From: Wolfgang Bangerth Date: Mon, 13 May 2024 21:15:38 +0000 (-0600) Subject: Simplify by using that we here have a scalar element. X-Git-Tag: v9.6.0-rc1~259^2 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=e7101ae36fd2cae668db9c531b09c03d78b7c411;p=dealii.git Simplify by using that we here have a scalar element. --- diff --git a/examples/step-39/step-39.cc b/examples/step-39/step-39.cc index b3df253f78..105f692e55 100644 --- a/examples/step-39/step-39.cc +++ b/examples/step-39/step-39.cc @@ -152,28 +152,22 @@ namespace Step39 { FullMatrix &M = dinfo.matrix(0, false).matrix; - const unsigned int n_dofs = info.fe_values().dofs_per_cell; - const unsigned int n_components = info.fe_values().get_fe().n_components(); - for (unsigned int k = 0; k < info.fe_values().n_quadrature_points; ++k) { const double dx = info.fe_values().JxW(k); - for (unsigned int i = 0; i < n_dofs; ++i) + for (unsigned int i = 0; i < info.fe_values().dofs_per_cell; ++i) { - double Mii = 0.0; - for (unsigned int d = 0; d < n_components; ++d) - Mii += (info.fe_values().shape_grad_component(i, k, d) * - info.fe_values().shape_grad_component(i, k, d) * dx); + const double Mii = (info.fe_values().shape_grad(i, k) * + info.fe_values().shape_grad(i, k) * dx); M(i, i) += Mii; - for (unsigned int j = i + 1; j < n_dofs; ++j) + for (unsigned int j = i + 1; j < info.fe_values().dofs_per_cell; + ++j) { - double Mij = 0.0; - for (unsigned int d = 0; d < n_components; ++d) - Mij += (info.fe_values().shape_grad_component(j, k, d) * - info.fe_values().shape_grad_component(i, k, d) * dx); + const double Mij = info.fe_values().shape_grad(j, k) * + info.fe_values().shape_grad(i, k) * dx; M(i, j) += Mij; M(j, i) += Mij; @@ -195,26 +189,26 @@ namespace Step39 AssertDimension(M.n(), fe_face_values.dofs_per_cell); AssertDimension(M.m(), fe_face_values.dofs_per_cell); - const unsigned int degree = info.fe_values(0).get_fe().tensor_degree(); + const unsigned int polynomial_degree = + info.fe_values(0).get_fe().tensor_degree(); - const double ip_penalty = ip_penalty_factor(dinfo, dinfo, degree, degree); + const double ip_penalty = + ip_penalty_factor(dinfo, dinfo, polynomial_degree, polynomial_degree); for (unsigned int k = 0; k < fe_face_values.n_quadrature_points; ++k) { const double dx = fe_face_values.JxW(k); const Tensor<1, dim> &n = fe_face_values.normal_vector(k); - for (unsigned int d = 0; d < fe_face_values.get_fe().n_components(); - ++d) - for (unsigned int i = 0; i < fe_face_values.dofs_per_cell; ++i) - for (unsigned int j = 0; j < fe_face_values.dofs_per_cell; ++j) - M(i, j) += - (2. * fe_face_values.shape_value_component(i, k, d) * - ip_penalty * fe_face_values.shape_value_component(j, k, d) - - (n * fe_face_values.shape_grad_component(i, k, d)) * - fe_face_values.shape_value_component(j, k, d) - - (n * fe_face_values.shape_grad_component(j, k, d)) * - fe_face_values.shape_value_component(i, k, d)) * - dx; + + for (unsigned int i = 0; i < fe_face_values.dofs_per_cell; ++i) + for (unsigned int j = 0; j < fe_face_values.dofs_per_cell; ++j) + M(i, j) += (2. * fe_face_values.shape_value(i, k) * ip_penalty * + fe_face_values.shape_value(j, k) - + (n * fe_face_values.shape_grad(i, k)) * + fe_face_values.shape_value(j, k) - + (n * fe_face_values.shape_grad(j, k)) * + fe_face_values.shape_value(i, k)) * + dx; } } @@ -256,43 +250,32 @@ namespace Step39 { const double dx = fe_face_values_1.JxW(k); const Tensor<1, dim> &n = fe_face_values_1.normal_vector(k); - for (unsigned int d = 0; d < fe_face_values_1.get_fe().n_components(); - ++d) + + for (unsigned int i = 0; i < fe_face_values_1.dofs_per_cell; ++i) { - for (unsigned int i = 0; i < fe_face_values_1.dofs_per_cell; ++i) + for (unsigned int j = 0; j < fe_face_values_1.dofs_per_cell; ++j) { - for (unsigned int j = 0; j < fe_face_values_1.dofs_per_cell; - ++j) - { - const double vi = - fe_face_values_1.shape_value_component(i, k, d); - const double dnvi = - n * fe_face_values_1.shape_grad_component(i, k, d); - const double ve = - fe_face_values_2.shape_value_component(i, k, d); - const double dnve = - n * fe_face_values_2.shape_grad_component(i, k, d); - const double ui = - fe_face_values_1.shape_value_component(j, k, d); - const double dnui = - n * fe_face_values_1.shape_grad_component(j, k, d); - const double ue = - fe_face_values_2.shape_value_component(j, k, d); - const double dnue = - n * fe_face_values_2.shape_grad_component(j, k, d); - M11(i, j) += (-.5 * nui * dnvi * ui - .5 * nui * dnui * vi + - nu * ip_penalty * ui * vi) * - dx; - M12(i, j) += (.5 * nui * dnvi * ue - .5 * nue * dnue * vi - - nu * ip_penalty * vi * ue) * - dx; - M21(i, j) += (-.5 * nue * dnve * ui + .5 * nui * dnui * ve - - nu * ip_penalty * ui * ve) * - dx; - M22(i, j) += (.5 * nue * dnve * ue + .5 * nue * dnue * ve + - nu * ip_penalty * ue * ve) * - dx; - } + const double vi = fe_face_values_1.shape_value(i, k); + const double dnvi = n * fe_face_values_1.shape_grad(i, k); + const double ve = fe_face_values_2.shape_value(i, k); + const double dnve = n * fe_face_values_2.shape_grad(i, k); + const double ui = fe_face_values_1.shape_value(j, k); + const double dnui = n * fe_face_values_1.shape_grad(j, k); + const double ue = fe_face_values_2.shape_value(j, k); + const double dnue = n * fe_face_values_2.shape_grad(j, k); + + M11(i, j) += (-.5 * nui * dnvi * ui - .5 * nui * dnui * vi + + nu * ip_penalty * ui * vi) * + dx; + M12(i, j) += (.5 * nui * dnvi * ue - .5 * nue * dnue * vi - + nu * ip_penalty * vi * ue) * + dx; + M21(i, j) += (-.5 * nue * dnve * ui + .5 * nui * dnui * ve - + nu * ip_penalty * ui * ve) * + dx; + M22(i, j) += (.5 * nue * dnve * ue + .5 * nue * dnue * ve + + nu * ip_penalty * ue * ve) * + dx; } } }