From: Martin Kronbichler Date: Fri, 6 Apr 2018 09:06:33 +0000 (+0200) Subject: Use Jacobi polynomial roots for definition of Hermite-like interpolation rather than... X-Git-Tag: v9.0.0-rc1~195^2~5 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=df8a545d7e4ce72b706f0767c6ed2b39a041b5c9;p=dealii.git Use Jacobi polynomial roots for definition of Hermite-like interpolation rather than LAPACK. --- diff --git a/include/deal.II/base/polynomial.h b/include/deal.II/base/polynomial.h index 9246a20b48..6f0a535a47 100644 --- a/include/deal.II/base/polynomial.h +++ b/include/deal.II/base/polynomial.h @@ -687,8 +687,6 @@ namespace Polynomials * performance of some iterative schemes like conjugate gradients with * point-Jacobi. * - * @note This class requires LAPACK support. - * * @author Martin Kronbichler * @date 2018 */ diff --git a/source/base/polynomial.cc b/source/base/polynomial.cc index 5df3f439ec..5e5c5bf39b 100644 --- a/source/base/polynomial.cc +++ b/source/base/polynomial.cc @@ -19,8 +19,6 @@ #include #include #include -#include -#include #include #include @@ -1243,7 +1241,7 @@ namespace Polynomials // originally been derived by a secant method for the integral entry // l_0(x) * l_1(x) but we only need to do one iteration because the zero // x_star is linear in the integral value. - double find_support_point_x_star (const Vector &jacobi_roots) + double find_support_point_x_star (const std::vector &jacobi_roots) { // Initial guess for the support point position values: The zero turns // out to be between zero and the first root of the Jacobi polynomial, @@ -1267,7 +1265,7 @@ namespace Polynomials const double x = gauss.point(q)[0]; double poly_val_common = x; for (unsigned int j=0; j(x-jacobi_roots(j)); + poly_val_common *= Utilities::fixed_power<2>(x-jacobi_roots[j]); poly_val_common *= Utilities::fixed_power<4>(x - 1.); integral_left += gauss.weight(q)*(poly_val_common*(x - guess_left)); integral_right += gauss.weight(q)*(poly_val_common*(x - guess_right)); @@ -1390,39 +1388,10 @@ namespace Polynomials // We find the inner points as the zeros of the Jacobi polynomials // with alpha = beta = 2 which is the polynomial with the kernel // (1-x)^2 (1+x)^2, the two polynomials achieving zero value and zero - // derivative at the boundary. The zeros of the Jacobi polynomials are - // given by the eigenvalues to a symmetric tridiagonal matrix with the - // entries given below. For degree 4 the eigenvalue is zero, so bypass - // the LAPACK logic in that case. + // derivative at the boundary. - Vector jacobi_roots(degree-3); - if (degree > 4) - { - LAPACKFullMatrix jacobi_support_points_mat(degree-3, - degree-3); - for (unsigned int k=1; k eigenvectors(degree-3,degree-3); - jacobi_support_points_mat.compute_eigenvalues_symmetric(-1., 1., 1.e-20, - jacobi_roots, - eigenvectors); - AssertDimension(jacobi_roots.size(), degree-3); - - // Note that this algorithm computes the zeros of the Jacobi - // polynomial for the interval [-1,1], so we must scale the - // eigenvalues to the interval [0,1] before using them - for (unsigned int i=0; i jacobi_roots = jacobi_polynomial_roots(degree-3, 2, 2); + AssertDimension(jacobi_roots.size(), degree-3); // iteration from variable support point N with secant method // initial values @@ -1433,7 +1402,7 @@ namespace Polynomials const double auxiliary_zero = find_support_point_x_star(jacobi_roots); this->lagrange_support_points[0] = auxiliary_zero; for (unsigned int m=0; mlagrange_support_points[m+1] = jacobi_roots(m); + this->lagrange_support_points[m+1] = jacobi_roots[m]; this->lagrange_support_points[degree-2] = 1.; this->lagrange_support_points[degree-1] = 1.; @@ -1444,7 +1413,7 @@ namespace Polynomials { this->lagrange_support_points[0] = 0.; for (unsigned int m=0; mlagrange_support_points[m+1] = jacobi_roots(m); + this->lagrange_support_points[m+1] = jacobi_roots[m]; this->lagrange_support_points[degree-2] = 1.; this->lagrange_support_points[degree-1] = 1.; @@ -1479,20 +1448,20 @@ namespace Polynomials this->lagrange_support_points[1] = 0.; for (unsigned int m=0, c=2; mlagrange_support_points[c++] = jacobi_roots(m); + this->lagrange_support_points[c++] = jacobi_roots[m]; this->lagrange_support_points[degree-2] = 1.; this->lagrange_support_points[degree-1] = 1.; // ensure that the polynomial evaluates to one at the respective // nodal point - this->lagrange_weight = 1./this->value(jacobi_roots(index-2)); + this->lagrange_weight = 1./this->value(jacobi_roots[index-2]); } else if (index==degree-1) { this->lagrange_support_points[0] = 0.; this->lagrange_support_points[1] = 0.; for (unsigned int m=0; mlagrange_support_points[m+2] = jacobi_roots(m); + this->lagrange_support_points[m+2] = jacobi_roots[m]; this->lagrange_support_points[degree-1] = 1.; std::vector> points(degree); @@ -1518,7 +1487,7 @@ namespace Polynomials this->lagrange_support_points[0] = 0.; this->lagrange_support_points[1] = 0.; for (unsigned int m=0; mlagrange_support_points[m+2] = jacobi_roots(m); + this->lagrange_support_points[m+2] = jacobi_roots[m]; this->lagrange_support_points[degree-1] = 1.-auxiliary_zero; // ensure that the polynomial evaluates to one at x=1 diff --git a/tests/base/polynomial_hermite_like.with_lapack=true.output b/tests/base/polynomial_hermite_like.output similarity index 100% rename from tests/base/polynomial_hermite_like.with_lapack=true.output rename to tests/base/polynomial_hermite_like.output