From: Martin Kronbichler Date: Thu, 7 Aug 2008 12:53:32 +0000 (+0000) Subject: Added some comments, changed some code to be in line with the findings in step-22. X-Git-Tag: v8.0.0~8923 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=f796f19a8303610480981ab3c6b9f7c7ca383d69;p=dealii.git Added some comments, changed some code to be in line with the findings in step-22. git-svn-id: https://svn.dealii.org/trunk@16509 0785d39b-7218-0410-832d-ea1e28bc413d --- diff --git a/deal.II/examples/step-31/step-31.cc b/deal.II/examples/step-31/step-31.cc index bbcdf43d84..addc5e237f 100644 --- a/deal.II/examples/step-31/step-31.cc +++ b/deal.II/examples/step-31/step-31.cc @@ -177,17 +177,7 @@ class BoussinesqFlowProblem // In this case, we choose a very simple // test case, where everything is zero. - // The last definition of this kind - // is the one for the right hand - // side function. Again, the content - // of the function is very - // basic and zero in most of the - // components, except for a source - // of temperature in some isolated - // regions near the bottom of the - // computational domain, as is explained - // in the problem description in the - // introduction. + // @sect4{Boundary values} template class PressureBoundaryValues : public Function { @@ -236,7 +226,7 @@ TemperatureBoundaryValues::value (const Point &p, - + // @sect4{Initial values} template class InitialValues : public Function { @@ -271,6 +261,19 @@ InitialValues::vector_value (const Point &p, + // @sect4{Right hand side} + // + // The last definition of this kind + // is the one for the right hand + // side function. Again, the content + // of the function is very + // basic and zero in most of the + // components, except for a source + // of temperature in some isolated + // regions near the bottom of the + // computational domain, as is explained + // in the problem description in the + // introduction. template class RightHandSide : public Function { @@ -587,11 +590,55 @@ BoussinesqFlowProblem::BoussinesqFlowProblem (const unsigned int degree) // @sect4{BoussinesqFlowProblem::setup_dofs} + // + // This function does the same as + // in most other tutorial programs. + // As a slight difference, the + // program is called with a + // parameter setup_matrices + // that decides whether to + // recreate the sparsity pattern + // and the associated stiffness + // matrix. + // + // The body starts by assigning dofs on + // basis of the chosen finite element, + // and then renumbers the dofs + // first using the Cuthill_McKee + // algorithm (to generate a good + // quality ILU during the linear + // solution process) and then group + // components of velocity, pressure + // and temperature together. This + // happens in complete analogy to + // step-22. + // + // We then proceed with the generation + // of the hanging node constraints + // that arise from adaptive grid + // refinement. Next we impose + // the no-flux boundary conditions + // $\vec{u}\cdot \vec{n}=0$ by adding + // a respective constraint to the + // hanging node constraints + // matrix. The second parameter in + // the function describes the first + // of the velocity components + // in the total dof vector, which is + // zero here. The parameter + // no_normal_flux_boundaries + // sets the no flux b.c. to those + // boundaries with boundary indicator + // zero. template void BoussinesqFlowProblem::setup_dofs (const bool setup_matrices) { dof_handler.distribute_dofs (fe); - DoFRenumbering::component_wise (dof_handler); + DoFRenumbering::Cuthill_McKee (dof_handler); + std::vector block_component (dim+2,0); + block_component[dim] = 1; + block_component[dim+1] = 2; + DoFRenumbering::component_wise (dof_handler, block_component); hanging_node_constraints.clear (); DoFTools::make_hanging_node_constraints (dof_handler, @@ -603,11 +650,25 @@ void BoussinesqFlowProblem::setup_dofs (const bool setup_matrices) hanging_node_constraints); hanging_node_constraints.close (); - std::vector dofs_per_component (dim+2); - DoFTools::count_dofs_per_component (dof_handler, dofs_per_component); - const unsigned int n_u = dofs_per_component[0] * dim, - n_p = dofs_per_component[dim], - n_T = dofs_per_component[dim+1]; + // The next step is, as usual, + // to write some information + // to the screen. The information + // that is most interesting during + // the calculations is the + // number of degrees of freedom + // in the individual components, + // so we count them. The function + // to do this is the same as the + // one used in step-22, which + // uses the grouping of all + // velocity components into + // one block as introduced + // above. + std::vector dofs_per_block (3); + DoFTools::count_dofs_per_block (dof_handler, dofs_per_block, block_component); + const unsigned int n_u = dofs_per_block[0], + n_p = dofs_per_block[1], + n_T = dofs_per_block[2]; std::cout << "Number of active cells: " << triangulation.n_active_cells() @@ -618,34 +679,91 @@ void BoussinesqFlowProblem::setup_dofs (const bool setup_matrices) << std::endl << std::endl; - const unsigned int - n_couplings = dof_handler.max_couplings_between_dofs(); - + // The next step is to + // create the sparsity + // pattern for the system matrix + // based on the Boussinesq + // system. As in step-22, + // we choose to create the + // pattern not as in the + // first tutorial programs, + // but by using the blocked + // version of + // CompressedSetSparsityPattern. + // The reason for doing this + // is mainly a memory issue, + // that is, the basic procedures + // consume too much memory + // when used in three spatial + // dimensions as we intend + // to do for this program. + // + // So, in case we need + // to recreate the matrices, + // we first release the + // stiffness matrix from the + // sparsity pattern and then + // set up an object of the + // BlockCompressedSetSparsityPattern + // consisting of three blocks. + // Each of these blocks is + // initialized with the + // respective number of + // degrees of freedom. + // Once the blocks are + // created, the overall size + // of the sparsity pattern + // is initiated by invoking + // the collect_sizes() + // command, and then the + // sparsity pattern can be + // filled with information. + // Then, the hanging + // node constraints are applied + // to the temporary sparsity + // pattern, which is finally + // then completed and copied + // into the general sparsity + // pattern structure. + // + // After these actions, we + // need to reassign the + // system matrix structure to + // the sparsity pattern. if (setup_matrices == true) { system_matrix.clear (); - sparsity_pattern.reinit (3,3); - sparsity_pattern.block(0,0).reinit (n_u, n_u, n_couplings); - sparsity_pattern.block(1,0).reinit (n_p, n_u, n_couplings); - sparsity_pattern.block(2,0).reinit (n_T, n_u, n_couplings); - sparsity_pattern.block(0,1).reinit (n_u, n_p, n_couplings); - sparsity_pattern.block(1,1).reinit (n_p, n_p, n_couplings); - sparsity_pattern.block(2,1).reinit (n_T, n_p, n_couplings); - sparsity_pattern.block(0,2).reinit (n_u, n_T, n_couplings); - sparsity_pattern.block(1,2).reinit (n_p, n_T, n_couplings); - sparsity_pattern.block(2,2).reinit (n_T, n_T, n_couplings); - - sparsity_pattern.collect_sizes(); - - - DoFTools::make_sparsity_pattern (dof_handler, sparsity_pattern); - hanging_node_constraints.condense (sparsity_pattern); - sparsity_pattern.compress(); + BlockCompressedSetSparsityPattern csp (3,3); + + csp.block(0,0).reinit (n_u, n_u); + csp.block(0,1).reinit (n_u, n_p); + csp.block(0,2).reinit (n_u, n_T); + csp.block(1,0).reinit (n_p, n_u); + csp.block(1,1).reinit (n_p, n_p); + csp.block(1,2).reinit (n_p, n_T); + csp.block(2,0).reinit (n_T, n_u); + csp.block(2,1).reinit (n_T, n_p); + csp.block(2,2).reinit (n_T, n_T); + + csp.collect_sizes (); + + DoFTools::make_sparsity_pattern (dof_handler, csp); + hanging_node_constraints.condense (csp); + sparsity_pattern.copy_from (csp); system_matrix.reinit (sparsity_pattern); } + // As last action in this function, + // we need to set the vectors + // for the solution, the old + // solution (required for + // time stepping) and the system + // right hand side to the + // three-block structure given + // by velocity, pressure and + // temperature. solution.reinit (3); solution.block(0).reinit (n_u); solution.block(1).reinit (n_p); @@ -668,6 +786,73 @@ void BoussinesqFlowProblem::setup_dofs (const bool setup_matrices) // @sect4{BoussinesqFlowProblem::assemble_system} + // + // The assembly of the Boussinesq + // system is acutally a two-step + // procedure. One is to create + // the Stokes system matrix and + // right hand side for the + // velocity-pressure system as + // well as the mass matrix for + // temperature, and + // the second is to create the + // rhight hand side for the temperature + // dofs. The reason for doing this + // in two steps is simply that + // the time stepping we have chosen + // needs the result from the Stokes + // system at the current time step + // for building the right hand + // side of the temperature equation. + // + // This function does the + // first of these two tasks. + // There are two different situations + // for calling this function. The + // first one is when we reset the + // mesh, and both the matrix and + // the right hand side have to + // be generated. The second situation + // only sets up the right hand + // side. The reason for having + // two different accesses is that + // the matrix of the Stokes system + // does not change in time unless + // the mesh is changed, so we can + // save a considerable amount of + // work by doing the full assembly + // only when it is needed. + // + // Regarding the technical details + // of implementation, not much has + // changed from step-22. We reset + // matrix and vector, create + // a quadrature formula on the + // cells and one on cell faces + // (for implementing Neumann + // boundary conditions). Then, + // we create a respective + // FEValues object for both the + // cell and the face integration. + // For the the update flags of + // the first, we perform the + // calculations of basis function + // derivatives only in + // case of a full assembly, since + // they are not needed otherwise, + // which makes the call of + // the FEValues::reinit function + // further down in the program + // more efficient. + // + // The declarations proceed + // with some shortcuts for + // array sizes, the creation of + // the local matrix and right + // hand side as well as the + // vector for the indices of + // the local dofs compared to + // the global system. template void BoussinesqFlowProblem::assemble_system () { @@ -689,8 +874,10 @@ void BoussinesqFlowProblem::assemble_system () : UpdateFlags(0))); FEFaceValues fe_face_values (fe, face_quadrature_formula, - update_values | update_normal_vectors | - update_quadrature_points | update_JxW_values); + update_values | + update_normal_vectors | + update_quadrature_points | + update_JxW_values); const unsigned int dofs_per_cell = fe.dofs_per_cell; @@ -702,13 +889,43 @@ void BoussinesqFlowProblem::assemble_system () std::vector local_dof_indices (dofs_per_cell); + // These few declarations provide + // the structures for the evaluation + // of inhomogeneous Neumann boundary + // conditions from the function + // declaration made above. + // The vector old_solution_values + // evaluates the solution + // at the old time level, since + // the temperature from the + // old time level enters the + // Stokes system as a source + // term in the momentum equation. + // + // Then, we create a variable + // to hold the Rayleigh number, + // the measure of buoyancy. + // + // The set of vectors we create + // next hold the evaluations of + // the basis functions that will + // be used for creating the + // matrices. This gives faster + // access to that data, which + // increases the performance + // of the assembly. See step-22 + // for details. + // + // The last few declarations + // are used to extract the + // individual blocks (velocity, + // pressure, temperature) from + // the total FE system. const PressureBoundaryValues pressure_boundary_values; - std::vector boundary_values (n_face_q_points); - std::vector > old_solution_values(n_q_points, Vector(dim+2)); - std::vector > > old_solution_grads(n_q_points, - std::vector > (dim+2)); + std::vector > old_solution_values(n_q_points, + Vector(dim+2)); const double Rayleigh_number = 10; @@ -723,6 +940,19 @@ void BoussinesqFlowProblem::assemble_system () const FEValuesExtractors::Scalar pressure (dim); const FEValuesExtractors::Scalar temperature (dim+1); + // Now starts the loop over + // all cells in the problem. + // The first commands are all + // very familiar, doing the + // evaluations of the element + // basis functions, resetting + // the local arrays and + // getting the values of the + // old solution at the + // quadrature point. Then we + // are ready to loop over + // the quadrature points + // on the cell. typename DoFHandler::active_cell_iterator cell = dof_handler.begin_active(), endc = dof_handler.end(); @@ -741,8 +971,28 @@ void BoussinesqFlowProblem::assemble_system () // Extract the basis relevant // terms in the inner products // once in advance as shown - // in step-22. This accelerates - // the assembly process, + // in step-22 in order to + // accelerate assembly. + // + // Once this is done, we + // start the loop over the + // rows and columns of the + // local matrix and feed + // the matrix with the relevant + // products. The right hand + // side is filled with the + // forcing term driven by + // temperature in direction + // of gravity (which is + // vertical in our example). + // Note that the right hand + // side term is always generated, + // whereas the matrix + // contributions are only + // updated when it is + // requested by the + // rebuild_matrices + // flag. for (unsigned int k=0; k::assemble_system () + phi_T[i] * phi_T[j]) * fe_values.JxW(q); - const Point gravity (0,1); + const Point gravity = ( (dim == 2) ? (Point (0,1)) : + (Point (0,1,0)) ); local_rhs(i) += (Rayleigh_number * gravity * phi_u[i] * old_temperature)* @@ -778,14 +1029,18 @@ void BoussinesqFlowProblem::assemble_system () } } - - // The assembly of the face - // cells which enters the - // right hand sides cannot - // be accelerated with the - // above technique, since - // all the basis functions are - // only evaluated once. + // Next follows the assembly + // of the face terms, result + // from Neumann boundary + // conditions. Since these + // terms only enter the right + // hand side vector and not + // the matrix, there is no + // substantial benefit from + // extracting the data + // before using it, so + // we remain in the lines + // of step-20 at this point. for (unsigned int face_no=0; face_no::faces_per_cell; ++face_no) @@ -810,6 +1065,16 @@ void BoussinesqFlowProblem::assemble_system () } } + // The last step in the loop + // over all cells is to + // enter the local contributions + // into the global matrix and + // vector structures to the + // positions specified in + // local_dof_indices. + // Again, we only add the + // matrix data when it is + // requested. cell->get_dof_indices (local_dof_indices); if (rebuild_matrices == true) @@ -825,6 +1090,13 @@ void BoussinesqFlowProblem::assemble_system () system_rhs(local_dof_indices[i]) += local_rhs(i); } + // Back at the outermost + // level of this function, + // we continue the work + // by condensing hanging + // node constraints to the + // right hand side and, + // possibly, to the matrix. if (rebuild_matrices == true) hanging_node_constraints.condense (system_matrix); @@ -866,6 +1138,33 @@ void BoussinesqFlowProblem::assemble_system () // system_rhs); } + // This last step of the assembly + // function sets up the preconditioners + // used for the solution of the + // system. We are going to use an + // ILU preconditioner for the + // velocity block (to be used + // by BlockSchurPreconditioner class) + // as well as an ILU preconditioner + // for the inversion of the + // pressure mass matrix. Recall that + // the velocity-velocity block sits + // at position (0,0) in the + // global system matrix, and + // the pressure mass matrix in + // (1,1). The + // storage of these objects is + // as in step-22, that is, we + // include them using a + // shared pointer structure from the + // boost library. + // + // When all work is done, we + // change the flags + // rebuild_preconditioner + // and + // rebuild_matrices + // to false. if (rebuild_preconditioner == true) { Assert (rebuild_matrices == true, @@ -874,18 +1173,12 @@ void BoussinesqFlowProblem::assemble_system () std::cout << " Rebuilding preconditioner..." << std::flush; - // Rebuild the preconditioner - // for the velocity-velocity - // block (0,0) - A_preconditioner + A_preconditioner = boost::shared_ptr::type> (new typename InnerPreconditioner::type()); A_preconditioner->initialize (system_matrix.block(0,0), typename InnerPreconditioner::type::AdditionalData()); - // Rebuild the preconditioner - // for the pressure-pressure - // block (1,1) Mp_preconditioner = boost::shared_ptr > (new SparseILU); @@ -905,6 +1198,28 @@ void BoussinesqFlowProblem::assemble_system () // @sect4{BoussinesqFlowProblem::assemble_rhs_T} + // + // This function does the second + // part of the assembly work, the + // creation of the velocity-dependent + // right hand side of the + // temperature equation. The + // declarations in this function + // are pretty much the same as the + // ones used in the other + // assembly routine, except that we + // restrict ourselves to vectors + // this time. Though, we need to + // perform more face integrals + // at this point, induced by the + // use of discontinuous elements for + // the temperature (just + // as it was in the first DG + // example in step-12) in combination + // with adaptive grid refinement + // and subfaces. The update + // flags at face level are the + // same as in step-12. template void BoussinesqFlowProblem::assemble_rhs_T () { @@ -914,10 +1229,12 @@ void BoussinesqFlowProblem::assemble_rhs_T () update_values | update_gradients | update_quadrature_points | update_JxW_values); FEFaceValues fe_face_values (fe, face_quadrature_formula, - update_values | update_normal_vectors | - update_quadrature_points | update_JxW_values); + update_values | update_normal_vectors | + update_quadrature_points | + update_JxW_values); FESubfaceValues fe_subface_values (fe, face_quadrature_formula, - update_values | update_normal_vectors | + update_values | + update_normal_vectors | update_JxW_values); FEFaceValues fe_face_values_neighbor (fe, face_quadrature_formula, update_values); @@ -930,24 +1247,52 @@ void BoussinesqFlowProblem::assemble_rhs_T () Vector local_rhs (dofs_per_cell); - std::vector > old_solution_values(n_q_points, Vector(dim+2)); - - std::vector > old_solution_values_face(n_face_q_points, Vector(dim+2)); - std::vector > old_solution_values_face_neighbor(n_face_q_points, Vector(dim+2)); - std::vector > present_solution_values(n_q_points, Vector(dim+2)); - std::vector > present_solution_values_face(n_face_q_points, Vector(dim+2)); - - std::vector > > - present_solution_grads(n_q_points, - std::vector >(dim+2)); + std::vector local_dof_indices (dofs_per_cell); + // Here comes the declaration + // of vectors to hold the old + // and present solution values + // and gradients + // for both the cell as well as faces + // to the cell. Next comes the + // declaration of an object + // to hold the temperature + // boundary values and a + // well-known extractor for + // accessing the temperature + // part of the FE system. + std::vector > old_solution_values(n_q_points, + Vector(dim+2)); + + std::vector > old_solution_values_face(n_face_q_points, + Vector(dim+2)); + std::vector > old_solution_values_face_neighbor ( + n_face_q_points, + Vector(dim+2)); + std::vector > present_solution_values (n_q_points, + Vector(dim+2)); + std::vector > present_solution_values_face( + n_face_q_points, + Vector(dim+2)); + + std::vector > > present_solution_grads( + n_q_points, + std::vector >(dim+2)); std::vector neighbor_temperature (n_face_q_points); - std::vector local_dof_indices (dofs_per_cell); TemperatureBoundaryValues temperature_boundary_values; const FEValuesExtractors::Scalar temperature (dim+1); + // Now, let's start the loop + // over all cells in the + // triangulation. The first + // actions within the loop + // are, as usual, the evaluation + // of the FE basis functions + // and the old and present + // solution at the quadrature + // points. typename DoFHandler::active_cell_iterator cell = dof_handler.begin_active(), endc = dof_handler.end(); @@ -1244,6 +1589,11 @@ void BoussinesqFlowProblem::solve () // Produce a constistent solution field hanging_node_constraints.distribute (up); + std::cout << " " + << solver_control.last_step() + << " GMRES iterations for Stokes subsystem." + << std::endl; + solution.block(0) = up.block(0); solution.block(1) = up.block(1); } @@ -1255,15 +1605,15 @@ void BoussinesqFlowProblem::solve () { SolverControl solver_control (system_matrix.block(2,2).m(), - 1e-8*system_rhs.block(2).l2_norm()); + 1e-8*system_rhs.block(2).l2_norm()); SolverCG<> cg (solver_control); PreconditionJacobi<> preconditioner; preconditioner.initialize (system_matrix.block(2,2)); try { - cg.solve (system_matrix.block(2,2), solution.block(2), system_rhs.block(2), - preconditioner); + cg.solve (system_matrix.block(2,2), solution.block(2), + system_rhs.block(2), preconditioner); } catch (...) { @@ -1509,7 +1859,7 @@ void BoussinesqFlowProblem::run () if (timestep_number % 10 == 0) refine_mesh (); } - while (time <= 5); + while (time <= 50); }