From: Wolfgang Bangerth Date: Sun, 12 Feb 2006 23:47:21 +0000 (+0000) Subject: Document compute_errors. X-Git-Tag: v8.0.0~12340 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=f2623b6be4cfd4782c212f42b14dcc939d553a52;p=dealii.git Document compute_errors. git-svn-id: https://svn.dealii.org/trunk@12340 0785d39b-7218-0410-832d-ea1e28bc413d --- diff --git a/deal.II/examples/step-20/step-20.cc b/deal.II/examples/step-20/step-20.cc index 6775e6ff8c..9d69e9eaf5 100644 --- a/deal.II/examples/step-20/step-20.cc +++ b/deal.II/examples/step-20/step-20.cc @@ -1135,38 +1135,138 @@ void MixedLaplaceProblem::solve () } - + // @sect3{MixedLaplaceProblem class implementation (continued)} + + // @sect4{MixedLaplace::compute_errors} + + // After we have dealt with the + // linear solver and preconditioners, + // we continue with the + // implementation of our main + // class. In particular, the next + // task is to compute the errors in + // our numerical solution, in both + // the pressures as well as + // velocities. + // + // To compute errors in the solution, + // we have already introduced the + // ``VectorTools::integrate_difference'' + // function in step-7 and + // step-11. However, there we only + // dealt with scalar solutions, + // whereas here we have a + // vector-valued solution with + // components that even denote + // different quantities and may have + // different orders of convergence + // (this isn't the case here, by + // choice of the used finite + // elements, but is frequently the + // case in mixed finite element + // applications). What we therefore + // have to do is to `mask' the + // components that we are interested + // in. This is easily done: the + // ``VectorTools::integrate_difference'' + // function takes as its last + // argument a pointer to a weight + // function (the parameter defaults + // to the null pointer, meaning unit + // weights). What we simply have to + // do is to pass a function object + // that equals one in the components + // we are interested in, and zero in + // the other ones. For example, to + // compute the pressure error, we + // should pass a function that + // represents the constant vector + // with a unit value in component + // ``dim'', whereas for the velocity + // the constant vector should be one + // in the first ``dim'' components, + // and zero in the location of the + // pressure. + // + // In deal.II, the + // ``ComponentSelectFunction'' does + // exactly this: it wants to know how + // many vector components the + // function it is to represent should + // have (in our case this would be + // ``dim+1'', for the joint + // velocity-pressure space) and which + // individual or range of components + // should be equal to one. We + // therefore define two such masks at + // the beginning of the function, + // following by an object + // representing the exact solution + // and a vector in which we will + // store the cellwise errors as + // computed by + // ``integrate_difference'': template void MixedLaplaceProblem::compute_errors () const { - Vector tmp (triangulation.n_active_cells()); - ExactSolution exact_solution; + const ComponentSelectFunction + pressure_mask (dim, dim+1); + const ComponentSelectFunction + velocity_mask(std::make_pair(0, dim), dim+1); - // do NOT use QGauss here! - QTrapez<1> q_trapez; + ExactSolution exact_solution; + Vector cellwise_errors (triangulation.n_active_cells()); + + // As already discussed in step-7, + // we have to realize that it is + // impossible to integrate the + // errors exactly. All we can do is + // approximate this integral using + // quadrature. This actually + // presents a slight twist here: if + // we naively chose an object of + // type ``QGauss(degree+1)'' + // as one may be inclined to do + // (this is what we used for + // integrating the linear system), + // one realizes that the error is + // very small and does not follow + // the expected convergence curves + // at all. What is happening is + // that for the mixed finite + // elements used here, the Gauss + // points happen to be + // superconvergence points in which + // the pointwise error is much + // smaller (and converges with + // higher order) than anywhere + // else. These are therefore not + // particularly good points for + // ingration. To avoid this + // problem, we simply use a + // trapezoidal rule and iterate it + // ``degree+2'' times in each + // coordinate direction (again as + // explained in step-7): + QTrapez<1> q_trapez; QIterated quadrature (q_trapez, degree+2); - { - const ComponentSelectFunction mask (dim, 1., dim+1); - VectorTools::integrate_difference (dof_handler, solution, exact_solution, - tmp, quadrature, - VectorTools::L2_norm, - &mask); - } - const double p_l2_error = tmp.l2_norm(); + + // With this, we can then let the + // library compute the errors and + // output them to the screen: + VectorTools::integrate_difference (dof_handler, solution, exact_solution, + cellwise_errors, quadrature, + VectorTools::L2_norm, + &pressure_mask); + const double p_l2_error = cellwise_errors.l2_norm(); - double u_l2_error = 0; - for (unsigned int d=0; d mask(d, 1., dim+1); - VectorTools::integrate_difference (dof_handler, solution, exact_solution, - tmp, quadrature, - VectorTools::L2_norm, - &mask); - u_l2_error = std::sqrt (u_l2_error * u_l2_error + - tmp.l2_norm() * tmp.l2_norm()); - } + VectorTools::integrate_difference (dof_handler, solution, exact_solution, + cellwise_errors, quadrature, + VectorTools::L2_norm, + &velocity_mask); + const double u_l2_error = cellwise_errors.l2_norm(); - std::cout << "Errors: ||e_p||_L2 = " << p_l2_error + std::cout << " Errors: ||e_p||_L2 = " << p_l2_error << ", ||e_u||_L2 = " << u_l2_error << std::endl; }