From: Martin Kronbichler Date: Sun, 8 Dec 2019 19:09:03 +0000 (+0100) Subject: Compute inverse of shape values as part of MF::ShapeInfo X-Git-Tag: v9.2.0-rc1~767^2~3 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=dd934bef228419e152e4e4df55c63d3bad61c79d;p=dealii.git Compute inverse of shape values as part of MF::ShapeInfo --- diff --git a/include/deal.II/matrix_free/shape_info.h b/include/deal.II/matrix_free/shape_info.h index 5473845a58..afc38492be 100644 --- a/include/deal.II/matrix_free/shape_info.h +++ b/include/deal.II/matrix_free/shape_info.h @@ -223,6 +223,27 @@ namespace internal */ AlignedVector shape_hessians_collocation_eo; + /** + * Stores the inverse transformation from the data at quadrature points + * to the basis defined by the shape_values fields. The data at + * quadrature points is interpreted either implicitly by its polynomial + * interpolation, or explicitly in terms of separate polynomials such as + * with the `_collocation` fields. The size of the array equals the + * layout of the `shape_values` array, and it is combined with the shape + * values array such that this matrix is the pseudo inverse of + * shape_values. In case the number of 1D quadrature points equals the + * size of the basis, this array is exactly the inverse of the + * shape_values array. The length of this array is n_dofs_1d * + * n_q_points_1d and quadrature points are the index running + * fastest. + */ + AlignedVector inverse_shape_values; + + /** + * Stores the even-odd variant of the `inverse_shape_values` field. + */ + AlignedVector inverse_shape_values_eo; + /** * Collects all data of 1D shape values evaluated at the point 0 and 1 * (the vertices) in one data structure. Sorting is first the values, diff --git a/include/deal.II/matrix_free/shape_info.templates.h b/include/deal.II/matrix_free/shape_info.templates.h index 61eb965e0b..3be0eea9b9 100644 --- a/include/deal.II/matrix_free/shape_info.templates.h +++ b/include/deal.II/matrix_free/shape_info.templates.h @@ -30,6 +30,8 @@ #include #include +#include + #include @@ -277,15 +279,115 @@ namespace internal { shape_gradients_collocation.resize(n_q_points_1d * n_q_points_1d); shape_hessians_collocation.resize(n_q_points_1d * n_q_points_1d); - FE_DGQArbitraryNodes<1> fe(quad.get_points()); + FE_DGQArbitraryNodes<1> fe_coll(quad.get_points()); for (unsigned int i = 0; i < n_q_points_1d; ++i) for (unsigned int q = 0; q < n_q_points_1d; ++q) { shape_gradients_collocation[i * n_q_points_1d + q] = - fe.shape_grad(i, quad.get_points()[q])[0]; + fe_coll.shape_grad(i, quad.get_points()[q])[0]; shape_hessians_collocation[i * n_q_points_1d + q] = - fe.shape_grad_grad(i, quad.get_points()[q])[0][0]; + fe_coll.shape_grad_grad(i, quad.get_points()[q])[0][0]; } + + // compute the inverse shape functions in three steps: we first + // change from the given quadrature formula and the associated + // Lagrange polynomials to the Lagrange polynomials at quadrature + // points. in this basis, we can then perform the second step, which + // is the computation of a projection matrix from the potentially + // higher polynomial degree associated to the quadrature points to a + // polynomial space of degree equal to the degree of the given + // elements. in the third step, we change from the Lagrange + // polynomials in the Gauss quadrature points to the polynomial + // space of the given element + + // step 1: change basis from the Lagrange polynomials at the given + // quadrature points to the Lagrange basis at Gauss quadrature + // points. this is often the identity operation as we often compute + // with Gaussian quadrature, but not necessarily so + QGauss<1> quad_gauss(n_q_points_1d); + FullMatrix transform_to_gauss(n_q_points_1d, n_q_points_1d); + for (unsigned int i = 0; i < n_q_points_1d; ++i) + for (unsigned int j = 0; j < n_q_points_1d; ++j) + transform_to_gauss(i, j) = + fe_coll.shape_value(j, quad_gauss.point(i)); + + // step 2: computation for the projection (in reference coordinates) + // from higher to lower polynomial degree + // + // loop over quadrature points, multiply by q-weight on high degree + // integrate loop going from high degree to low degree loop over new + // points, multiply by inverse q-weight on low degree + // + // This projection step is for the special case of Lagrange + // polynomials where most of the interpolation matrices are unit + // matrices when applying the inverse mass matrix, so we do not need + // to compute much. + QGauss<1> quad_project(n_dofs_1d); + FE_DGQArbitraryNodes<1> fe_project(quad_project.get_points()); + + FullMatrix project_gauss(n_dofs_1d, n_q_points_1d); + + for (unsigned int i = 0; i < n_dofs_1d; ++i) + for (unsigned int q = 0; q < n_q_points_1d; ++q) + project_gauss(i, q) = + fe_project.shape_value(i, quad_gauss.get_points()[q]) * + (quad_gauss.weight(q) / quad_project.weight(i)); + FullMatrix project_to_dof_space(n_dofs_1d, n_q_points_1d); + project_gauss.mmult(project_to_dof_space, transform_to_gauss); + + // step 3: change the basis back to the given finite element + // space. we can use a shortcut for elements that define support + // points, in which case we can evaluate the Lagrange polynomials of + // the Gauss quadrature in those points. this will give more + // accurate results than the inversion of a matrix. for more general + // polynomial spaces, we must invert a matrix of a Vandermonde type, + // which we do by a Householder transformation to keep roundoff + // errors low. + inverse_shape_values.resize_fast(array_size); + FullMatrix transform_from_gauss(n_dofs_1d, n_dofs_1d); + if (fe->has_support_points()) + { + for (unsigned int i = 0; i < n_dofs_1d; ++i) + for (unsigned int j = 0; j < n_dofs_1d; ++j) + transform_from_gauss(i, j) = fe_project.shape_value( + j, + Point<1>( + fe->get_unit_support_points()[scalar_lexicographic[i]] + [0])); + FullMatrix result(n_dofs_1d, n_q_points_1d); + transform_from_gauss.mmult(result, project_to_dof_space); + + // set very small entries to zero - we are in reference space + // with normalized numbers, so this is straight-forward to check + // here + for (unsigned int i = 0; i < n_dofs_1d; ++i) + for (unsigned int q = 0; q < n_q_points_1d; ++q) + inverse_shape_values[i * n_q_points_1d + q] = + std::abs(result(i, q)) < 1e-15 ? 0 : result(i, q); + } + else + { + for (unsigned int i = 0; i < n_dofs_1d; ++i) + for (unsigned int j = 0; j < n_dofs_1d; ++j) + { + Point q_point = unit_point; + q_point[0] = quad_project.point(i)[0]; + + transform_from_gauss(i, j) = + fe->shape_value(scalar_lexicographic[j], q_point); + } + Householder H(transform_from_gauss); + Vector in(n_dofs_1d), out(n_dofs_1d); + for (unsigned int q = 0; q < n_q_points_1d; ++q) + { + for (unsigned int i = 0; i < n_dofs_1d; ++i) + in(i) = project_to_dof_space(i, q); + H.least_squares(out, in); + for (unsigned int i = 0; i < n_dofs_1d; ++i) + inverse_shape_values[i * n_q_points_1d + q] = + std::abs(out(i)) < 1e-15 ? 0. : out(i); + } + } } if (element_type == tensor_general && @@ -419,8 +521,8 @@ namespace internal return false; // shape values should be zero at x=0.5 for all basis functions except - // for the middle one - if (n_q_points_1d % 2 == 1 && n_dofs_1d % 2 == 1) + // for the middle one for degrees of 4 and higher + if (n_dofs_1d > 3 && n_q_points_1d % 2 == 1 && n_dofs_1d % 2 == 1) { for (unsigned int i = 0; i < n_dofs_1d / 2; ++i) if (std::abs(get_first_array_element( @@ -460,36 +562,36 @@ namespace internal return false; auto convert_to_eo = [](const AlignedVector &array, - const unsigned n_points_dst, - const unsigned n_points_src) { - const unsigned int stride = (n_points_dst + 1) / 2; - AlignedVector array_eo(n_points_src * stride); - for (unsigned int i = 0; i < n_points_src / 2; ++i) + const unsigned n_rows, + const unsigned n_cols) { + const unsigned int stride = (n_cols + 1) / 2; + AlignedVector array_eo(n_rows * stride); + for (unsigned int i = 0; i < n_rows / 2; ++i) for (unsigned int q = 0; q < stride; ++q) { array_eo[i * stride + q] = - 0.5 * (array[i * n_points_dst + q] + - array[i * n_points_dst + n_points_dst - 1 - q]); - array_eo[(n_points_src - 1 - i) * stride + q] = - 0.5 * (array[i * n_points_dst + q] - - array[i * n_points_dst + n_points_dst - 1 - q]); + 0.5 * + (array[i * n_cols + q] + array[i * n_cols + n_cols - 1 - q]); + array_eo[(n_rows - 1 - i) * stride + q] = + 0.5 * + (array[i * n_cols + q] - array[i * n_cols + n_cols - 1 - q]); } - if ((n_points_src - 1) % 2 == 0) + if ((n_rows - 1) % 2 == 0) for (unsigned int q = 0; q < stride; ++q) { - array_eo[(n_points_src - 1) / 2 * stride + q] = - array[((n_points_src - 1) / 2) * n_points_dst + q]; + array_eo[(n_rows - 1) / 2 * stride + q] = + array[((n_rows - 1) / 2) * n_cols + q]; } return array_eo; }; shape_values_eo = - convert_to_eo(shape_values, n_q_points_1d, fe_degree + 1); + convert_to_eo(shape_values, fe_degree + 1, n_q_points_1d); shape_gradients_eo = - convert_to_eo(shape_gradients, n_q_points_1d, fe_degree + 1); + convert_to_eo(shape_gradients, fe_degree + 1, n_q_points_1d); shape_hessians_eo = - convert_to_eo(shape_hessians, n_q_points_1d, fe_degree + 1); + convert_to_eo(shape_hessians, fe_degree + 1, n_q_points_1d); // FE_DGQArbitraryNodes underflow (see also above where // shape_gradients_collocation and shape_hessians_collocation is set up). @@ -503,6 +605,8 @@ namespace internal convert_to_eo(shape_hessians_collocation, n_q_points_1d, n_q_points_1d); + inverse_shape_values_eo = + convert_to_eo(inverse_shape_values, fe_degree + 1, n_q_points_1d); } return true; @@ -572,10 +676,9 @@ namespace internal return memory; } - // end of functions for ShapeInfo + } // namespace MatrixFreeFunctions - } // end of namespace MatrixFreeFunctions -} // end of namespace internal +} // namespace internal DEAL_II_NAMESPACE_CLOSE diff --git a/include/deal.II/matrix_free/tensor_product_kernels.h b/include/deal.II/matrix_free/tensor_product_kernels.h index 7c799fc226..98434e847b 100644 --- a/include/deal.II/matrix_free/tensor_product_kernels.h +++ b/include/deal.II/matrix_free/tensor_product_kernels.h @@ -1716,7 +1716,7 @@ namespace internal else r0 += shapes[mid * offset + col] * xmid; } - else if (mm % 2 == 1 && (nn % 2 == 0 || type > 0)) + else if (mm % 2 == 1 && (nn % 2 == 0 || type > 0 || mm == 3)) r0 += shapes[col * offset + mid] * xmid; if (add == false) @@ -1737,7 +1737,7 @@ namespace internal } } if (type == 0 && contract_over_rows == true && nn % 2 == 1 && - mm % 2 == 1) + mm % 2 == 1 && mm > 3) { if (add == false) out[stride * n_cols] = shapes[mid * offset + n_cols] * xmid; diff --git a/tests/matrix_free/shape_info.output b/tests/matrix_free/shape_info.output index 87b8dbfbd5..186fa91f1a 100644 --- a/tests/matrix_free/shape_info.output +++ b/tests/matrix_free/shape_info.output @@ -31,7 +31,7 @@ DEAL::Detected shape info type for FE_DGQ<2>(17): 2 DEAL::Detected shape info type for FE_DGQ<2>(25): 2 DEAL::Detected shape info type for FE_DGQHermite<2>(1): 2 DEAL::Detected shape info type for FE_DGQHermite<2>(1): 2 -DEAL::Detected shape info type for FE_DGQHermite<2>(2): 3 +DEAL::Detected shape info type for FE_DGQHermite<2>(2): 1 DEAL::Detected shape info type for FE_DGQHermite<2>(2): 1 DEAL::Detected shape info type for FE_DGQHermite<2>(3): 1 DEAL::Detected shape info type for FE_DGQHermite<2>(3): 1