From: Wolfgang Bangerth Date: Mon, 4 Feb 2013 17:28:08 +0000 (+0000) Subject: Fix up a couple markup problems. X-Git-Tag: v8.0.0~1444 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=dfb1ff9670c5bb180ef37f96c5c764c0c4ba3fbc;p=dealii.git Fix up a couple markup problems. git-svn-id: https://svn.dealii.org/trunk@28222 0785d39b-7218-0410-832d-ea1e28bc413d --- diff --git a/deal.II/examples/step-34/doc/intro.dox b/deal.II/examples/step-34/doc/intro.dox index 5b3b847f9b..c7dd04c28b 100644 --- a/deal.II/examples/step-34/doc/intro.dox +++ b/deal.II/examples/step-34/doc/intro.dox @@ -660,14 +660,14 @@ that respects the continuous geometry behind the discrete initial mesh. For a sphere of radius $a$ translating at a velocity of $U$ in the $x$ direction, the potential reads -\[ +@f{align*} \phi = -\frac{1}{2}U \left(\frac{a}{r}\right)3 r \cos\theta - -\] see, e.g. J.N. Newman, \emph{Marine Hydrodynamics}, 1977, +@f} +see, e.g. J. N. Newman, Marine Hydrodynamics, 1977, pp. 127. For unit speed and radius, and restricting $(x,y,z)$ to lie on the surface of the sphere, -\[ \phi = -x/2.\] In the test problem, +$\phi = -x/2$. In the test problem, the flow is $(1,1,1)$, so the appropriate exact solution on the surface of the sphere is the superposition of the above solution with -the analogous solution along the $y$ and $z$ axes, or \[ \phi = -\frac{1}{2}(x + y + z) \] +the analogous solution along the $y$ and $z$ axes, or $\phi = +\frac{1}{2}(x + y + z)$.