor(face_no); + + + // We loop over + // subfaces + for (unsigned int subface_no=0; + subface_no::subfaces_per_face; + ++subface_no) + { + typename DoFHandler::active_cell_iterator + neighbor_child + = cell->neighbor_child_on_subface (face_no, subface_no); + + face_diameter = neighbor_child->diameter(); // working on subface + + Assert (neighbor_child->face(neighbor2) == face->child(subface_no), + ExcInternalError()); + Assert (!neighbor_child->has_children(), ExcInternalError()); + + fe_v_subface.reinit (cell, face_no, subface_no); + fe_v_face_neighbor.reinit (neighbor_child, neighbor2); + neighbor_child->get_dof_indices (dofs_neighbor); + + // Assemble as if we are working with + // a DG element. + assemble_face_term( + face_no, fe_v_subface, + fe_v_face_neighbor, + dofs, + dofs_neighbor); + + } + // End of ``if + // (face->has_children())'' + } + else + { + // We have no children, but + // the neighbor cell may be refine + // compared to use + neighbor->get_dof_indices (dofs_neighbor); + if (neighbor->level() != cell->level()) + { + // case II: This is refined compared to neighbor + Assert(neighbor->level() < cell->level(), ExcInternalError()); + const std::pair faceno_subfaceno= + cell->neighbor_of_coarser_neighbor(face_no); + const unsigned int neighbor_face_no=faceno_subfaceno.first, + neighbor_subface_no=faceno_subfaceno.second; + + Assert (neighbor->neighbor_child_on_subface (neighbor_face_no, + neighbor_subface_no) + == cell, + ExcInternalError()); + + // Reinit the + // appropriate + // ``FEFaceValues'' + // and assemble + // the face + // terms. + fe_v_face.reinit (cell, face_no); + fe_v_subface_neighbor.reinit (neighbor, neighbor_face_no, + neighbor_subface_no); + + assemble_face_term( + face_no, fe_v_face, + fe_v_subface_neighbor, + dofs, + dofs_neighbor); + + } + + } + // End of ``face not at boundary'': + } + // End of loop over all faces: + } + + // End iteration through cells. + } + + // Notify Epetra that the matrix is done. + Matrix->FillComplete(); + + // Compute the nonlinear residual. + res_norm = right_hand_side.l2_norm(); + +} + + // Create a conservation law with some defaults. +template +ConsLaw::ConsLaw () + : + mapping (), + fe_ptr(NULL), + dof_handler (triangulation), + quadrature (2), + face_quadrature (2), + T(0), + dT(0.05), + TF(10), + Map(NULL), + Matrix(NULL), + is_stationary(false), + theta(0.5) +{} + + // At one time this example could work for both DG and + // continuous finite elements. The choice was made here. +template +void ConsLaw::build_fe() { + fe_ptr = new FESystem(FE_Q(1), N_COMP); +} + + // Bye bye Conservation law. +template +ConsLaw::~ConsLaw () +{ + dof_handler.clear (); + delete fe_ptr; +} + + //

Initialize System

+ // Sizes all of the vectors and sets up the + // sparsity patter. This function is called at + // the very beginning of a simulation. The function + // setup_system repeats some of these + // chores and is called after adaptivity in leiu + // of this function. +template +void ConsLaw::initialize_system () +{ + // First we need to distribute the + // DoFs. + dof_handler.clear(); + dof_handler.distribute_dofs (*fe_ptr); + + // Size all of the fields. + solution.reinit (dof_handler.n_dofs()); + nlsolution.reinit (dof_handler.n_dofs()); + predictor.reinit (dof_handler.n_dofs()); + ppsolution.reinit (dof_handler.n_dofs()); + dsolution.reinit (dof_handler.n_dofs()); + right_hand_side.reinit (dof_handler.n_dofs()); + indicator.reinit(triangulation.n_active_cells()); +} + + //

Setup System

+ // We call this function to build the sparsity + // and the matrix. +template +void ConsLaw::setup_system () +{ + + // The DoFs of a cell are coupled + // with all DoFs of all neighboring + // cells. Therefore the maximum + // number of matrix entries per row + // is needed when all neighbors of + // a cell are once more refined + // than the cell under + // consideration. + sparsity_pattern.reinit (dof_handler.n_dofs(), + dof_handler.n_dofs(), + (GeometryInfo::faces_per_cell + *GeometryInfo::subfaces_per_face+1)*fe_ptr->dofs_per_cell); + + // Since the continuous sparsity pattern is + // a subset of the DG one, and since we need + // the DG terms for handling hanging nodes, we use + // the flux pattern. + DoFTools::make_flux_sparsity_pattern (dof_handler, sparsity_pattern); + + sparsity_pattern.compress(); + + // Rebuild the map. In serial this doesn't do much, + // but is needed. In parallel, this would desribe + // the parallel dof layout. + if (Map) delete Map; + Map = new Epetra_Map(dof_handler.n_dofs(), 0, *Comm); + + // Epetra can build a more efficient matrix if + // one knows ahead of time the maxiumum number of + // columns in any row entry. We traverse the sparsity + // to discover this. + int cur_row = 0; + int cur_col = 0; + int max_df = -1; + for (SparsityPattern::iterator s_i = sparsity_pattern.begin(); + s_i != sparsity_pattern.end(); s_i++) { + if (s_i->row() != cur_row) { + cur_col = 0; + cur_row = s_i->row(); + } + cur_col++; + if (cur_col >= max_df) max_df = cur_col; + } + + if (cur_col >= max_df) max_df = cur_col; + std::cout << "max_df:" << max_df << std::endl; + + // Now we build the matrix, using the constructor + // that optimizes with the max_df variable. + if (Matrix) delete Matrix; + Matrix = new Epetra_CrsMatrix(Copy, *Map, max_df+1, true); + + // We add the sparsity pattern to the matrix by + // inserting zeros. + std::vector vals(max_df, 0); + std::vector row_indices(max_df); + + cur_row = 0; + cur_col = 0; + for (SparsityPattern::iterator s_i = sparsity_pattern.begin(); + s_i != sparsity_pattern.end(); s_i++) { + if (s_i->row() != cur_row) { + Matrix->InsertGlobalValues(cur_row, cur_col, &vals[0], &row_indices[0]); + cur_col = 0; + cur_row = s_i->row(); + } + row_indices[cur_col++] = s_i->column(); + } + // The last row. + Matrix->InsertGlobalValues(cur_row, cur_col, &vals[0], &row_indices[0]); + + // Epetra requires this function after building or + // filling a matrix. It typically does some parallel + // bookeeping; perhaps more. + Matrix->FillComplete(); + +} + + //

Solving the linear system

+ // Actually solve the linear system, using either + // Aztec of Amesos. +template +void ConsLaw::solve (Vector &dsolution, int &niter, double &lin_residual) +{ + + // We must hand the solvers Epetra vectors. + // Luckily, they support the concept of a + // 'view', so we just send in a pointer to our + // dealii vectors. + Epetra_Vector x(View, *Map, dsolution.begin()); + Epetra_Vector b(View, *Map, right_hand_side.begin()); + + // The Direct option selects the Amesos solver. + if (solver_params.SOLVER == solver_params_type::DIRECT) { + + // Setup for solving with + // Amesos. + Epetra_LinearProblem prob; + prob.SetOperator(Matrix); + Amesos_BaseSolver *solver; + Amesos Factory; + + // Other solvers are available + // and may be selected by changing this + // string. + char *stype = "Amesos_Klu"; + + solver = Factory.Create(stype, prob); + + Assert (solver != NULL, ExcInternalError()); + + // There are two parts to the direct solve. + // As I understand, the symbolic part figures + // out the sparsity patterns, and then the + // numerical part actually performs Gaussian + // elimination or whatever the approach is. + if (solver_params.OUTPUT == solver_params_type::VERBOSE) + std::cout << "Starting Symbolic fact\n" << std::flush; + + solver->SymbolicFactorization(); + + if (solver_params.OUTPUT == solver_params_type::VERBOSE) + std::cout << "Starting Numeric fact\n" << std::flush; + + solver->NumericFactorization(); + + + // Define the linear problem by setting the + // right hand and left hand sides. + prob.SetRHS(&b); + prob.SetLHS(&x); + // And finally solve the problem. + if (solver_params.OUTPUT == solver_params_type::VERBOSE) + std::cout << "Starting solve\n" << std::flush; + solver->Solve(); + niter = 0; + lin_residual = 0; + + // We must free the solver that was created + // for us. + delete solver; + + } else if (solver_params.SOLVER == solver_params_type::GMRES) { + + // For the iterative solvers, we use Aztec. + AztecOO Solver; + + // Select the appropriate level of verbosity. + if (solver_params.OUTPUT == solver_params_type::QUIET) + Solver.SetAztecOption(AZ_output, AZ_none); + + if (solver_params.OUTPUT == solver_params_type::VERBOSE) + Solver.SetAztecOption(AZ_output, AZ_all); + + // Select gmres. Other solvers are available. + Solver.SetAztecOption(AZ_solver, AZ_gmres); + Solver.SetRHS(&b); + Solver.SetLHS(&x); + + // Set up the ILUT preconditioner. I do not know + // why, but we must pretend like we are in parallel + // using domain decomposition or the preconditioner + // refuses to activate. + Solver.SetAztecOption(AZ_precond, AZ_dom_decomp); + Solver.SetAztecOption(AZ_subdomain_solve, AZ_ilut); + Solver.SetAztecOption(AZ_overlap, 0); + Solver.SetAztecOption(AZ_reorder, 0); + + // ILUT parameters as described above. + Solver.SetAztecParam(AZ_drop, solver_params.ILUT_DROP); + Solver.SetAztecParam(AZ_ilut_fill, solver_params.ILUT_FILL); + Solver.SetAztecParam(AZ_athresh, solver_params.ILUT_ATOL); + Solver.SetAztecParam(AZ_rthresh, solver_params.ILUT_RTOL); + Solver.SetUserMatrix(Matrix); + + // Run the solver iteration. Collect the number + // of iterations and the residual. + Solver.Iterate(solver_params.MAX_ITERS, solver_params.RES); + niter = Solver.NumIters(); + lin_residual = Solver.TrueResidual(); + } +} + + //

Postprocessing and Output

+ // Recover the physical variables from the conservative + // variables so that output will be (perhaps) more + // meaningfull. +template +void ConsLaw::postprocess() { + const unsigned int dofs_per_cell = dof_handler.get_fe().dofs_per_cell; + std::vector dofs (dofs_per_cell); + UpdateFlags update_flags = update_values + | update_gradients + | update_q_points + | update_JxW_values; + UpdateFlags update_flags1 = update_values + | update_gradients + | update_q_points + | update_JxW_values; + + QGauss quadrature_formula(4); + + const std::vector > &us = fe_ptr->base_element(0).get_unit_support_points(); + + + Quadrature unit_support(us); + + int n_q_points = quadrature_formula.n_quadrature_points; + int n_uq_points = unit_support.n_quadrature_points; + + FEValues fe_v ( + mapping, *fe_ptr, quadrature_formula, update_flags); + + FEValues fe_v_unit ( + mapping, *fe_ptr, unit_support, update_flags1); + + std::vector > U(n_uq_points, + Vector(get_n_components())); + std::vector > UU(n_q_points, + Vector(get_n_components())); + std::vector > > dU(n_uq_points, + std::vector >(get_n_components())); + + typename DoFHandler::active_cell_iterator + cell = dof_handler.begin_active(), + endc = dof_handler.end(); + + // Loop the cells + for (unsigned int cell_no=0; cell!=endc; ++cell, ++cell_no) { + cell->get_dof_indices (dofs); + fe_v_unit.reinit(cell); + fe_v.reinit(cell); + + fe_v_unit.get_function_values(solution, U); + fe_v_unit.get_function_grads(solution, dU); + fe_v.get_function_values(solution, UU); + + const std::vector &JxW = fe_v.get_JxW_values (); + + for (int q = 0; q < fe_v.get_fe().base_element(0).n_dofs_per_cell(); q++) { + unsigned int didx = fe_v.get_fe().component_to_system_index(DENS_IDX, q); + unsigned int eidx = fe_v.get_fe().component_to_system_index(ENERGY_IDX, q); + double rho_normVsqr = 0; + for (int d = 0; d < dim; d++) { + unsigned int vidx = fe_v.get_fe().component_to_system_index(d, q); + ppsolution(dofs[vidx]) = solution(dofs[vidx])/solution(dofs[didx]); + rho_normVsqr += solution(dofs[vidx])*solution(dofs[vidx]); + } + rho_normVsqr /= solution(dofs[didx]); + // Pressure + ppsolution(dofs[eidx]) = (GAMMA-1.0)*(solution(dofs[eidx]) - 0.5*rho_normVsqr); + + // Either output density or gradient squared of density, + // depending on what the user wants. + if (!schlieren_plot) { + ppsolution(dofs[didx]) = solution(dofs[didx]); + } else { + double ng = 0; + for (int i = 0; i < dim; i++) ng += dU[q][DENS_IDX][i]*dU[q][DENS_IDX][i]; + ng = std::sqrt(ng); + ppsolution(dofs[didx]) = ng; + } + } + + } // cell + +} + + // Loop and assign a value for refinement. We + // simply use the density squared, which selects + // shocks with some success. +template +void ConsLaw::estimate() { + + const unsigned int dofs_per_cell = dof_handler.get_fe().dofs_per_cell; + std::vector dofs (dofs_per_cell); + UpdateFlags update_flags = update_values + | update_gradients + | update_q_points + | update_JxW_values; + + QGauss quadrature_formula(1); + int n_q_points = quadrature_formula.n_quadrature_points; + + + FEValues fe_v ( + mapping, *fe_ptr, quadrature_formula, update_flags); + + std::vector > U(n_q_points, + Vector(get_n_components())); + std::vector > > dU(n_q_points, + std::vector >(get_n_components())); + + typename DoFHandler::active_cell_iterator + cell = dof_handler.begin_active(), + endc = dof_handler.end(); + for (unsigned int cell_no=0; cell!=endc; ++cell, ++cell_no) { + fe_v.reinit(cell); + + fe_v.get_function_values(predictor, U); + fe_v.get_function_grads(predictor, dU); + + indicator(cell_no) = 0; + for (int q = 0; q < n_q_points; q++) { + double ng = 0; + for (int d = 0; d < dim; d++) ng += dU[q][DENS_IDX][d]*dU[q][DENS_IDX][d]; + + indicator(cell_no) += std::log(1+std::sqrt(ng)); + + } + indicator(cell_no) /= n_q_points; + + } +} + +template +void ConsLaw::refine_grid () +{ + + SolutionTransfer soltrans(dof_handler); + + typename DoFHandler::active_cell_iterator + cell = dof_handler.begin_active(), + endc = dof_handler.end(); + + // Loop cells. If the indicator + // for the cell matches the refinement criterion, + // refine, else unrefine. The unrefinement has + // a slight hysterisis to avoid 'flashing' from refined + // to unrefined. + for (unsigned int cell_no=0; cell!=endc; ++cell, ++cell_no) { + cell->clear_coarsen_flag(); + cell->clear_refine_flag(); + if (cell->level() < refinement_params.shock_levels && + std::fabs(indicator(cell_no)) > refinement_params.shock_val ) { + cell->set_refine_flag(); + } else { + if (cell->level() > 0 && + std::fabs(indicator(cell_no)) < 0.75*refinement_params.shock_val) + cell->set_coarsen_flag(); + } + } + + // The following code prolongs the solution + // to the new grid and carries out the refinement. + std::vector > interp_in; + std::vector > interp_out; + + interp_in.push_back(solution); + interp_in.push_back(predictor); + + triangulation.prepare_coarsening_and_refinement(); + soltrans.prepare_for_coarsening_and_refinement(interp_in); + + triangulation.execute_coarsening_and_refinement (); + + dof_handler.clear(); + dof_handler.distribute_dofs (*fe_ptr); + + { + Vector new_solution(1); + Vector new_predictor(1); + + interp_out.push_back(new_solution); + interp_out.push_back(new_predictor); + interp_out[0].reinit(dof_handler.n_dofs()); + interp_out[1].reinit(dof_handler.n_dofs()); + } + + soltrans.interpolate(interp_in, interp_out); + + // Let the vector delete a very small vector + solution.reinit(1); + predictor.reinit(1); + solution.swap(interp_out[0]); + predictor.swap(interp_out[1]); + + // resize these vectors for the new grid. + nlsolution.reinit(dof_handler.n_dofs()); + ppsolution.reinit(dof_handler.n_dofs()); + nlsolution = solution; + dsolution.reinit (dof_handler.n_dofs()); + right_hand_side.reinit (dof_handler.n_dofs()); + + indicator.reinit(triangulation.n_active_cells()); + +} + +template +void ConsLaw::output_results (const unsigned int cycle) const +{ + char filename[512]; + std::sprintf(filename, "solution-%03d.vtk", cycle); + std::ofstream output (filename); + + DataOut data_out; + data_out.attach_dof_handler (dof_handler); + std::vector solution_names; + + // Rename the output with the physical variable + // names. Send the post-processed values. + solution_names.clear(); + for (int i = 0; i < dim; i++) { + char buf[512]; + std::sprintf(buf, "v_%d", i); + solution_names.push_back (buf); + } + solution_names.push_back("density"); + solution_names.push_back("pressure"); + data_out.add_data_vector (ppsolution, solution_names); + + data_out.add_data_vector (indicator, "error"); + data_out.build_patches (); + data_out.write_vtk (output); + + output.close(); +} + + //

Parsing the Input Deck

+ // Declare the parameters for the + // input deck. We assume a certain + // maximum number of boundaries and process + // any boundary the user supplies up to + // that maximum number. We + // leave a detailed explanation of these + // parameters to our description of the input + // sample file. +const UInt MAX_BD = 10; +template +void ConsLaw::declare_parameters() { + + // Global scope parameters/ + prm.declare_entry("mesh", "grid.inp", + Patterns::Anything(), + "intput file"); + + prm.declare_entry("diffusion power", "2.0", + Patterns::Double(), + "power of mesh size for diffusion"); + + prm.declare_entry("gravity", "0.0", + Patterns::Double(), + "gravity forcing"); + + // Time stepping block + prm.enter_subsection("time stepping"); + prm.declare_entry("time step", "0.1", + Patterns::Double(), + "simulation time step"); + prm.declare_entry("final time", "10.0", + Patterns::Double(), + "simulation end time"); + prm.leave_subsection(); + + + // Declare the boundary parameters + for (int b = 0; b < MAX_BD; b++) { + char bd[512]; + std::sprintf(bd, "boundary_%d", b); + prm.enter_subsection(bd); + prm.declare_entry("no penetration", "false", + Patterns::Selection("true|false"), + ""); + // declare a slot for each of the conservative + // variables. + for (int di = 0; di < N_COMP; di++) { + char var[512]; + std::sprintf(var, "w_%d", di); + prm.declare_entry(var, "outflow", + Patterns::Selection( + "inflow|outflow|pressure"), + ""); + + // for dirichlet, a function in x,y,z + std::sprintf(var, "w_%d value", di); + prm.declare_entry(var, "0.0", + Patterns::Anything(), + "expression in x,y,z"); + } + + prm.leave_subsection(); + } + + // Initial condition block. + prm.enter_subsection("initial condition"); + for (int di = 0; di < N_COMP; di++) { + char var[512]; + std::sprintf(var, "w_%d", di); + + // for dirichlet, a function in x,y,z + std::sprintf(var, "w_%d value", di); + prm.declare_entry(var, "0.0", + Patterns::Anything(), + "expression in x,y,z"); + } + prm.leave_subsection(); + + // The linear solver block. + prm.enter_subsection("linear solver"); + prm.declare_entry("output", "quiet", + Patterns::Selection( + "quiet|verbose"), + ""); + prm.declare_entry("method", "gmres", + Patterns::Selection( + "gmres|direct"), + ""); + prm.declare_entry("residual", "1e-10", + Patterns::Double(), + "linear solver residual"); + prm.declare_entry("max iters", "300", + Patterns::Double(), + "maximum solver iterations"); + prm.declare_entry("ilut fill", "2", + Patterns::Double(), + "ilut preconditioner fill"); + prm.declare_entry("ilut absolute tolerance", "1e-9", + Patterns::Double(), + "ilut preconditioner tolerance"); + prm.declare_entry("ilut relative tolerance", "1.1", + Patterns::Double(), + "rel tol"); + prm.declare_entry("ilut drop tolerance", "1e-10", + Patterns::Double(), + "ilut drop tol"); + prm.leave_subsection(); + + + // A refinement controller block. + prm.enter_subsection("refinement"); + prm.declare_entry("refinement", "none", + Patterns::Selection( + "none|fixed number|shock"), + ""); + prm.declare_entry("refinement fraction", "0.1", + Patterns::Double(), + "Fraction of high refinement"); + prm.declare_entry("unrefinement fraction", "0.1", + Patterns::Double(), + "Fraction of low unrefinement"); + prm.declare_entry("max elements", "1000000", + Patterns::Double(), + "maximum number of elements"); + prm.declare_entry("shock value", "4.0", + Patterns::Double(), + "value for shock indicator"); + prm.declare_entry("shock levels", "3.0", + Patterns::Double(), + "number of shock refinement levels"); + prm.leave_subsection(); + + // Output control. + prm.enter_subsection("output"); + prm.declare_entry("density", "standard", + Patterns::Selection( + "standard|schlieren"), + ""); + prm.declare_entry("step", "-1", + Patterns::Double(), + "output once per this period"); + prm.leave_subsection(); + + // Flux control + prm.enter_subsection("flux"); + prm.declare_entry("stab", "alpha", + Patterns::Selection( + "alpha|constant|mesh"), + ""); + prm.declare_entry("stab value", "1", + Patterns::Double(), + "alpha stabilization"); + prm.leave_subsection(); + + +} + + // Code to actually parse an input file. This function + // matches the declarations above. +template +void ConsLaw::load_parameters(const char *infile){ + + prm.read_input(infile); + + // The global parameters. + mesh = prm.get("mesh"); + + diffusion_power = prm.get_double("diffusion power"); + + gravity = prm.get_double("gravity"); + + // The time stepping. + prm.enter_subsection("time stepping"); + dT = prm.get_double("time step"); + std::cout << "dT=" << dT << std::endl; + if (dT == 0) { + is_stationary = true; + dT = 1.0; + TF = 1.0; + std::cout << "Stationary mode" << std::endl; + } + TF = prm.get_double("final time"); + std::cout << "TF=" << TF << std::endl; + prm.leave_subsection(); + + // The boundary info + for (int b = 0; b < MAX_BD; b++) { + std::vector flags(N_COMP, OUTFLOW_BC); + + // Define a parser for every boundary, though it may be + // unused. + SideCondition *sd = new SideCondition(N_COMP); + char bd[512]; + std::sprintf(bd, "boundary_%d", b); + prm.enter_subsection(bd); + + const std::string &nopen = prm.get("no penetration"); + + // Determine how each component is handled. + for (int di = 0; di < N_COMP; di++) { + char var[512]; + std::sprintf(var, "w_%d", di); + std::string btype = prm.get(var); + std::sprintf(var, "w_%d value", di); + std::string var_value = prm.get(var); + + if (di < dim && nopen == "true") { + flags[di] = NO_PENETRATION_BC; + } else if (btype == "inflow") { + flags[di] = INFLOW_BC; + sd->set_coeff_row(di, var_value); + } else if (btype == "pressure") { + flags[di] = PRESSURE_BC; + sd->set_coeff_row(di, var_value); + } + } + prm.leave_subsection(); + + // Add the boundary condition to the law. + sd->Init(); + add_boundary(b, flags, sd); + } + + // Initial conditions. + prm.enter_subsection("initial condition"); + for (int di = 0; di < N_COMP; di++) { + char var[512]; + + std::sprintf(var, "w_%d value", di); + std::string var_value = prm.get(var); + ic.set_ic(di, var_value); + } + ic.Init(); + prm.leave_subsection(); + + // The linear solver. + prm.enter_subsection("linear solver"); + const std::string &op = prm.get("output"); + if (op == "verbose") solver_params.OUTPUT = solver_params_type::VERBOSE; + if (op == "quiet") solver_params.OUTPUT = solver_params_type::QUIET; + const std::string &sv = prm.get("method"); + if (sv == "direct") { + solver_params.SOLVER = solver_params_type::DIRECT; + } else if (sv == "gmres") { + solver_params.SOLVER = solver_params_type::GMRES; + } + + solver_params.RES = prm.get_double("residual"); + solver_params.MAX_ITERS = (int) prm.get_double("max iters"); + solver_params.ILUT_FILL = prm.get_double("ilut fill"); + solver_params.ILUT_ATOL = prm.get_double("ilut absolute tolerance"); + solver_params.ILUT_RTOL = prm.get_double("ilut relative tolerance"); + solver_params.ILUT_DROP = prm.get_double("ilut drop tolerance"); + solver_params.RES = prm.get_double("residual"); + prm.leave_subsection(); + + + // And refiement. + prm.enter_subsection("refinement"); + const std::string &ref = prm.get("refinement"); + if (ref == "none") { + refinement_params.refine = refinement_params_type::NONE; + } else if (ref == "fixed number") { + refinement_params.refine = refinement_params_type::FIXED_NUMBER; + } else if (ref == "shock") { + refinement_params.refine = refinement_params_type::SHOCK; + } else + refinement_params.high_frac = prm.get_double("refinement fraction"); + refinement_params.high_frac_sav = refinement_params.high_frac; + refinement_params.low_frac = prm.get_double("unrefinement fraction"); + refinement_params.max_cells = prm.get_double("max elements"); + refinement_params.shock_val = prm.get_double("shock value"); + refinement_params.shock_levels = prm.get_double("shock levels"); + prm.leave_subsection(); + + // Output control. + prm.enter_subsection("output"); + const std::string &dens = prm.get("density"); + schlieren_plot = dens == "schlieren" ? true : false; + output_step = prm.get_double("step"); + prm.leave_subsection(); + + // Flux control. + prm.enter_subsection("flux"); + const std::string &stab = prm.get("stab"); + if (stab == "constant") { + flux_params.LF_stab = flux_params_type::CONSTANT; + } else if (stab == "mesh ") { + flux_params.LF_stab = flux_params_type::MESH; + } + flux_params.LF_stab_value = prm.get_double("stab value"); + prm.leave_subsection(); + + +} + +template +void ConsLaw::zero_matrix() { + Matrix->PutScalar(0); Matrix->FillComplete(); +} + + // We use a predictor to try and make adaptivity + // work better. The idea is to try and refine ahead + // of a front, rather than stepping into a coarse + // set of elements and smearing the solution. This + // simple time extrapolator does the job. +template +void ConsLaw::compute_predictor() { + predictor = nlsolution; + predictor.sadd(3/2.0, -1/2.0, solution); +} + + //

Run the simulation

+ // Contains the initialization + // the time loop, and the inner Newton iteration. +template +void ConsLaw::run () +{ + + // Open and load the mesh. + GridIn grid_in; + grid_in.attach_triangulation(triangulation); + std::cout << "Opening mesh <" << mesh << ">" << std::endl; + std::ifstream input_file(mesh.c_str(), std::ios::in); + + Assert (infile, + ExcFileNotOpen()); + + grid_in.read_ucd(input_file); + input_file.close(); + + build_fe(); + + unsigned int nstep = 0; + + // Initialize fields and matrices. + initialize_system (); + setup_system(); + initialize(); + predictor = solution; + + // Initial refinement. We apply the ic, + // estimate, refine, and repeat until + // happy. + if (refinement_params.refine != refinement_params_type::NONE) + for (int i = 0; i < refinement_params.shock_levels; i++) { + estimate(); + refine_grid(); + setup_system(); + initialize(); + predictor = solution; + } + postprocess(); + output_results (nstep); + + // Determine when we will output next. + double next_output = T + output_step; + + //
Main time stepping loop
+ predictor = solution; + while(T < TF) + { + std::cout << "T=" << T << ", "; + + + std::cout << " Number of active cells: " + << triangulation.n_active_cells() + << std::endl; + + + std::cout << " Number of degrees of freedom: " + << dof_handler.n_dofs() + << std::endl; + + bool nonlin_done = false; + double res_norm; + int lin_iter; + + // Print some relevant information during the + // Newton iteration. + std::cout << "NonLin Res: Lin Iter Lin Res" << std::endl; + std::cout << "______________________________________" << std::endl; + + int max_nonlin = 7; + int nonlin_iter = 0; + double lin_res; + + //
Newton iteration
+ nlsolution = predictor; + while (!nonlin_done) { + lin_iter = 0; + zero_matrix(); + right_hand_side = 0; + assemble_system (res_norm); + // Flash a star to the screen so one can + // know when the assembly has stopped and the linear + // solution is starting. + std::cout << "* " << std::flush; + + // Test against a (hardcoded) nonlinear tolderance. + // Do not solve the linear system at the last step + // (since it would be a waste). + + if (fabs(res_norm) < 1e-10) { + nonlin_done = true; + } else { + // Solve the linear system and update with the + // delta. + dsolution = 0; + solve (dsolution, lin_iter, lin_res); + nlsolution.add(1.0, dsolution); + } + + // Print the residuals. + std::printf("%-16.3e %04d %-5.2e\n", + res_norm, lin_iter, lin_res); + + nonlin_iter++; + } + + // Various post convergence tasks. + compute_predictor(); + + solution = nlsolution; + + + estimate(); + + postprocess(); + + T += dT; + + // Output if it is time. + if (output_step < 0) { + output_results (++nstep); + } else if (T >= next_output) { + output_results (++nstep); + next_output += output_step; + } + + // Refine, if refinement is selected. + if (refinement_params.refine != refinement_params_type::NONE) { + refine_grid(); + setup_system(); + } + } +} + + // The following ``main'' function is + // similar to previous examples and + // need not to be commented on. +int main (int argc, char *argv[]) +{ + + MPI_Init(&argc, &argv); + Comm = new Epetra_MpiComm(MPI_COMM_WORLD); + + if (argc != 2) { + std::cout << "Usage:" << argv[0] << " infile" << std::endl; + std::exit(1); + } + try + { + ConsLaw cons; + cons.declare_parameters(); + cons.load_parameters(argv[1]); + cons.run (); + } + catch (std::exception &exc) + { + std::cerr << std::endl << std::endl + << "----------------------------------------------------" + << std::endl; + std::cerr << "Exception on processing: " << std::endl + << exc.what() << std::endl + << "Aborting!" << std::endl + << "----------------------------------------------------" + << std::endl; + return 1; + } + catch (...) + { + std::cerr << std::endl << std::endl + << "----------------------------------------------------" + << std::endl; + std::cerr << "Unknown exception!" << std::endl + << "Aborting!" << std::endl + << "----------------------------------------------------" + << std::endl; + return 1; + }; + + return 0; +} +