From: Martin Kronbichler Date: Fri, 3 Nov 2017 15:55:39 +0000 (+0100) Subject: Interpolate rather than average for new points of MappingQGeneric. X-Git-Tag: v9.0.0-rc1~663^2~20 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=f7cef5e068feea7124d3b2b3d4e5115c267aa5e8;p=dealii.git Interpolate rather than average for new points of MappingQGeneric. --- diff --git a/source/fe/mapping_q_generic.cc b/source/fe/mapping_q_generic.cc index 8fa6560d4b..29e35101aa 100644 --- a/source/fe/mapping_q_generic.cc +++ b/source/fe/mapping_q_generic.cc @@ -921,191 +921,10 @@ namespace internal { namespace { - /** - * Compute the support_point_weights_on_quad(hex) arrays. - * - * Called by the compute_support_point_weights_on_quad(hex) functions if the - * data is not yet hardcoded. - * - * For the definition of the support_point_weights_on_quad(hex) please - * refer to equation (8) of the `mapping' report. - */ - template - dealii::Table<2,double> - compute_laplace_vector(const unsigned int polynomial_degree) - { - Assert(dim==2 || dim==3, ExcNotImplemented()); - - // for degree==1, we shouldn't have to compute any support points, since all - // of them are on the vertices - Assert(polynomial_degree>1, ExcInternalError()); - - const unsigned int n_inner = Utilities::fixed_power(polynomial_degree-1); - const unsigned int n_outer = (dim==1) ? 2 : - ((dim==2) ? - 4+4*(polynomial_degree-1) : - 8+12*(polynomial_degree-1)+6*(polynomial_degree-1)*(polynomial_degree-1)); - - dealii::Table<2,double> lvs(n_inner, n_outer); - - // compute the shape gradients at the quadrature points on the unit - // cell - const QGauss quadrature(polynomial_degree+1); - const unsigned int n_q_points=quadrature.size(); - - typename dealii::MappingQGeneric::InternalData quadrature_data(polynomial_degree); - quadrature_data.shape_derivatives.resize(quadrature_data.n_shape_functions * - n_q_points); - quadrature_data.compute_shape_function_values(quadrature.get_points()); - -#ifndef DEAL_II_WITH_LAPACK - - // Slow implementation: matrix-based method - - // Compute the stiffness matrix of the inner dofs - FullMatrix S(n_inner); - for (unsigned int point=0; point T(n_inner, n_outer); - for (unsigned int point=0; point S_1(n_inner); - S_1.invert(S); - - FullMatrix S_1_T(n_inner, n_outer); - - // S:=S_1*T - S_1.mmult(S_1_T,T); - - // Resize and initialize the lvs - lvs.reinit (n_inner, n_outer); - for (unsigned int i=0; i gauss_1d(polynomial_degree+1); - FE_Q<1> fe_1d(polynomial_degree); - AlignedVector value_1d((polynomial_degree-1)*(polynomial_degree+1)); - AlignedVector derivative_1d((polynomial_degree-1)*(polynomial_degree+1)); - for (unsigned int i=0; i mass_1d(polynomial_degree-1, polynomial_degree-1); - FullMatrix lapl_1d(mass_1d); - for (unsigned int i=0; i tensor_product_matrix; - tensor_product_matrix.reinit(mass_1d, lapl_1d); - - internal::EvaluatorTensorProduct - eval_rhs(value_1d, derivative_1d, value_1d, - polynomial_degree-2, polynomial_degree+1); - - std::vector tmp_rhs(dim*n_q_points), rl1(n_q_points), - rl2(n_q_points); - for (unsigned int k=0; k(&tmp_rhs[0], &rl1[0]); - eval_rhs.template values<1,false,false> (&rl1[0], &rl2[0]); - eval_rhs.template values<0,false,false> (&tmp_rhs[n_q_points], &rl1[0]); - eval_rhs.template gradients<1,false,true>(&rl1[0], &rl2[0]); - eval_rhs.template values<2,false,false> (&rl2[0], &tmp_rhs[0]); - eval_rhs.template values<0,false,false> (&tmp_rhs[2*n_q_points], &rl1[0]); - eval_rhs.template values<1,false,false> (&rl1[0], &rl2[0]); - eval_rhs.template gradients<2,false,true> (&rl2[0], &tmp_rhs[0]); - } - else if (dim == 2) - { - eval_rhs.template gradients<0,false,false>(&tmp_rhs[0], &rl1[0]); - eval_rhs.template values<1,false,false> (&rl1[0], &tmp_rhs[0]); - eval_rhs.template values<0,false,false> (&tmp_rhs[n_q_points], &rl1[0]); - eval_rhs.template gradients<1,false,true>(&rl1[0], &tmp_rhs[0]); - } - else - Assert(false, ExcNotImplemented()); - - const ArrayView rl1_view {&(rl1[0]), n_inner}; - const ArrayView tmp_rhs_view {&(tmp_rhs[0]), n_inner}; - tensor_product_matrix.apply_inverse(rl1_view, tmp_rhs_view); - - for (unsigned int i=0; iMappingQ for dim= 2 and 3. * - * For degree<4 this function sets the @p support_point_weights_on_quad to - * the hardcoded data. For degree>=4 and MappingQ<2> this vector is - * computed. - * * For the definition of the @p support_point_weights_on_quad please refer to * equation (8) of the `mapping' report. */ @@ -1119,39 +938,32 @@ namespace internal if (polynomial_degree == 1) return loqvs; - const unsigned int n_inner_2d=(polynomial_degree-1)*(polynomial_degree-1); - const unsigned int n_outer_2d=4+4*(polynomial_degree-1); + const unsigned int M = polynomial_degree-1; + const unsigned int n_inner_2d = M*M; + const unsigned int n_outer_2d = 4 + 4*M; - // first check whether we have precomputed the values for some polynomial - // degree; the sizes of arrays is n_inner_2d*n_outer_2d - if (polynomial_degree == 2) - { - // (checked these values against the output of compute_laplace_vector - // again, and found they're indeed right -- just in case someone wonders - // where they come from -- WB) - static const double loqv2[1*8] - = {1/16., 1/16., 1/16., 1/16., 3/16., 3/16., 3/16., 3/16.}; - Assert (sizeof(loqv2)/sizeof(loqv2[0]) == - n_inner_2d * n_outer_2d, - ExcInternalError()); - - // copy and return - loqvs.reinit(n_inner_2d, n_outer_2d); - for (unsigned int unit_point=0; unit_point(polynomial_degree); - } + // set the weights of transfinite interpolation + loqvs.reinit(n_inner_2d, n_outer_2d); + QGaussLobatto<2> gl(polynomial_degree+1); + for (unsigned int i=0; i p = gl.point((i+1)*(polynomial_degree+1)+(j+1)); + const unsigned int index_table = i*M+j; + for (unsigned int v=0; v<4; ++v) + loqvs(index_table, v) = + -GeometryInfo<2>::d_linear_shape_function(p, v); + loqvs(index_table, 4+i) = 1.-p[0]; + loqvs(index_table, 4+i+M) = p[0]; + loqvs(index_table, 4+j+2*M) = 1.-p[1]; + loqvs(index_table, 4+j+3*M) = p[1]; + } // the sum of weights of the points at the outer rim should be one. check // this - for (unsigned int unit_point=0; unit_pointMappingQ<3>. * - * For degree==2 this function sets the @p support_point_weights_on_hex to - * the hardcoded data. For degree>2 this vector is computed. - * * For the definition of the @p support_point_weights_on_hex please refer to * equation (8) of the `mapping' report. */ @@ -1178,31 +987,62 @@ namespace internal if (polynomial_degree == 1) return lohvs; - const unsigned int n_inner = Utilities::fixed_power<3>(polynomial_degree-1); - const unsigned int n_outer = 8+12*(polynomial_degree-1)+6*(polynomial_degree-1)*(polynomial_degree-1); + const unsigned int M = polynomial_degree-1; - // first check whether we have precomputed the values for some polynomial - // degree; the sizes of arrays is n_inner_2d*n_outer_2d - if (polynomial_degree == 2) - { - static const double lohv2[26] - = {1/128., 1/128., 1/128., 1/128., 1/128., 1/128., 1/128., 1/128., - 7/192., 7/192., 7/192., 7/192., 7/192., 7/192., 7/192., 7/192., - 7/192., 7/192., 7/192., 7/192., - 1/12., 1/12., 1/12., 1/12., 1/12., 1/12. - }; - - // copy and return - lohvs.reinit(n_inner, n_outer); - for (unsigned int unit_point=0; unit_point(polynomial_degree); - } + const unsigned int n_inner = Utilities::fixed_power<3>(M); + const unsigned int n_outer = 8+12*M+6*M*M; + + // set the weights of transfinite interpolation + lohvs.reinit(n_inner, n_outer); + QGaussLobatto<3> gl(polynomial_degree+1); + for (unsigned int i=0; i p = gl.point((i+1)*(M+2)*(M+2)+(j+1)*(M+2)+(k+1)); + const unsigned int index_table = i*M*M+j*M+k; + + // vertices + for (unsigned int v=0; v<8; ++v) + lohvs(index_table, v) = + GeometryInfo<3>::d_linear_shape_function(p, v); + + // lines + { + constexpr std::array line_coordinates_y + ({{0, 1, 4, 5}}); + const Point<2> py(p[0], p[2]); + for (unsigned int l=0; l<4; ++l) + lohvs(index_table, 8+line_coordinates_y[l]*M+j) = + -GeometryInfo<2>::d_linear_shape_function(py, l); + } + + { + constexpr std::array line_coordinates_x + ({{2, 3, 6, 7}}); + const Point<2> px(p[1], p[2]); + for (unsigned int l=0; l<4; ++l) + lohvs(index_table, 8+line_coordinates_x[l]*M+k) = + -GeometryInfo<2>::d_linear_shape_function(px, l); + } + + { + constexpr std::array line_coordinates_z + ({{8, 9, 10, 11}}); + const Point<2> pz(p[0], p[1]); + for (unsigned int l=0; l<4; ++l) + lohvs(index_table, 8+line_coordinates_z[l]*M+i) = + -GeometryInfo<2>::d_linear_shape_function(pz, l); + } + + // quads + lohvs(index_table, 8+12*M+0*M*M+i*M+j) = 1.-p[0]; + lohvs(index_table, 8+12*M+1*M*M+i*M+j) = p[0]; + lohvs(index_table, 8+12*M+2*M*M+k*M+i) = 1.-p[1]; + lohvs(index_table, 8+12*M+3*M*M+k*M+i) = p[1]; + lohvs(index_table, 8+12*M+4*M*M+j*M+k) = 1.-p[2]; + lohvs(index_table, 8+12*M+5*M*M+j*M+k) = p[2]; + } // the sum of weights of the points at the outer rim should be one. check // this