From: David Wells Date: Thu, 22 Jun 2023 03:16:11 +0000 (-0400) Subject: Tweak some example documentation. X-Git-Tag: v9.5.0-rc1~44^2~2 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=fc16f89c5fc7fe4dda27f3c2d4c323d8b01074f0;p=dealii.git Tweak some example documentation. --- diff --git a/examples/step-15/step-15.cc b/examples/step-15/step-15.cc index c10aabf064..30ccc56a8d 100644 --- a/examples/step-15/step-15.cc +++ b/examples/step-15/step-15.cc @@ -683,7 +683,7 @@ namespace Step15 ++refinement_cycle; std::cout << std::endl; } - while (last_residual_norm > 1e-3); + while (last_residual_norm > 1e-2); } } // namespace Step15 diff --git a/examples/step-36/doc/intro.dox b/examples/step-36/doc/intro.dox index 085bf3d7e9..92816cefbe 100644 --- a/examples/step-36/doc/intro.dox +++ b/examples/step-36/doc/intro.dox @@ -18,9 +18,8 @@ course equally applicable to the other applications above. Eigenspectrum problems have the general form @f{align*} - L \Psi &= \varepsilon \Psi \qquad &&\text{in}\ \Omega\quad, - \\ - \Psi &= 0 &&\text{on}\ \partial\Omega\quad, + L \Psi &= \varepsilon \Psi \qquad &&\text{in}\ \Omega, \\ + \Psi &= 0 &&\text{on}\ \partial\Omega, @f} where the Dirichlet boundary condition on $\Psi=\Psi(\mathbf x)$ could also be replaced by Neumann or Robin conditions; $L$ is an operator that generally diff --git a/examples/step-39/doc/results.dox b/examples/step-39/doc/results.dox index c3531d9d4b..25a47ac4da 100644 --- a/examples/step-39/doc/results.dox +++ b/examples/step-39/doc/results.dox @@ -91,7 +91,7 @@ data into output.dat, which can be used to plot graphs with script plot_errors.gpl via @code -perl postprocess.pl deallog &> output.dat +./step-39 | perl postprocess.pl >output.dat gnuplot plot_errors.gpl @endcode diff --git a/examples/step-7/doc/results.dox b/examples/step-7/doc/results.dox index ae5a4c9f9c..de8f65c895 100644 --- a/examples/step-7/doc/results.dox +++ b/examples/step-7/doc/results.dox @@ -15,7 +15,7 @@ here: Secondly, the program writes tables not only to disk, but also to the screen while running. The output looks like the following (recall that -columns labeled as "H1" actually show the $H^1$ semi-norm +columns labeled as "H1" actually show the $H^1$ semi-norm of the error, not the full $H^1$ norm):