From: Wolfgang Bangerth Date: Fri, 3 Apr 2020 22:57:05 +0000 (-0600) Subject: Make sure DataOut exports vector/tensor data correctly for complex-valued cases. X-Git-Tag: v9.2.0-rc1~274^2~5 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=f71c91e629fdcc1e29cf93c9c0c855ebcbe9a33c;p=dealii.git Make sure DataOut exports vector/tensor data correctly for complex-valued cases. --- diff --git a/include/deal.II/numerics/data_out_dof_data.templates.h b/include/deal.II/numerics/data_out_dof_data.templates.h index d9d4a3071e..f68c6ccf1b 100644 --- a/include/deal.II/numerics/data_out_dof_data.templates.h +++ b/include/deal.II/numerics/data_out_dof_data.templates.h @@ -1541,40 +1541,7 @@ DataOut_DoFData:: dof_handler, &data_vector, deduced_names, data_component_interpretation); if (actual_type == type_dof_data) - { - // output vectors for which at least part of the data is to be interpreted - // as vector or tensor fields cannot be complex-valued, because we cannot - // visualize complex-valued vector fields - Assert(!((std::find( - data_component_interpretation.begin(), - data_component_interpretation.end(), - DataComponentInterpretation::component_is_part_of_vector) != - data_component_interpretation.end()) && - new_entry->is_complex_valued()), - ExcMessage( - "Complex-valued vectors added to a DataOut-like object " - "cannot contain components that shall be interpreted as " - "vector fields because one can not visualize complex-valued " - "vector fields. However, you may want to try to output " - "this vector as a collection of scalar fields that can then " - "be visualized by their real and imaginary parts separately.")); - - Assert(!((std::find( - data_component_interpretation.begin(), - data_component_interpretation.end(), - DataComponentInterpretation::component_is_part_of_tensor) != - data_component_interpretation.end()) && - new_entry->is_complex_valued()), - ExcMessage( - "Complex-valued vectors added to a DataOut-like object " - "cannot contain components that shall be interpreted as " - "tensor fields because one can not visualize complex-valued " - "tensor fields. However, you may want to try to output " - "this vector as a collection of scalar fields that can then " - "be visualized by their real and imaginary parts separately.")); - - dof_data.emplace_back(std::move(new_entry)); - } + dof_data.emplace_back(std::move(new_entry)); else cell_data.emplace_back(std::move(new_entry)); } @@ -1709,22 +1676,91 @@ DataOut_DoFData::get_dataset_names() // Loop over all DoF-data datasets and push the names. If the // vector underlying a data set is complex-valued, then // expand it into its real and imaginary part. Note, however, - // that what comes back from a postprocess is *always* + // that what comes back from a postprocessor is *always* // real-valued, regardless of what goes in, so we don't // have this to do this name expansion for data sets that // have a postprocessor. + // + // The situation is made complicated when considering vector- and + // tensor-valued component sets. This is because if, for example, we have a + // complex-valued vector, we don't want to output Re(u_x), then Im(u_x), then + // Re(u_y), etc. That's because if we did this, then visualization programs + // will not easily be able to patch together the 1st, 3rd, 5th components into + // the vector representing the real part of a vector field, and similarly for + // the 2nd, 4th, 6th component for the imaginary part of the vector field. + // Rather, we need to put all real components of the same vector field into + // consecutive components. for (auto d = dof_data.begin(); d != dof_data.end(); ++d) - for (unsigned int i = 0; i < (*d)->names.size(); ++i) - if ((*d)->is_complex_valued() == false || - ((*d)->postprocessor != nullptr)) - names.push_back((*d)->names[i]); - else - { - names.push_back((*d)->names[i] + "_re"); - names.push_back((*d)->names[i] + "_im"); - } + if ((*d)->is_complex_valued() == false || ((*d)->postprocessor != nullptr)) + { + for (unsigned int i = 0; i < (*d)->names.size(); ++i) + names.push_back((*d)->names[i]); + } + else + { + // OK, so we have a complex-valued vector. We then need to go through + // all components and order them appropriately + for (unsigned int i = 0; i < (*d)->names.size(); + /* increment of i happens below */) + { + switch ((*d)->data_component_interpretation[i]) + { + case DataComponentInterpretation::component_is_scalar: + { + // It's a scalar. Just output real and imaginary parts one + // after the other: + names.push_back((*d)->names[i] + "_re"); + names.push_back((*d)->names[i] + "_im"); + + // Move forward by one component + ++i; + + break; + } + + case DataComponentInterpretation::component_is_part_of_vector: + { + // It's a vector. First output all real parts, then all + // imaginary parts: + const unsigned int size = patch_space_dim; + for (unsigned int vec_comp = 0; vec_comp < size; ++vec_comp) + names.push_back((*d)->names[i + vec_comp] + "_re"); + for (unsigned int vec_comp = 0; vec_comp < size; ++vec_comp) + names.push_back((*d)->names[i + vec_comp] + "_im"); + + // Move forward by dim components + i += size; + + break; + } - // Do the same as above for cell-type data + case DataComponentInterpretation::component_is_part_of_tensor: + { + // It's a tensor. First output all real parts, then all + // imaginary parts: + const unsigned int size = patch_space_dim * patch_space_dim; + for (unsigned int tensor_comp = 0; tensor_comp < size; + ++tensor_comp) + names.push_back((*d)->names[i + tensor_comp] + "_re"); + for (unsigned int tensor_comp = 0; tensor_comp < size; + ++tensor_comp) + names.push_back((*d)->names[i + tensor_comp] + "_im"); + + // Move forward by dim components + i += size; + + break; + } + + default: + Assert(false, ExcInternalError()); + } + } + } + + // Do the same as above for cell-type data. This is simpler because it + // is always scalar, and so we don't have to worry about whether some + // components together form vectors tensors. for (auto d = cell_data.begin(); d != cell_data.end(); ++d) { Assert((*d)->names.size() == 1, ExcInternalError()); @@ -1773,8 +1809,9 @@ DataOut_DoFData:: { case DataComponentInterpretation::component_is_scalar: { - // Just move one component forward by one (or two if the component - // happens to be complex-valued and we don't use a postprocessor + // Just move one component forward by one (or two if the + // component happens to be complex-valued and we don't use a + // postprocessor // -- postprocessors always return real-valued things) ++i; output_component += @@ -1800,9 +1837,9 @@ DataOut_DoFData:: Exceptions::DataOutImplementation:: ExcInvalidVectorDeclaration(i, (*d)->names[i])); - // all seems alright, so figure out whether there is a common name - // to these components. if not, leave the name empty and let the - // output format writer decide what to do here + // all seems right, so figure out whether there is a common + // name to these components. if not, leave the name empty and + // let the output format writer decide what to do here std::string name = (*d)->names[i]; for (unsigned int dd = 1; dd < patch_space_dim; ++dd) if (name != (*d)->names[i + dd]) @@ -1811,18 +1848,45 @@ DataOut_DoFData:: break; } - // finally add a corresponding range - ranges.emplace_back(std::forward_as_tuple( - output_component, - output_component + patch_space_dim - 1, - name, - DataComponentInterpretation::component_is_part_of_vector)); + // Finally add a corresponding range. If this is a real-valued + // vector, then we only need to do this once. But if it is a + // complex-valued vector and it is not postprocessed, then we need + // to do it twice -- once for the real parts and once for the + // imaginary parts + if ((*d)->is_complex_valued() == false || + ((*d)->postprocessor != nullptr)) + { + ranges.emplace_back(std::forward_as_tuple( + output_component, + output_component + patch_space_dim - 1, + name, + DataComponentInterpretation::component_is_part_of_vector)); + + // increase the 'component' counter by the appropriate amount, + // same for 'i', since we have already dealt with all these + // components + output_component += patch_space_dim; + i += patch_space_dim; + } + else + { + ranges.emplace_back(std::forward_as_tuple( + output_component, + output_component + patch_space_dim - 1, + name + "_re", + DataComponentInterpretation::component_is_part_of_vector)); + output_component += patch_space_dim; + + ranges.emplace_back(std::forward_as_tuple( + output_component, + output_component + patch_space_dim - 1, + name + "_im", + DataComponentInterpretation::component_is_part_of_vector)); + output_component += patch_space_dim; + + i += patch_space_dim; + } - // increase the 'component' counter by the appropriate amount, - // same for 'i', since we have already dealt with all these - // components - output_component += patch_space_dim; - i += patch_space_dim; break; } @@ -1843,9 +1907,9 @@ DataOut_DoFData:: Exceptions::DataOutImplementation:: ExcInvalidTensorDeclaration(i, (*d)->names[i])); - // all seems alright, so figure out whether there is a common name - // to these components. if not, leave the name empty and let the - // output format writer decide what to do here + // all seems alright, so figure out whether there is a common + // name to these components. if not, leave the name empty and + // let the output format writer decide what to do here std::string name = (*d)->names[i]; for (unsigned int dd = 1; dd < size; ++dd) if (name != (*d)->names[i + dd]) @@ -1854,19 +1918,44 @@ DataOut_DoFData:: break; } - // finally add a corresponding range - ranges.emplace_back(std::forward_as_tuple( - output_component, - output_component + size - 1, - name, - DataComponentInterpretation::component_is_part_of_tensor)); - - // increase the 'component' counter by the appropriate amount, - // same for 'i', since we have already dealt with all these - // components - output_component += size; - i += size; - + // Finally add a corresponding range. If this is a real-valued + // tensor, then we only need to do this once. But if it is a + // complex-valued tensor and it is not postprocessed, then we need + // to do it twice -- once for the real parts and once for the + // imaginary parts + if ((*d)->is_complex_valued() == false || + ((*d)->postprocessor != nullptr)) + { + ranges.emplace_back(std::forward_as_tuple( + output_component, + output_component + size - 1, + name, + DataComponentInterpretation::component_is_part_of_tensor)); + + // increase the 'component' counter by the appropriate amount, + // same for 'i', since we have already dealt with all these + // components + output_component += size; + i += size; + } + else + { + ranges.emplace_back(std::forward_as_tuple( + output_component, + output_component + size - 1, + name + "_re", + DataComponentInterpretation::component_is_part_of_tensor)); + output_component += size; + + ranges.emplace_back(std::forward_as_tuple( + output_component, + output_component + size - 1, + name + "_im", + DataComponentInterpretation::component_is_part_of_tensor)); + output_component += size; + + i += size; + } break; } @@ -1875,7 +1964,8 @@ DataOut_DoFData:: } // note that we do not have to traverse the list of cell data here because - // cell data is one value per (logical) cell and therefore cannot be a vector + // cell data is one value per (logical) cell and therefore cannot be a + // vector return ranges; }