From: Wolfgang Bangerth Date: Fri, 7 May 2010 20:28:30 +0000 (+0000) Subject: Fix a bug in FE_DGQ::has_support_on_face(). X-Git-Tag: v8.0.0~6132 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=da87221022ce8550f4d77a690d5d8417abab1163;p=dealii.git Fix a bug in FE_DGQ::has_support_on_face(). git-svn-id: https://svn.dealii.org/trunk@21097 0785d39b-7218-0410-832d-ea1e28bc413d --- diff --git a/deal.II/deal.II/source/fe/fe_dgq.cc b/deal.II/deal.II/source/fe/fe_dgq.cc index 9befa2fc91..8f1176535f 100644 --- a/deal.II/deal.II/source/fe/fe_dgq.cc +++ b/deal.II/deal.II/source/fe/fe_dgq.cc @@ -2,7 +2,7 @@ // $Id$ // Version: $Name$ // -// Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 by the deal.II authors +// Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2010 by the deal.II authors // // This file is subject to QPL and may not be distributed // without copyright and license information. Please refer @@ -72,8 +72,8 @@ namespace return Point<1>(i*h); } } - - + + // given N, generate i=0...N-1 // equidistant points in the domain // [0,1]^2 @@ -83,7 +83,7 @@ namespace const dealii::internal::int2type<2> ) { Assert (i (.5, .5); else @@ -91,14 +91,14 @@ namespace Assert (N>=4, ExcInternalError()); const unsigned int N1d = int_sqrt(N); const double h = 1./(N1d-1); - + return Point<2> (i%N1d * h, i/N1d * h); } } - - + + // given N, generate i=0...N-1 // equidistant points in the domain @@ -114,7 +114,7 @@ namespace else { Assert (N>=8, ExcInternalError()); - + const unsigned int N1d = int_cuberoot(N); const double h = 1./(N1d-1); @@ -148,8 +148,8 @@ FE_DGQ::FE_DGQ (const unsigned int degree) // Fill restriction matrices with L2-projection if (dim ==spacedim) FETools::compute_projection_matrices (*this, this->restriction); - - + + // finally fill in support points if (degree == 0) { @@ -165,12 +165,12 @@ FE_DGQ::FE_DGQ (const unsigned int degree) unsigned int n = degree+1; for (unsigned int i=1; iunit_support_points.resize(n); - + const double step = 1./degree; Point p; - + unsigned int k=0; for (unsigned int iz=0; iz <= ((dim>2) ? degree : 0) ; ++iz) for (unsigned int iy=0; iy <= ((dim>1) ? degree : 0) ; ++iy) @@ -181,7 +181,7 @@ FE_DGQ::FE_DGQ (const unsigned int degree) p(1) = iy * step; if (dim>2) p(2) = iz * step; - + this->unit_support_points[k++] = p; }; }; @@ -210,7 +210,7 @@ FE_DGQ::FE_DGQ (const Quadrature<1>& points) FETools::compute_embedding_matrices (*this, this->prolongation); // Fill restriction matrices with L2-projection FETools::compute_projection_matrices (*this, this->restriction); - + // Compute support points, which // are the tensor product of the // Lagrange interpolation points in @@ -232,7 +232,7 @@ FE_DGQ::get_name () const // this function returns, so they // have to be kept in synch - std::ostringstream namebuf; + std::ostringstream namebuf; namebuf << "FE_DGQ<" << dim << ">(" << this->degree << ")"; return namebuf.str(); } @@ -275,7 +275,7 @@ FE_DGQ::rotate_indices (std::vector &numbers, for (unsigned int i=1;i &x_source_fe, || (dynamic_cast*>(&x_source_fe) != 0), typename FE::ExcInterpolationNotImplemented() ); - + // ok, source is a Q element, so // we will be able to do the work const FE_DGQ &source_fe @@ -368,8 +368,8 @@ get_interpolation_matrix (const FiniteElement &x_source_fe, Assert (interpolation_matrix.n() == source_fe.dofs_per_cell, ExcDimensionMismatch (interpolation_matrix.n(), source_fe.dofs_per_cell)); - - + + // compute the interpolation // matrices in much the same way as // we do for the embedding matrices @@ -445,7 +445,7 @@ get_face_interpolation_matrix (const FiniteElement &x_source_fe, || (dynamic_cast*>(&x_source_fe) != 0), typename FE::ExcInterpolationNotImplemented()); - + Assert (interpolation_matrix.m() == 0, ExcDimensionMismatch (interpolation_matrix.m(), 0)); @@ -474,7 +474,7 @@ get_subface_interpolation_matrix (const FiniteElement &x_source_f || (dynamic_cast*>(&x_source_fe) != 0), typename FE::ExcInterpolationNotImplemented()); - + Assert (interpolation_matrix.m() == 0, ExcDimensionMismatch (interpolation_matrix.m(), 0)); @@ -571,7 +571,7 @@ FE_DGQ::compare_for_face_domination (const FiniteElement bool FE_DGQ::has_support_on_face (const unsigned int shape_index, - const unsigned int face_index) const + const unsigned int face_index) const { Assert (shape_index < this->dofs_per_cell, ExcIndexRange (shape_index, 0, this->dofs_per_cell)); @@ -579,62 +579,69 @@ FE_DGQ::has_support_on_face (const unsigned int shape_index, ExcIndexRange (face_index, 0, GeometryInfo::faces_per_cell)); unsigned int n = this->degree+1; + + // for DGQ(0) elements, the single + // shape functions is constant and + // therefore lives on the boundary + if (this->degree == 0) + return true; + unsigned int n2 = n*n; - + switch (dim) { case 1: - { - // in 1d, things are simple. since - // there is only one degree of - // freedom per vertex in this - // class, the first is on vertex 0 - // (==face 0 in some sense), the - // second on face 1: - return (((shape_index == 0) && (face_index == 0)) || - ((shape_index == 1) && (face_index == 1))); - }; - + { + // in 1d, things are simple. since + // there is only one degree of + // freedom per vertex in this + // class, the first is on vertex 0 + // (==face 0 in some sense), the + // second on face 1: + return (((shape_index == 0) && (face_index == 0)) || + ((shape_index == 1) && (face_index == 1))); + }; + case 2: - { - if (face_index==0 && (shape_index % n) == 0) - return true; - if (face_index==1 && (shape_index % n) == this->degree) - return true; - if (face_index==2 && shape_index < n) - return true; - if (face_index==3 && shape_index >= this->dofs_per_cell-n) - return true; - return false; - }; - + { + if (face_index==0 && (shape_index % n) == 0) + return true; + if (face_index==1 && (shape_index % n) == this->degree) + return true; + if (face_index==2 && shape_index < n) + return true; + if (face_index==3 && shape_index >= this->dofs_per_cell-n) + return true; + return false; + }; + case 3: - { - const unsigned int in2 = shape_index % n2; - - // x=0 - if (face_index==0 && (shape_index % n) == 0) - return true; - // x=1 - if (face_index==1 && (shape_index % n) == n-1) - return true; - // y=0 - if (face_index==2 && in2 < n ) - return true; - // y=1 - if (face_index==3 && in2 >= n2-n) - return true; - // z=0 - if (face_index==4 && shape_index < n2) - return true; - // z=1 - if (face_index==5 && shape_index >= this->dofs_per_cell - n2) - return true; - return false; - }; + { + const unsigned int in2 = shape_index % n2; + + // x=0 + if (face_index==0 && (shape_index % n) == 0) + return true; + // x=1 + if (face_index==1 && (shape_index % n) == n-1) + return true; + // y=0 + if (face_index==2 && in2 < n ) + return true; + // y=1 + if (face_index==3 && in2 >= n2-n) + return true; + // z=0 + if (face_index==4 && shape_index < n2) + return true; + // z=1 + if (face_index==5 && shape_index >= this->dofs_per_cell - n2) + return true; + return false; + }; default: - Assert (false, ExcNotImplemented()); + Assert (false, ExcNotImplemented()); } return true; } @@ -670,7 +677,7 @@ FE_DGQArbitraryNodes::get_name () const // a degree value. std::ostringstream namebuf; - bool type = true; + bool type = true; const unsigned int n_points = this->degree +1; std::vector points(n_points); const unsigned int dofs_per_cell = this->dofs_per_cell; @@ -681,7 +688,7 @@ FE_DGQArbitraryNodes::get_name () const // in one coordinate direction. for (unsigned int j=0;j1) ? (unit_support_points[j](1)==0 && + if ((dim>1) ? (unit_support_points[j](1)==0 && ((dim>2) ? unit_support_points[j](2)==0: true)) : true) { points[index++] = unit_support_points[j](0); @@ -699,7 +706,7 @@ FE_DGQArbitraryNodes::get_name () const break; } - if (type == true) + if (type == true) namebuf << "FE_DGQ<" << dim << ">(" << this->degree << ")"; else { @@ -732,14 +739,14 @@ FE_DGQArbitraryNodes::clone() const // TODO[Prill] : There must be a better way // to extract 1D quadrature points from the // tensor product FE. - + // Construct a dummy quadrature formula // containing the FE's nodes: std::vector > qpoints(this->degree+1); for (unsigned int i=0; i<=this->degree; ++i) qpoints[i] = Point<1>(this->unit_support_points[i][0]); Quadrature<1> pquadrature(qpoints); - + return new FE_DGQArbitraryNodes(pquadrature); } diff --git a/deal.II/doc/news/changes.h b/deal.II/doc/news/changes.h index ffd9f4228a..f1e62f4828 100644 --- a/deal.II/doc/news/changes.h +++ b/deal.II/doc/news/changes.h @@ -620,6 +620,15 @@ inconvenience this causes.

deal.II

    +
  1. +

    Fixed: FE_DGQ::has_support_on_face() returned the wrong value in 1d if the + polynomial degree of the finite element equals zero (i.e. for piecewise + constants) where the lone shape function is nonzero on all faces. This is now + fixed. +
    + (WB 2010/05/07) +

  2. +
  3. Fixed: VectorTools::interpolate_boundary_values inadvertently produces an exception when used with hp::DoFHandler objects in 1d. This is now fixed.