From: Ralf Hartmann Date: Tue, 23 Jan 2001 17:17:48 +0000 (+0000) Subject: Script to compute the coefficients of Lagrange polynomials of arbitrary degree. X-Git-Tag: v8.0.0~19791 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=f73959091c9b215ace0872cab11df6a0ee0d49cf;p=dealii.git Script to compute the coefficients of Lagrange polynomials of arbitrary degree. git-svn-id: https://svn.dealii.org/trunk@3771 0785d39b-7218-0410-832d-ea1e28bc413d --- diff --git a/deal.II/base/source/scripts/lagrange b/deal.II/base/source/scripts/lagrange new file mode 100644 index 0000000000..a5b644e514 --- /dev/null +++ b/deal.II/base/source/scripts/lagrange @@ -0,0 +1,61 @@ +# Maple script to compute the coefficients of the LagrangeEquidistant +# basis functions of degree p. These are used as shape functions for +# Qp elements. For higher p just change variable p in line 10. +# Call +# perl -p -e 's/ *t0 = (.*);\n/ $1/g;' lagrange_txt +# to get a c-code ready to be copied into the source codes. +# $Id$ +# Ralf Hartmann, 2001 + + p := 10: + + n_functions := p+1: + + # first compute the support points + support_points := array(0..n_functions-1): + for i from 0 to n_functions-1 do + support_points[i] := i/(n_functions-1): + od; + + poly := array(0..n_functions-1): + + for i from 0 to n_functions-1 do + # note that the interp function wants vectors indexed from + # one and not from zero. + values := array(1..n_functions): + for j from 1 to n_functions do + values[j] := 0: + od: + values[i+1] := 1: + + shifted_support_points := array (1..n_functions): + for j from 1 to n_functions do + shifted_support_points[j] := support_points[j-1]: + od: + + poly[i] := interp (shifted_support_points, values, x): + od: + + readlib(C): + writeto(lagrange_output): + printf(` case %d:\n {\n static const double x%d[%d]=\n {`, p,p,(p+1)*(p+1)): + a := array(0..n_functions-1, 0..n_functions-1): + b := array(0..n_functions-1): + # a[i,j] is the jth coefficient of the ith base function. + for i from 0 to n_functions-1 do + for j from 0 to n_functions-1 do + b[j] := coeff(poly[i], x, j): + od: + C(b[0]): + for j from 1 to n_functions-1 do + printf(`,`): + C(b[j]): + od: + if (i