From: Uwe Köcher Date: Thu, 7 Sep 2017 09:38:32 +0000 (+0200) Subject: doxygen typos of sqrt in quadrature documentation X-Git-Tag: v9.0.0-rc1~1111^2~1 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=e5bdfb05631030451ff041e860e8eb1577bf9e36;p=dealii.git doxygen typos of sqrt in quadrature documentation --- diff --git a/include/deal.II/base/quadrature_lib.h b/include/deal.II/base/quadrature_lib.h index 87cc4e02fe..6e180bd1b9 100644 --- a/include/deal.II/base/quadrature_lib.h +++ b/include/deal.II/base/quadrature_lib.h @@ -536,7 +536,7 @@ public: * we rescale the quadrature formula so that it is defined on the interval * $[0,1]$ instead of $[-1,1]$. So the quadrature formulas integrate exactly * the integral $\int_0^1 f(x) w(x) dx$ with the weight: $w(x) = - * 1/sqrt{x(1-x)}$. For details see: M. Abramowitz & I.A. Stegun: Handbook of + * 1/\sqrt{x(1-x)}$. For details see: M. Abramowitz & I.A. Stegun: Handbook of * Mathematical Functions, par. 25.4.38 * * @author Giuseppe Pitton, Luca Heltai 2015 @@ -569,7 +569,7 @@ private: * of quadrature points. Here we rescale the quadrature formula so that it is * defined on the interval $[0,1]$ instead of $[-1,1]$. So the quadrature * formulas integrate exactly the integral $\int_0^1 f(x) w(x) dx$ with the - * weight: $w(x) = 1/sqrt{x(1-x)}$. By default the quadrature is constructed + * weight: $w(x) = 1/\sqrt{x(1-x)}$. By default the quadrature is constructed * with the left endpoint as quadrature node, but the quadrature node can be * imposed at the right endpoint through the variable ep that can assume the * values left or right. @@ -625,7 +625,7 @@ private: * where $n$ is the number of quadrature points. Here we rescale the * quadrature formula so that it is defined on the interval $[0,1]$ instead of * $[-1,1]$. So the quadrature formulas integrate exactly the integral - * $\int_0^1 f(x) w(x) dx$ with the weight: $w(x) = 1/sqrt{x(1-x)}$. For + * $\int_0^1 f(x) w(x) dx$ with the weight: $w(x) = 1/\sqrt{x(1-x)}$. For * details see: M. Abramowitz & I.A. Stegun: Handbook of Mathematical * Functions, par. 25.4.40 *