From: Wolfgang Bangerth Date: Mon, 13 Apr 2009 04:02:22 +0000 (+0000) Subject: Go over the rest of the program. X-Git-Tag: v8.0.0~7859 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=e9d2293eee7e69e425849644999daef5819e41bc;p=dealii.git Go over the rest of the program. git-svn-id: https://svn.dealii.org/trunk@18606 0785d39b-7218-0410-832d-ea1e28bc413d --- diff --git a/deal.II/examples/step-34/step-34.cc b/deal.II/examples/step-34/step-34.cc index 18514c9622..1eb3893e84 100644 --- a/deal.II/examples/step-34/step-34.cc +++ b/deal.II/examples/step-34/step-34.cc @@ -754,20 +754,46 @@ void BEMProblem::assemble_system() { // create it using the new operator of C++, we also need to // destroy it using the dual of new: delete. This is done at // the end, and only if dim == 2. + // + // Putting all this into a + // dimension independent + // framework requires a little + // trick. The problem is that, + // depending on dimension, we'd + // like to either assign a + // QGaussLogR<1> or a + // QGaussOneOverR<2> to a + // Quadrature. C++ + // doesn't allow this right + // away, and neither is a + // static_cast + // possible. However, we can + // attempt a dynamic_cast: the + // implementation will then + // look up at run time whether + // the conversion is possible + // (which we know it + // is) and if that isn't the + // case simply return a null + // pointer. To be sure we can + // then add a safety check at + // the end: Assert(singular_index != numbers::invalid_unsigned_int, ExcInternalError()); - Quadrature * + const Quadrature * singular_quadrature = (dim == 2 ? - new QGaussLogR<1>(singular_quadrature_order, - Point<1>((double)singular_index), - 1./cell->measure()) + dynamic_cast*>( + new QGaussLogR<1>(singular_quadrature_order, + Point<1>((double)singular_index), + 1./cell->measure())) : (dim == 3 ? - &sing_quadratures_3d[singular_index] + dynamic_cast*>( + &sing_quadratures_3d[singular_index]) : 0)); Assert(singular_quadrature, ExcInternalError()); @@ -844,11 +870,22 @@ void BEMProblem::assemble_system() { system_matrix.add(i,i,alpha(i)); } + + // @sect3{BEMProblem::solve_system} + + // The next function simply solves the linear + // system. As described, we use the + // SparseDirectUMFPACK direct solver to + // compute the inverse of the matrix (in + // reality it only produces an LU + // decomposition) and then apply this inverse + // to the right hand side to yield the + // solution: template void BEMProblem::solve_system() { - SparseDirectUMFPACK LU; - LU.initialize (system_matrix); - LU.vmult (phi, system_rhs); + SparseDirectUMFPACK inverse_matrix; + inverse_matrix.initialize (system_matrix); + inverse_matrix.vmult (phi, system_rhs); //TODO: is this true? it seems to me that the BIE is definite... // Since we are solving a purely Neumann problem, the solution is @@ -859,14 +896,14 @@ void BEMProblem::solve_system() { } + // @sect3{BEMProblem::solve_system} -template -void BEMProblem::compute_errors(const unsigned int cycle) { // The computation of the errors is exactly the same in all other // example programs, and we won't comment too much. Notice how the // same methods that are used in the finite element methods can be // used here. - +template +void BEMProblem::compute_errors(const unsigned int cycle) { Vector difference_per_cell (tria.n_active_cells()); VectorTools::integrate_difference (dh, phi, exact_solution, @@ -876,9 +913,10 @@ void BEMProblem::compute_errors(const unsigned int cycle) { const double L2_error = difference_per_cell.l2_norm(); - // The error in the alpha vector can be computed directly using - // the linfty_norm method of Vector, since on each node, - // the value should be $\frac 12$. + // The error in the alpha vector can be computed directly using the + // Vector::linfty_norm() function, since on each node, the value should be + // $\frac 12$. All errors are then output and appended to our + // ConvergenceTable object for later computation of convergence rates: Vector difference_per_node(alpha); difference_per_node.add(-.5); @@ -902,24 +940,34 @@ void BEMProblem::compute_errors(const unsigned int cycle) { convergence_table.add_value("Linfty(alpha)", alpha_error); } -// We assume here that the boundary element domain is contained in the -// box $[-2,2]^{\text{dim}}$, and we extrapolate the actual solution -// inside this box using the convolution with the fundamental solution. + + // @sect3{BEMProblem::compute_exterior_solution} + + // We'd like to also know something about the + // value of the potential $\phi$ in the + // exterior domain: after all our motivation + // to consider the boundary integral problem + // was that we wanted to know the velocity in + // the exterior domain! + // + // To this end, let us assume here that the boundary element domain is + // contained in the box $[-2,2]^{\text{dim}}$, and we extrapolate the actual + // solution inside this box using the convolution with the fundamental + // solution. The formula for this is given in the introduction. + // + // The reconstruction of the solution in the entire space is done on a + // continuous finite element grid of dimension dim. These are the usual + // ones, and we don't comment any further on them. At the end of the + // function, we output this exterior solution in, again, much the usual + // way. template void BEMProblem::compute_exterior_solution() { - // The reconstruction of the solution in the entire space is done - // on a continuous finite element grid of dimension dim. These are - // the usual ones, and we don't comment any further on them. - Triangulation external_tria; - // Generate the mesh, refine it and distribute dofs on it. GridGenerator::hyper_cube(external_tria, -2, 2); - FE_Q external_fe(1); DoFHandler external_dh (external_tria); - Vector external_phi; - + Vector external_phi; external_tria.refine_global(external_refinement); external_dh.distribute_dofs(external_fe); @@ -975,28 +1023,37 @@ void BEMProblem::compute_exterior_solution() { const Point R = q_points[q] - external_support_points[i]; - external_phi(i) += ( ( LaplaceKernel::single_layer(R) * - normal_wind[q] + - // - (LaplaceKernel::double_layer(R) * + external_phi(i) += ( ( LaplaceKernel::single_layer(R) * + normal_wind[q] + + + (LaplaceKernel::double_layer(R) * normals[q] ) * local_phi[q] ) * fe_v.JxW(q) ); } } } - DataOut > data_out; + + DataOut data_out; data_out.attach_dof_handler(external_dh); data_out.add_data_vector(external_phi, "external_phi"); data_out.build_patches(); - const std::string filename = Utilities::int_to_string(dim) + "d_external.vtk"; + const std::string + filename = Utilities::int_to_string(dim) + "d_external.vtk"; std::ofstream file(filename.c_str()); + data_out.write_vtk(file); } + // @sect3{BEMProblem::output_results} + + // Outputting the results of our computations + // is a rather mechanical tasks. All the + // components of this function have been + // discussed before. template void BEMProblem::output_results(const unsigned int cycle) { @@ -1031,31 +1088,45 @@ void BEMProblem::output_results(const unsigned int cycle) { } } + + // @sect3{BEMProblem::run} + + // This is the main function. It should be + // self explanatory in its briefness: template void BEMProblem::run() { read_parameters("parameters.prm"); - if(run_in_this_dimension == true) { - read_domain(); - - for(unsigned int cycle=0; cycle