From: Martin Kronbichler Date: Thu, 6 Dec 2012 14:14:07 +0000 (+0000) Subject: Revised get_function_xxx methods: Put the evaluation part into separate functions... X-Git-Tag: v8.0.0~1727 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=fe3f84126a2804c75cf8833d2460eb7d9b98d80d;p=dealii.git Revised get_function_xxx methods: Put the evaluation part into separate functions. This makes code simpler as several user methods can use the same implementation. Also, we avoid to recompile them for _every_ global VectorType with exactly the same content. This speeds up compilation of fe_values.o by about a factor 2. git-svn-id: https://svn.dealii.org/trunk@27775 0785d39b-7218-0410-832d-ea1e28bc413d --- diff --git a/deal.II/source/fe/fe_values.cc b/deal.II/source/fe/fe_values.cc index 278ef50448..9e4305b0a7 100644 --- a/deal.II/source/fe/fe_values.cc +++ b/deal.II/source/fe/fe_values.cc @@ -2,7 +2,7 @@ // $Id$ // Version: $Name$ // -// Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012 by the deal.II authors +// Copyright (C) 1998-2012 by the deal.II authors // // This file is subject to QPL and may not be distributed // without copyright and license information. Please refer @@ -52,21 +52,6 @@ namespace { return (is.is_element(cell_number) ? 1 : 0); } - - - - template - struct ValueType - { - typedef typename VectorType::value_type type; - }; - - - template <> - struct ValueType - { - typedef double type; - }; } @@ -119,7 +104,7 @@ namespace FEValuesViews // variables from FEValuesData, but they aren't initialized yet // at the time we get here, so re-create it all const std::vector shape_function_to_row_table - = make_shape_function_to_row_table (*fe_values.fe); + = make_shape_function_to_row_table (*fe_values.fe); for (unsigned int i=0; idofs_per_cell; ++i) { @@ -128,16 +113,16 @@ namespace FEValuesViews if (is_primitive == true) shape_function_data[i].is_nonzero_shape_function_component - = (component == - fe_values.fe->system_to_component_index(i).first); + = (component == + fe_values.fe->system_to_component_index(i).first); else shape_function_data[i].is_nonzero_shape_function_component - = (fe_values.fe->get_nonzero_components(i)[component] - == true); + = (fe_values.fe->get_nonzero_components(i)[component] + == true); if (shape_function_data[i].is_nonzero_shape_function_component == true) shape_function_data[i].row_index - = shape_function_to_row_table[i*fe_values.fe->n_components()+component]; + = shape_function_to_row_table[i*fe_values.fe->n_components()+component]; else shape_function_data[i].row_index = numbers::invalid_unsigned_int; } @@ -180,7 +165,7 @@ namespace FEValuesViews // variables from FEValuesData, but they aren't initialized yet // at the time we get here, so re-create it all const std::vector shape_function_to_row_table - = make_shape_function_to_row_table (*fe_values.fe); + = make_shape_function_to_row_table (*fe_values.fe); for (unsigned int d=0; dsystem_to_component_index(i).first); + = (component == + fe_values.fe->system_to_component_index(i).first); else shape_function_data[i].is_nonzero_shape_function_component[d] - = (fe_values.fe->get_nonzero_components(i)[component] - == true); + = (fe_values.fe->get_nonzero_components(i)[component] + == true); if (shape_function_data[i].is_nonzero_shape_function_component[d] == true) shape_function_data[i].row_index[d] - = shape_function_to_row_table[i*fe_values.fe->n_components()+component]; + = shape_function_to_row_table[i*fe_values.fe->n_components()+component]; else shape_function_data[i].row_index[d] - = numbers::invalid_unsigned_int; + = numbers::invalid_unsigned_int; } } @@ -229,9 +214,9 @@ namespace FEValuesViews == true) { shape_function_data[i].single_nonzero_component - = shape_function_data[i].row_index[d]; + = shape_function_data[i].row_index[d]; shape_function_data[i].single_nonzero_component_index - = d; + = d; break; } } @@ -278,7 +263,7 @@ namespace FEValuesViews // variables from FEValuesData, but they aren't initialized yet // at the time we get here, so re-create it all const std::vector shape_function_to_row_table - = make_shape_function_to_row_table (*fe_values.fe); + = make_shape_function_to_row_table (*fe_values.fe); for (unsigned int d = 0; d < dealii::SymmetricTensor<2,dim>::n_independent_components; ++d) { @@ -291,20 +276,20 @@ namespace FEValuesViews if (is_primitive == true) shape_function_data[i].is_nonzero_shape_function_component[d] - = (component == - fe_values.fe->system_to_component_index(i).first); + = (component == + fe_values.fe->system_to_component_index(i).first); else shape_function_data[i].is_nonzero_shape_function_component[d] - = (fe_values.fe->get_nonzero_components(i)[component] - == true); + = (fe_values.fe->get_nonzero_components(i)[component] + == true); if (shape_function_data[i].is_nonzero_shape_function_component[d] == true) shape_function_data[i].row_index[d] - = shape_function_to_row_table[i*fe_values.fe->n_components()+component]; + = shape_function_to_row_table[i*fe_values.fe->n_components()+component]; else shape_function_data[i].row_index[d] - = numbers::invalid_unsigned_int; + = numbers::invalid_unsigned_int; } } @@ -327,9 +312,9 @@ namespace FEValuesViews == true) { shape_function_data[i].single_nonzero_component - = shape_function_data[i].row_index[d]; + = shape_function_data[i].row_index[d]; shape_function_data[i].single_nonzero_component_index - = d; + = d; break; } } @@ -358,462 +343,538 @@ namespace FEValuesViews - template - template - void - Scalar:: - get_function_values (const InputVector &fe_function, - std::vector &values) const + namespace internal { - typedef FEValuesBase FVB; - Assert (fe_values.update_flags & update_values, - typename FVB::ExcAccessToUninitializedField()); - Assert (values.size() == fe_values.n_quadrature_points, - ExcDimensionMismatch(values.size(), fe_values.n_quadrature_points)); - Assert (fe_values.present_cell.get() != 0, - ExcMessage ("FEValues object is not reinit'ed to any cell")); - Assert (fe_function.size() == fe_values.present_cell->n_dofs_for_dof_handler(), - ExcDimensionMismatch(fe_function.size(), - fe_values.present_cell->n_dofs_for_dof_handler())); + // put the evaluation part of the get_function_xxx from a local vector + // into separate functions. this reduces the size of the compilation unit + // by a factor more than 2 without affecting the performance at all. - // get function values of dofs - // on this cell - dealii::Vector::type> dof_values (fe_values.dofs_per_cell); - fe_values.present_cell->get_interpolated_dof_values(fe_function, dof_values); + // remark: up to revision 27774, dof_values used to be extracted as + // VectorType::value_type and not simply double. this did not make a lot + // of sense since they were later extracted and converted to double + // consistently throughout the code since revision 17903 at least. - std::fill (values.begin(), values.end(), value_type()); + // ------------------------- scalar functions -------------------------- - for (unsigned int shape_function=0; - shape_functiondofs_per_cell; ++shape_function) - if (shape_function_data[shape_function].is_nonzero_shape_function_component) - { - const double value = dof_values(shape_function); - if (value == 0.) - continue; + struct ShapeFunctionDataScalar + { + bool is_nonzero_shape_function_component; + unsigned int row_index; + }; + + void + do_function_values (const ::dealii::Vector &dof_values, + const Table<2,double> &shape_values, + const std::vector &shape_function_data, + std::vector &values) + { + const unsigned int dofs_per_cell = dof_values.size(); + const unsigned int n_quadrature_points = dofs_per_cell > 0 ? + shape_values.n_cols() : values.size(); + AssertDimension (values.size(), n_quadrature_points); - const double *shape_value_ptr = - &fe_values.shape_values(shape_function_data[shape_function].row_index, 0); - for (unsigned int q_point=0; q_point + void + do_function_derivatives (const ::dealii::Vector &dof_values, + const std::vector > > &shape_derivatives, + const std::vector &shape_function_data, + std::vector > &derivatives) + { + const unsigned int dofs_per_cell = dof_values.size(); + const unsigned int n_quadrature_points = dofs_per_cell > 0 ? + shape_derivatives[0].size() : derivatives.size(); + AssertDimension (derivatives.size(), n_quadrature_points); + + std::fill (derivatives.begin(), derivatives.end(), + Tensor()); + + for (unsigned int shape_function=0; + shape_function *shape_derivative_ptr = + &shape_derivatives[shape_function_data[shape_function].row_index][0]; + for (unsigned int q_point=0; q_point + void + do_function_laplacians (const ::dealii::Vector &dof_values, + const std::vector > > &shape_hessians, + const std::vector &shape_function_data, + std::vector &laplacians) + { + const unsigned int dofs_per_cell = dof_values.size(); + const unsigned int n_quadrature_points = dofs_per_cell > 0 ? + shape_hessians[0].size() : laplacians.size(); + AssertDimension (laplacians.size(), n_quadrature_points); + + std::fill (laplacians.begin(), laplacians.end(), 0.); + + for (unsigned int shape_function=0; + shape_function *shape_hessian_ptr = + &shape_hessians[shape_function_data[shape_function].row_index][0]; + for (unsigned int q_point=0; q_point - template - void - Scalar:: - get_function_gradients (const InputVector &fe_function, - std::vector &gradients) const - { - typedef FEValuesBase FVB; - Assert (fe_values.update_flags & update_gradients, - typename FVB::ExcAccessToUninitializedField()); - Assert (gradients.size() == fe_values.n_quadrature_points, - ExcDimensionMismatch(gradients.size(), fe_values.n_quadrature_points)); - Assert (fe_values.present_cell.get() != 0, - ExcMessage ("FEValues object is not reinit'ed to any cell")); - Assert (fe_function.size() == fe_values.present_cell->n_dofs_for_dof_handler(), - ExcDimensionMismatch(fe_function.size(), - fe_values.present_cell->n_dofs_for_dof_handler())); - // get function values of dofs - // on this cell - dealii::Vector::type> dof_values (fe_values.dofs_per_cell); - fe_values.present_cell->get_interpolated_dof_values(fe_function, dof_values); - std::fill (gradients.begin(), gradients.end(), gradient_type()); + // ----------------------------- vector part --------------------------- - for (unsigned int shape_function=0; - shape_functiondofs_per_cell; ++shape_function) - if (shape_function_data[shape_function].is_nonzero_shape_function_component) + template + struct ShapeFunctionDataVector + { + bool is_nonzero_shape_function_component[spacedim]; + unsigned int row_index[spacedim]; + int single_nonzero_component; + unsigned int single_nonzero_component_index; + }; + + + + template + void do_function_values (const ::dealii::Vector &dof_values, + const Table<2,double> &shape_values, + const std::vector > &shape_function_data, + std::vector > &values) + { + const unsigned int dofs_per_cell = dof_values.size(); + const unsigned int n_quadrature_points = dofs_per_cell > 0 ? + shape_values.n_cols() : values.size(); + AssertDimension (values.size(), n_quadrature_points); + + std::fill (values.begin(), values.end(), Tensor<1,spacedim>()); + + for (unsigned int shape_function=0; + shape_function *shape_gradient_ptr = - &fe_values.shape_gradients[shape_function_data[shape_function]. - row_index][0]; - for (unsigned int q_point=0; q_point - template - void - Scalar:: - get_function_hessians (const InputVector &fe_function, - std::vector &hessians) const - { - typedef FEValuesBase FVB; - Assert (fe_values.update_flags & update_hessians, - typename FVB::ExcAccessToUninitializedField()); - Assert (hessians.size() == fe_values.n_quadrature_points, - ExcDimensionMismatch(hessians.size(), fe_values.n_quadrature_points)); - Assert (fe_values.present_cell.get() != 0, - ExcMessage ("FEValues object is not reinit'ed to any cell")); - Assert (fe_function.size() == fe_values.present_cell->n_dofs_for_dof_handler(), - ExcDimensionMismatch(fe_function.size(), - fe_values.present_cell->n_dofs_for_dof_handler())); - // get function values of dofs - // on this cell - dealii::Vector::type> dof_values (fe_values.dofs_per_cell); - fe_values.present_cell->get_interpolated_dof_values(fe_function, dof_values); + template + void + do_function_derivatives (const ::dealii::Vector &dof_values, + const std::vector > > &shape_derivatives, + const std::vector > &shape_function_data, + std::vector > &derivatives) + { + const unsigned int dofs_per_cell = dof_values.size(); + const unsigned int n_quadrature_points = dofs_per_cell > 0 ? + shape_derivatives[0].size() : derivatives.size(); + AssertDimension (derivatives.size(), n_quadrature_points); - std::fill (hessians.begin(), hessians.end(), hessian_type()); + std::fill (derivatives.begin(), derivatives.end(), + Tensor()); - for (unsigned int shape_function=0; - shape_functiondofs_per_cell; ++shape_function) - if (shape_function_data[shape_function].is_nonzero_shape_function_component) + for (unsigned int shape_function=0; + shape_function *shape_hessian_ptr = - &fe_values.shape_hessians[shape_function_data[shape_function]. - row_index][0]; - for (unsigned int q_point=0; q_point *shape_derivative_ptr = + &shape_derivatives[snc][0]; + for (unsigned int q_point=0; q_point *shape_derivative_ptr = + &shape_derivatives[shape_function_data[shape_function]. + row_index[d]][0]; + for (unsigned int q_point=0; q_point - template - void - Scalar:: - get_function_laplacians (const InputVector &fe_function, - std::vector &laplacians) const - { - typedef FEValuesBase FVB; - Assert (fe_values.update_flags & update_hessians, - typename FVB::ExcAccessToUninitializedField()); - Assert (laplacians.size() == fe_values.n_quadrature_points, - ExcDimensionMismatch(laplacians.size(), fe_values.n_quadrature_points)); - Assert (fe_values.present_cell.get() != 0, - ExcMessage ("FEValues object is not reinit'ed to any cell")); - Assert (fe_function.size() == fe_values.present_cell->n_dofs_for_dof_handler(), - ExcDimensionMismatch(fe_function.size(), - fe_values.present_cell->n_dofs_for_dof_handler())); - // get function values of dofs - // on this cell - dealii::Vector::type> dof_values (fe_values.dofs_per_cell); - fe_values.present_cell->get_interpolated_dof_values(fe_function, dof_values); + template + void + do_function_symmetric_gradients (const ::dealii::Vector &dof_values, + const std::vector > > &shape_gradients, + const std::vector > &shape_function_data, + std::vector > &symmetric_gradients) + { + const unsigned int dofs_per_cell = dof_values.size(); + const unsigned int n_quadrature_points = dofs_per_cell > 0 ? + shape_gradients[0].size() : symmetric_gradients.size(); + AssertDimension (symmetric_gradients.size(), n_quadrature_points); - std::fill (laplacians.begin(), laplacians.end(), value_type()); + std::fill (symmetric_gradients.begin(), symmetric_gradients.end(), + dealii::SymmetricTensor<2,spacedim>()); - for (unsigned int shape_function=0; - shape_functiondofs_per_cell; ++shape_function) - if (shape_function_data[shape_function].is_nonzero_shape_function_component) + for (unsigned int shape_function=0; + shape_function *shape_gradient_ptr = + &shape_gradients[snc][0]; + for (unsigned int q_point=0; q_point grad; + for (unsigned int d=0; d - template - void - Vector:: - get_function_values (const InputVector &fe_function, - std::vector &values) const - { - typedef FEValuesBase FVB; - Assert (fe_values.update_flags & update_values, - typename FVB::ExcAccessToUninitializedField()); - Assert (values.size() == fe_values.n_quadrature_points, - ExcDimensionMismatch(values.size(), fe_values.n_quadrature_points)); - Assert (fe_values.present_cell.get() != 0, - ExcMessage ("FEValues object is not reinit'ed to any cell")); - Assert (fe_function.size() == fe_values.present_cell->n_dofs_for_dof_handler(), - ExcDimensionMismatch(fe_function.size(), - fe_values.present_cell->n_dofs_for_dof_handler())); + template + void + do_function_divergences (const ::dealii::Vector &dof_values, + const std::vector > > &shape_gradients, + const std::vector > &shape_function_data, + std::vector &divergences) + { + const unsigned int dofs_per_cell = dof_values.size(); + const unsigned int n_quadrature_points = dofs_per_cell > 0 ? + shape_gradients[0].size() : divergences.size(); + AssertDimension (divergences.size(), n_quadrature_points); - // get function values of dofs - // on this cell - dealii::Vector::type> dof_values (fe_values.dofs_per_cell); - fe_values.present_cell->get_interpolated_dof_values(fe_function, dof_values); + std::fill (divergences.begin(), divergences.end(), 0.); - std::fill (values.begin(), values.end(), value_type()); + for (unsigned int shape_function=0; + shape_functiondofs_per_cell; ++shape_function) - { - const int snc = shape_function_data[shape_function].single_nonzero_component; + if (snc == -2) + // shape function is zero for the selected components + continue; - if (snc == -2) - // shape function is zero for the - // selected components - continue; + const double value = dof_values(shape_function); + if (value == 0.) + continue; - const double value = dof_values(shape_function); - if (value == 0.) - continue; + if (snc != -1) + { + const unsigned int comp = + shape_function_data[shape_function].single_nonzero_component_index; + const Tensor<1,spacedim> *shape_gradient_ptr = &shape_gradients[snc][0]; + for (unsigned int q_point=0; q_point *shape_gradient_ptr = + &shape_gradients[shape_function_data[shape_function]. + row_index[d]][0]; + for (unsigned int q_point=0; q_point + void + do_function_curls (const ::dealii::Vector &dof_values, + const std::vector > > &shape_gradients, + const std::vector > &shape_function_data, + std::vector::type> &curls) + { + const unsigned int dofs_per_cell = dof_values.size(); + const unsigned int n_quadrature_points = dofs_per_cell > 0 ? + shape_gradients[0].size() : curls.size(); + AssertDimension (curls.size(), n_quadrature_points); + std::fill (curls.begin(), curls.end(), typename dealii::internal::CurlType::type()); - template - template - void - Vector:: - get_function_gradients (const InputVector &fe_function, - std::vector &gradients) const - { - typedef FEValuesBase FVB; - Assert (fe_values.update_flags & update_gradients, - typename FVB::ExcAccessToUninitializedField()); - Assert (gradients.size() == fe_values.n_quadrature_points, - ExcDimensionMismatch(gradients.size(), fe_values.n_quadrature_points)); - Assert (fe_values.present_cell.get() != 0, - ExcMessage ("FEValues object is not reinit'ed to any cell")); - Assert (fe_function.size() == fe_values.present_cell->n_dofs_for_dof_handler(), - ExcDimensionMismatch(fe_function.size(), - fe_values.present_cell->n_dofs_for_dof_handler())); + switch (spacedim) + { + case 1: + { + Assert (false, ExcMessage("Computing the curl in 1d is not a useful operation")); + break; + } - // get function values of dofs - // on this cell - dealii::Vector::type> dof_values (fe_values.dofs_per_cell); - fe_values.present_cell->get_interpolated_dof_values(fe_function, dof_values); + case 2: + { + for (unsigned int shape_function = 0; + shape_function < dofs_per_cell; ++shape_function) + { + const int snc = shape_function_data[shape_function].single_nonzero_component; - std::fill (gradients.begin(), gradients.end(), gradient_type()); + if (snc == -2) + // shape function is zero for the selected components + continue; - for (unsigned int shape_function=0; - shape_functiondofs_per_cell; ++shape_function) - { - const int snc = shape_function_data[shape_function].single_nonzero_component; + const double value = dof_values (shape_function); - if (snc == -2) - // shape function is zero for the - // selected components - continue; + if (value == 0.) + continue; - const double value = dof_values(shape_function); - if (value == 0.) - continue; + if (snc != -1) + { + const Tensor<1, spacedim> *shape_gradient_ptr = + &shape_gradients[snc][0]; - if (snc != -1) - { - const unsigned int comp = - shape_function_data[shape_function].single_nonzero_component_index; - const Tensor<1,spacedim> *shape_gradient_ptr = - &fe_values.shape_gradients[snc][0]; - for (unsigned int q_point=0; q_point *shape_gradient_ptr = - &fe_values.shape_gradients[shape_function_data[shape_function]. - row_index[d]][0]; - for (unsigned int q_point=0; q_point *shape_gradient_ptr = + &shape_gradients[shape_function_data[shape_function].row_index[0]][0]; - template - template - void - Vector:: - get_function_symmetric_gradients (const InputVector &fe_function, - std::vector &symmetric_gradients) const - { - typedef FEValuesBase FVB; - Assert (fe_values.update_flags & update_gradients, - typename FVB::ExcAccessToUninitializedField()); - Assert (symmetric_gradients.size() == fe_values.n_quadrature_points, - ExcDimensionMismatch(symmetric_gradients.size(), fe_values.n_quadrature_points)); - Assert (fe_values.present_cell.get() != 0, - ExcMessage ("FEValues object is not reinit'ed to any cell")); - Assert (fe_function.size() == fe_values.present_cell->n_dofs_for_dof_handler(), - ExcDimensionMismatch(fe_function.size(), - fe_values.present_cell->n_dofs_for_dof_handler())); + for (unsigned int q_point = 0; q_point < n_quadrature_points; ++q_point) + curls[q_point][0] -= value * (*shape_gradient_ptr++)[1]; + } - // get function values of dofs - // on this cell - dealii::Vector::type> dof_values (fe_values.dofs_per_cell); - fe_values.present_cell->get_interpolated_dof_values(fe_function, dof_values); + if (shape_function_data[shape_function].is_nonzero_shape_function_component[1]) + { + const Tensor<1,spacedim> *shape_gradient_ptr = + &shape_gradients[shape_function_data[shape_function].row_index[1]][0]; - std::fill (symmetric_gradients.begin(), symmetric_gradients.end(), - symmetric_gradient_type()); + for (unsigned int q_point = 0; q_point < n_quadrature_points; ++q_point) + curls[q_point][0] += value * (*shape_gradient_ptr++)[0]; + } + } + } + break; + } - for (unsigned int shape_function=0; - shape_functiondofs_per_cell; ++shape_function) - { - const int snc = shape_function_data[shape_function].single_nonzero_component; + case 3: + { + for (unsigned int shape_function = 0; + shape_function < dofs_per_cell; ++shape_function) + { + const int snc = shape_function_data[shape_function].single_nonzero_component; - if (snc == -2) - // shape function is zero for the - // selected components - continue; + if (snc == -2) + // shape function is zero for the selected components + continue; - const double value = dof_values(shape_function); - if (value == 0.) - continue; + const double value = dof_values (shape_function); - if (snc != -1) - { - const unsigned int comp = - shape_function_data[shape_function].single_nonzero_component_index; - const Tensor<1,spacedim> *shape_gradient_ptr = - &fe_values.shape_gradients[snc][0]; - for (unsigned int q_point=0; q_point *shape_gradient_ptr = &shape_gradients[snc][0]; + switch (shape_function_data[shape_function].single_nonzero_component_index) + { + case 0: + { + for (unsigned int q_point = 0; + q_point < n_quadrature_points; ++q_point) + { + curls[q_point][1] += value * (*shape_gradient_ptr)[2]; + curls[q_point][2] -= value * (*shape_gradient_ptr++)[1]; + } - template - template - void - Vector:: - get_function_divergences (const InputVector &fe_function, - std::vector &divergences) const - { - typedef FEValuesBase FVB; - Assert (fe_values.update_flags & update_gradients, - typename FVB::ExcAccessToUninitializedField()); - Assert (divergences.size() == fe_values.n_quadrature_points, - ExcDimensionMismatch(divergences.size(), fe_values.n_quadrature_points)); - Assert (fe_values.present_cell.get() != 0, - ExcMessage ("FEValues object is not reinit'ed to any cell")); - Assert (fe_function.size() == fe_values.present_cell->n_dofs_for_dof_handler(), - ExcDimensionMismatch(fe_function.size(), - fe_values.present_cell->n_dofs_for_dof_handler())); + break; + } - // get function values of dofs - // on this cell - dealii::Vector::type> dof_values (fe_values.dofs_per_cell); - fe_values.present_cell->get_interpolated_dof_values(fe_function, dof_values); + case 1: + { + for (unsigned int q_point = 0; + q_point < n_quadrature_points; ++q_point) + { + curls[q_point][0] -= value * (*shape_gradient_ptr)[2]; + curls[q_point][2] += value * (*shape_gradient_ptr++)[0]; + } - std::fill (divergences.begin(), divergences.end(), divergence_type()); + break; + } - for (unsigned int shape_function=0; - shape_functiondofs_per_cell; ++shape_function) - { - const int snc = shape_function_data[shape_function].single_nonzero_component; + default: + for (unsigned int q_point = 0; + q_point < n_quadrature_points; ++q_point) + { + curls[q_point][0] += value * (*shape_gradient_ptr)[1]; + curls[q_point][1] -= value * (*shape_gradient_ptr++)[0]; + } + } + } - if (snc == -2) - // shape function is zero for the - // selected components - continue; + else + { + if (shape_function_data[shape_function].is_nonzero_shape_function_component[0]) + { + const Tensor<1,spacedim> *shape_gradient_ptr = + &shape_gradients[shape_function_data[shape_function].row_index[0]][0]; - const double value = dof_values(shape_function); - if (value == 0.) - continue; + for (unsigned int q_point = 0; q_point < n_quadrature_points; ++q_point) + { + curls[q_point][1] += value * (*shape_gradient_ptr)[2]; + curls[q_point][2] -= value * (*shape_gradient_ptr++)[1]; + } + } - if (snc != -1) - { - const unsigned int comp = - shape_function_data[shape_function].single_nonzero_component_index; - const Tensor<1,spacedim> *shape_gradient_ptr = - &fe_values.shape_gradients[snc][0]; - for (unsigned int q_point=0; q_point *shape_gradient_ptr = - &fe_values.shape_gradients[shape_function_data[shape_function]. - row_index[d]][0]; - for (unsigned int q_point=0; q_point *shape_gradient_ptr = + &shape_gradients[shape_function_data[shape_function].row_index[1]][0]; - template - template - void - Vector:: - get_function_curls (const InputVector &fe_function, - std::vector &curls) const - { - typedef FEValuesBase FVB; + for (unsigned int q_point = 0; q_point < n_quadrature_points; ++q_point) + { + curls[q_point][0] -= value * (*shape_gradient_ptr)[2]; + curls[q_point][2] += value * (*shape_gradient_ptr++)[0]; + } + } - Assert (fe_values.update_flags & update_gradients, - typename FVB::ExcAccessToUninitializedField()); - Assert (curls.size() == fe_values.n_quadrature_points, - ExcDimensionMismatch (curls.size(), fe_values.n_quadrature_points)); - Assert (fe_values.present_cell.get () != 0, - ExcMessage ("FEValues object is not reinited to any cell")); - Assert (fe_function.size () == fe_values.present_cell->n_dofs_for_dof_handler (), - ExcDimensionMismatch (fe_function.size (), fe_values.present_cell->n_dofs_for_dof_handler ())); - // get function values of dofs on this cell - dealii::Vector::type> dof_values (fe_values.dofs_per_cell); - fe_values.present_cell->get_interpolated_dof_values (fe_function, dof_values); + if (shape_function_data[shape_function].is_nonzero_shape_function_component[2]) + { + const Tensor<1,spacedim> *shape_gradient_ptr = + &shape_gradients[shape_function_data[shape_function].row_index[2]][0]; - std::fill (curls.begin (), curls.end (), curl_type ()); + for (unsigned int q_point = 0; q_point < n_quadrature_points; ++q_point) + { + curls[q_point][0] += value * (*shape_gradient_ptr)[1]; + curls[q_point][1] -= value * (*shape_gradient_ptr++)[0]; + } + } + } + } + } + } + } - switch (dim) - { - case 1: - { - Assert (false, ExcMessage("Computing the curl in 1d is not a useful operation")); - break; - } - case 2: - { - for (unsigned int shape_function = 0; - shape_function < fe_values.fe->dofs_per_cell; ++shape_function) + + template + void + do_function_laplacians (const ::dealii::Vector &dof_values, + const std::vector > > &shape_hessians, + const std::vector > &shape_function_data, + std::vector > &laplacians) + { + const unsigned int dofs_per_cell = dof_values.size(); + const unsigned int n_quadrature_points = dofs_per_cell > 0 ? + shape_hessians[0].size() : laplacians.size(); + AssertDimension (laplacians.size(), n_quadrature_points); + + std::fill (laplacians.begin(), laplacians.end(), Tensor<1,spacedim>()); + + for (unsigned int shape_function=0; + shape_function *shape_gradient_ptr = &fe_values.shape_gradients[snc][0]; - - switch (shape_function_data[shape_function].single_nonzero_component_index) - { - case 0: - { - for (unsigned int q_point = 0; - q_point < fe_values.n_quadrature_points; ++q_point) - curls[q_point][0] -= value * (*shape_gradient_ptr++)[1]; - - break; - } - - default: - for (unsigned int q_point = 0; - q_point < fe_values.n_quadrature_points; ++q_point) - curls[q_point][0] += value * (*shape_gradient_ptr)[0]; - } + const unsigned int comp = + shape_function_data[shape_function].single_nonzero_component_index; + const Tensor<2,spacedim> *shape_hessian_ptr = + &shape_hessians[snc][0]; + for (unsigned int q_point=0; q_point *shape_gradient_ptr = - &fe_values.shape_gradients[shape_function_data[shape_function].row_index[0]][0]; - - for (unsigned int q_point = 0; q_point < fe_values.n_quadrature_points; ++q_point) - curls[q_point][0] -= value * (*shape_gradient_ptr++)[1]; + const Tensor<2,spacedim> *shape_hessian_ptr = + &shape_hessians[shape_function_data[shape_function]. + row_index[d]][0]; + for (unsigned int q_point=0; q_point *shape_gradient_ptr = - &fe_values.shape_gradients[shape_function_data[shape_function].row_index[1]][0]; - for (unsigned int q_point = 0; q_point < fe_values.n_quadrature_points; ++q_point) - curls[q_point][0] += value * (*shape_gradient_ptr++)[0]; - } - } - } - break; - } - case 3: - { - for (unsigned int shape_function = 0; - shape_function < fe_values.fe->dofs_per_cell; ++shape_function) - { - const int snc = shape_function_data[shape_function].single_nonzero_component; + // ---------------------- symmetric tensor part ------------------------ - if (snc == -2) - // shape function is zero for the selected components - continue; + template + void + do_function_values (const ::dealii::Vector &dof_values, + const Table<2,double> &shape_values, + const std::vector::n_independent_components> > &shape_function_data, + std::vector > &values) + { + const unsigned int dofs_per_cell = dof_values.size(); + const unsigned int n_quadrature_points = dofs_per_cell > 0 ? + shape_values.n_cols() : values.size(); + AssertDimension (values.size(), n_quadrature_points); - const double value = dof_values (shape_function); + std::fill (values.begin(), values.end(), + dealii::SymmetricTensor<2,spacedim>()); - if (value == 0.) - continue; + for (unsigned int shape_function=0; + shape_function *shape_gradient_ptr = &fe_values.shape_gradients[snc][0]; + if (snc == -2) + // shape function is zero for the selected components + continue; - switch (shape_function_data[shape_function].single_nonzero_component_index) - { - case 0: - { - for (unsigned int q_point = 0; - q_point < fe_values.n_quadrature_points; ++q_point) - { - curls[q_point][1] += value * (*shape_gradient_ptr)[2]; - curls[q_point][2] -= value * (*shape_gradient_ptr++)[1]; - } + const double value = dof_values(shape_function); + if (value == 0.) + continue; - break; - } + if (snc != -1) + { + const TableIndices<2> comp = + dealii::SymmetricTensor<2,spacedim>::unrolled_to_component_indices + (shape_function_data[shape_function].single_nonzero_component_index); + const double *shape_value_ptr = &shape_values(snc,0); + for (unsigned int q_point=0; q_point::n_independent_components; ++d) + if (shape_function_data[shape_function].is_nonzero_shape_function_component[d]) + { + const TableIndices<2> comp = + dealii::SymmetricTensor<2,spacedim>::unrolled_to_component_indices(d); + const double *shape_value_ptr = + &shape_values(shape_function_data[shape_function].row_index[d],0); + for (unsigned int q_point=0; q_point + void + do_function_divergences (const ::dealii::Vector &dof_values, + const std::vector > > &shape_gradients, + const std::vector::n_independent_components> > &shape_function_data, + std::vector > &divergences) + { + const unsigned int dofs_per_cell = dof_values.size(); + const unsigned int n_quadrature_points = dofs_per_cell > 0 ? + shape_gradients[0].size() : divergences.size(); + AssertDimension (divergences.size(), n_quadrature_points); - else - { - if (shape_function_data[shape_function].is_nonzero_shape_function_component[0]) - { - const Tensor<1,spacedim> *shape_gradient_ptr = - &fe_values.shape_gradients[shape_function_data[shape_function].row_index[0]][0]; + std::fill (divergences.begin(), divergences.end(), Tensor<1,spacedim>()); - for (unsigned int q_point = 0; q_point < fe_values.n_quadrature_points; ++q_point) - { - curls[q_point][1] += value * (*shape_gradient_ptr)[2]; - curls[q_point][2] -= value * (*shape_gradient_ptr++)[1]; - } - } + for (unsigned int shape_function=0; + shape_function *shape_gradient_ptr = - &fe_values.shape_gradients[shape_function_data[shape_function].row_index[1]][0]; + if (snc == -2) + // shape function is zero for the selected components + continue; - for (unsigned int q_point = 0; q_point < fe_values.n_quadrature_points; ++q_point) - { - curls[q_point][0] -= value * (*shape_gradient_ptr)[2]; - curls[q_point][2] += value * (*shape_gradient_ptr++)[0]; - } - } + const double value = dof_values(shape_function); + if (value == 0.) + continue; - if (shape_function_data[shape_function].is_nonzero_shape_function_component[2]) - { - const Tensor<1,spacedim> *shape_gradient_ptr = - &fe_values.shape_gradients[shape_function_data[shape_function].row_index[2]][0]; + if (snc != -1) + { + const unsigned int comp = + shape_function_data[shape_function].single_nonzero_component_index; + + const Tensor < 1, spacedim> *shape_gradient_ptr = + &shape_gradients[snc][0]; + + const unsigned int ii = dealii::SymmetricTensor<2,spacedim>:: + unrolled_to_component_indices(comp)[0]; + const unsigned int jj = dealii::SymmetricTensor<2,spacedim>:: + unrolled_to_component_indices(comp)[1]; + + for (unsigned int q_point = 0; q_point < n_quadrature_points; + ++q_point, ++shape_gradient_ptr) + { + divergences[q_point][ii] += value * (*shape_gradient_ptr)[jj]; - for (unsigned int q_point = 0; q_point < fe_values.n_quadrature_points; ++q_point) + if (ii != jj) + divergences[q_point][jj] += value * (*shape_gradient_ptr)[ii]; + } + } + else + { + for (unsigned int d = 0; + d < dealii::SymmetricTensor<2,spacedim>::n_independent_components; ++d) + if (shape_function_data[shape_function].is_nonzero_shape_function_component[d]) + { + Assert (false, ExcNotImplemented()); + + // the following implementation needs to be looked over -- I + // think it can't be right, because we are in a case where + // there is no single nonzero component + // + // the following is not implemented! we need to consider the + // interplay between mutliple non-zero entries in shape + // function and the representation as a symmetric + // second-order tensor + const unsigned int comp = + shape_function_data[shape_function].single_nonzero_component_index; + + const Tensor < 1, spacedim> *shape_gradient_ptr = + &shape_gradients[shape_function_data[shape_function]. + row_index[d]][0]; + for (unsigned int q_point = 0; q_point < n_quadrature_points; + ++q_point, ++shape_gradient_ptr) { - curls[q_point][0] += value * (*shape_gradient_ptr)[1]; - curls[q_point][1] -= value * (*shape_gradient_ptr++)[0]; + for (unsigned int j = 0; j < spacedim; ++j) + { + const unsigned int vector_component = dealii::SymmetricTensor<2,spacedim>::component_to_unrolled_index (TableIndices<2>(comp,j)); + divergences[q_point][vector_component] += value * (*shape_gradient_ptr++)[j]; + } } } - } - } - } - } + } + } + } + } // end of namespace internal + + + + template + template + void + Scalar:: + get_function_values (const InputVector &fe_function, + std::vector &values) const + { + typedef FEValuesBase FVB; + Assert (fe_values.update_flags & update_values, + typename FVB::ExcAccessToUninitializedField()); + Assert (fe_values.present_cell.get() != 0, + ExcMessage ("FEValues object is not reinit'ed to any cell")); + AssertDimension (fe_function.size(), + fe_values.present_cell->n_dofs_for_dof_handler()); + + // get function values of dofs on this cell and call internal worker function + dealii::Vector dof_values(fe_values.dofs_per_cell); + fe_values.present_cell->get_interpolated_dof_values(fe_function, dof_values); + internal::do_function_values (dof_values, fe_values.shape_values, + reinterpret_cast&>(shape_function_data), + values); } + template template void - Vector:: + Scalar:: + get_function_gradients (const InputVector &fe_function, + std::vector &gradients) const + { + typedef FEValuesBase FVB; + Assert (fe_values.update_flags & update_gradients, + typename FVB::ExcAccessToUninitializedField()); + Assert (fe_values.present_cell.get() != 0, + ExcMessage ("FEValues object is not reinit'ed to any cell")); + AssertDimension (fe_function.size(), + fe_values.present_cell->n_dofs_for_dof_handler()); + + // get function values of dofs on this cell + dealii::Vector dof_values (fe_values.dofs_per_cell); + fe_values.present_cell->get_interpolated_dof_values(fe_function, dof_values); + internal::do_function_derivatives (dof_values, fe_values.shape_gradients, + reinterpret_cast&>(shape_function_data), + gradients); + } + + + + template + template + void + Scalar:: get_function_hessians (const InputVector &fe_function, std::vector &hessians) const { typedef FEValuesBase FVB; Assert (fe_values.update_flags & update_hessians, typename FVB::ExcAccessToUninitializedField()); - Assert (hessians.size() == fe_values.n_quadrature_points, - ExcDimensionMismatch(hessians.size(), fe_values.n_quadrature_points)); Assert (fe_values.present_cell.get() != 0, ExcMessage ("FEValues object is not reinit'ed to any cell")); - Assert (fe_function.size() == fe_values.present_cell->n_dofs_for_dof_handler(), - ExcDimensionMismatch(fe_function.size(), - fe_values.present_cell->n_dofs_for_dof_handler())); + AssertDimension (fe_function.size(), + fe_values.present_cell->n_dofs_for_dof_handler()); + + // get function values of dofs on this cell + dealii::Vector dof_values (fe_values.dofs_per_cell); + fe_values.present_cell->get_interpolated_dof_values(fe_function, dof_values); + internal::do_function_derivatives (dof_values, fe_values.shape_hessians, + reinterpret_cast&>(shape_function_data), + hessians); + } + + + + template + template + void + Scalar:: + get_function_laplacians (const InputVector &fe_function, + std::vector &laplacians) const + { + typedef FEValuesBase FVB; + Assert (fe_values.update_flags & update_hessians, + typename FVB::ExcAccessToUninitializedField()); + Assert (fe_values.present_cell.get() != 0, + ExcMessage ("FEValues object is not reinit'ed to any cell")); + AssertDimension (fe_function.size(), + fe_values.present_cell->n_dofs_for_dof_handler()); + + // get function values of dofs on this cell + dealii::Vector dof_values (fe_values.dofs_per_cell); + fe_values.present_cell->get_interpolated_dof_values(fe_function, dof_values); + internal::do_function_laplacians (dof_values, fe_values.shape_hessians, + reinterpret_cast&>(shape_function_data), + laplacians); + } + + + + template + template + void + Vector:: + get_function_values (const InputVector &fe_function, + std::vector &values) const + { + typedef FEValuesBase FVB; + Assert (fe_values.update_flags & update_values, + typename FVB::ExcAccessToUninitializedField()); + Assert (fe_values.present_cell.get() != 0, + ExcMessage ("FEValues object is not reinit'ed to any cell")); + AssertDimension (fe_function.size(), + fe_values.present_cell->n_dofs_for_dof_handler()); + + // get function values of dofs on this cell + dealii::Vector dof_values (fe_values.dofs_per_cell); + fe_values.present_cell->get_interpolated_dof_values(fe_function, dof_values); + internal::do_function_values (dof_values, fe_values.shape_values, + reinterpret_cast >&>(shape_function_data), + values); + } + + + + + template + template + void + Vector:: + get_function_gradients (const InputVector &fe_function, + std::vector &gradients) const + { + typedef FEValuesBase FVB; + Assert (fe_values.update_flags & update_gradients, + typename FVB::ExcAccessToUninitializedField()); + Assert (fe_values.present_cell.get() != 0, + ExcMessage ("FEValues object is not reinit'ed to any cell")); + AssertDimension (fe_function.size(), + fe_values.present_cell->n_dofs_for_dof_handler()); + + // get function values of dofs on this cell + dealii::Vector dof_values (fe_values.dofs_per_cell); + fe_values.present_cell->get_interpolated_dof_values(fe_function, dof_values); + internal::do_function_derivatives (dof_values, fe_values.shape_gradients, + reinterpret_cast >&>(shape_function_data), + gradients); + } + + + + template + template + void + Vector:: + get_function_symmetric_gradients (const InputVector &fe_function, + std::vector &symmetric_gradients) const + { + typedef FEValuesBase FVB; + Assert (fe_values.update_flags & update_gradients, + typename FVB::ExcAccessToUninitializedField()); + Assert (fe_values.present_cell.get() != 0, + ExcMessage ("FEValues object is not reinit'ed to any cell")); + AssertDimension (fe_function.size(), + fe_values.present_cell->n_dofs_for_dof_handler()); + + // get function values of dofs on this cell + dealii::Vector dof_values (fe_values.dofs_per_cell); + fe_values.present_cell->get_interpolated_dof_values(fe_function, dof_values); + internal::do_function_symmetric_gradients (dof_values, + fe_values.shape_gradients, + reinterpret_cast >&>(shape_function_data), + symmetric_gradients); + } + + + + template + template + void + Vector:: + get_function_divergences (const InputVector &fe_function, + std::vector &divergences) const + { + typedef FEValuesBase FVB; + Assert (fe_values.update_flags & update_gradients, + typename FVB::ExcAccessToUninitializedField()); + Assert (fe_values.present_cell.get() != 0, + ExcMessage ("FEValues object is not reinit'ed to any cell")); + AssertDimension (fe_function.size(), + fe_values.present_cell->n_dofs_for_dof_handler()); // get function values of dofs // on this cell - dealii::Vector::type> dof_values (fe_values.dofs_per_cell); + dealii::Vector dof_values (fe_values.dofs_per_cell); fe_values.present_cell->get_interpolated_dof_values(fe_function, dof_values); + internal::do_function_divergences (dof_values, + fe_values.shape_gradients, + reinterpret_cast >&>(shape_function_data), + divergences); + } - std::fill (hessians.begin(), hessians.end(), hessian_type()); + template + template + void + Vector:: + get_function_curls (const InputVector &fe_function, + std::vector &curls) const + { + typedef FEValuesBase FVB; - for (unsigned int shape_function=0; - shape_functiondofs_per_cell; ++shape_function) - { - const int snc = shape_function_data[shape_function].single_nonzero_component; + Assert (fe_values.update_flags & update_gradients, + typename FVB::ExcAccessToUninitializedField()); + Assert (fe_values.present_cell.get () != 0, + ExcMessage ("FEValues object is not reinited to any cell")); + AssertDimension (fe_function.size (), + fe_values.present_cell->n_dofs_for_dof_handler ()); - if (snc == -2) - // shape function is zero for the - // selected components - continue; + // get function values of dofs on this cell + dealii::Vector dof_values (fe_values.dofs_per_cell); + fe_values.present_cell->get_interpolated_dof_values (fe_function, dof_values); + internal::do_function_curls (dof_values, fe_values.shape_gradients, + reinterpret_cast >&>(shape_function_data), + curls); + } - const double value = dof_values(shape_function); - if (value == 0.) - continue; - if (snc != -1) - { - const unsigned int comp = - shape_function_data[shape_function].single_nonzero_component_index; - const Tensor<2,spacedim> *shape_hessian_ptr = - &fe_values.shape_hessians[snc][0]; - for (unsigned int q_point=0; q_point *shape_hessian_ptr = - &fe_values.shape_hessians[shape_function_data[shape_function]. - row_index[d]][0]; - for (unsigned int q_point=0; q_point + template + void + Vector:: + get_function_hessians (const InputVector &fe_function, + std::vector &hessians) const + { + typedef FEValuesBase FVB; + Assert (fe_values.update_flags & update_hessians, + typename FVB::ExcAccessToUninitializedField()); + Assert (fe_values.present_cell.get() != 0, + ExcMessage ("FEValues object is not reinit'ed to any cell")); + AssertDimension (fe_function.size(), + fe_values.present_cell->n_dofs_for_dof_handler()); + + // get function values of dofs on this cell + dealii::Vector dof_values (fe_values.dofs_per_cell); + fe_values.present_cell->get_interpolated_dof_values(fe_function, dof_values); + internal::do_function_derivatives (dof_values, fe_values.shape_hessians, + reinterpret_cast >&>(shape_function_data), + hessians); } @@ -1052,47 +1324,12 @@ namespace FEValuesViews ExcDimensionMismatch(fe_function.size(), fe_values.present_cell->n_dofs_for_dof_handler())); - // get function values of dofs - // on this cell - dealii::Vector::type> dof_values (fe_values.dofs_per_cell); + // get function values of dofs on this cell + dealii::Vector dof_values (fe_values.dofs_per_cell); fe_values.present_cell->get_interpolated_dof_values(fe_function, dof_values); - - std::fill (laplacians.begin(), laplacians.end(), value_type()); - - for (unsigned int shape_function=0; - shape_functiondofs_per_cell; ++shape_function) - { - const int snc = shape_function_data[shape_function].single_nonzero_component; - - if (snc == -2) - // shape function is zero for the - // selected components - continue; - - const double value = dof_values(shape_function); - if (value == 0.) - continue; - - if (snc != -1) - { - const unsigned int comp = - shape_function_data[shape_function].single_nonzero_component_index; - const Tensor<2,spacedim> *shape_hessian_ptr = - &fe_values.shape_hessians[snc][0]; - for (unsigned int q_point=0; q_point *shape_hessian_ptr = - &fe_values.shape_hessians[shape_function_data[shape_function]. - row_index[d]][0]; - for (unsigned int q_point=0; q_point >&>(shape_function_data), + laplacians); } @@ -1107,57 +1344,17 @@ namespace FEValuesViews typedef FEValuesBase FVB; Assert(fe_values.update_flags & update_values, typename FVB::ExcAccessToUninitializedField()); - Assert(values.size() == fe_values.n_quadrature_points, - ExcDimensionMismatch(values.size(), fe_values.n_quadrature_points)); Assert(fe_values.present_cell.get() != 0, ExcMessage("FEValues object is not reinit'ed to any cell")); - Assert(fe_function.size() == fe_values.present_cell->n_dofs_for_dof_handler(), - ExcDimensionMismatch(fe_function.size(), - fe_values.present_cell->n_dofs_for_dof_handler())); + AssertDimension(fe_function.size(), + fe_values.present_cell->n_dofs_for_dof_handler()); - // get function values of dofs - // on this cell - dealii::Vector::type > dof_values(fe_values.dofs_per_cell); + // get function values of dofs on this cell + dealii::Vector dof_values(fe_values.dofs_per_cell); fe_values.present_cell->get_interpolated_dof_values(fe_function, dof_values); - - std::fill(values.begin(), values.end(), value_type()); - - for (unsigned int shape_function = 0; - shape_function < fe_values.fe->dofs_per_cell; ++shape_function) - { - const int snc = shape_function_data[shape_function].single_nonzero_component; - - if (snc == -2) - // shape function is zero for the - // selected components - continue; - - const double value = dof_values(shape_function); - if (value == 0.) - continue; - - if (snc != -1) - { - const unsigned int comp = - shape_function_data[shape_function].single_nonzero_component_index; - const double *shape_value_ptr = &fe_values.shape_values(snc, 0); - for (unsigned int q_point = 0; q_point < fe_values.n_quadrature_points; ++q_point) - values[q_point][value_type::unrolled_to_component_indices(comp)] - += value * *shape_value_ptr++; - } - else - { - for (unsigned int d = 0; d < value_type::n_independent_components; ++d) - if (shape_function_data[shape_function].is_nonzero_shape_function_component[d]) - { - const double *shape_value_ptr = - &fe_values.shape_values(shape_function_data[shape_function].row_index[d], 0); - for (unsigned int q_point = 0; q_point < fe_values.n_quadrature_points; ++q_point) - values[q_point][value_type::unrolled_to_component_indices(d)] - += value * *shape_value_ptr++; - } - } - } + internal::do_function_values (dof_values, fe_values.shape_values, + reinterpret_cast::n_independent_components> >&>(shape_function_data), + values); } @@ -1172,89 +1369,18 @@ namespace FEValuesViews typedef FEValuesBase FVB; Assert(fe_values.update_flags & update_gradients, typename FVB::ExcAccessToUninitializedField()); - Assert(divergences.size() == fe_values.n_quadrature_points, - ExcDimensionMismatch(divergences.size(), fe_values.n_quadrature_points)); Assert(fe_values.present_cell.get() != 0, ExcMessage("FEValues object is not reinit'ed to any cell")); - Assert(fe_function.size() == fe_values.present_cell->n_dofs_for_dof_handler(), - ExcDimensionMismatch(fe_function.size(), - fe_values.present_cell->n_dofs_for_dof_handler())); + AssertDimension(fe_function.size(), + fe_values.present_cell->n_dofs_for_dof_handler()); // get function values of dofs // on this cell - dealii::Vector::type > dof_values(fe_values.dofs_per_cell); + dealii::Vector dof_values(fe_values.dofs_per_cell); fe_values.present_cell->get_interpolated_dof_values(fe_function, dof_values); - - std::fill(divergences.begin(), divergences.end(), divergence_type()); - - for (unsigned int shape_function = 0; - shape_function < fe_values.fe->dofs_per_cell; ++shape_function) - { - const int snc = shape_function_data[shape_function].single_nonzero_component; - - if (snc == -2) - // shape function is zero for the - // selected components - continue; - - const double value = dof_values(shape_function); - if (value == 0.) - continue; - - if (snc != -1) - { - const unsigned int comp = - shape_function_data[shape_function].single_nonzero_component_index; - - const Tensor < 1, spacedim> *shape_gradient_ptr = - &fe_values.shape_gradients[snc][0]; - - const unsigned int ii = value_type::unrolled_to_component_indices(comp)[0]; - const unsigned int jj = value_type::unrolled_to_component_indices(comp)[1]; - - for (unsigned int q_point = 0; q_point < fe_values.n_quadrature_points; - ++q_point, ++shape_gradient_ptr) - { - - divergences[q_point][ii] += value * (*shape_gradient_ptr)[jj]; - - if (ii != jj) - divergences[q_point][jj] += value * (*shape_gradient_ptr)[ii]; - } - } - else - { - for (unsigned int d = 0; d < value_type::n_independent_components; ++d) - if (shape_function_data[shape_function].is_nonzero_shape_function_component[d]) - { - Assert (false, ExcNotImplemented()); - - // the following implementation needs to be looked over -- I think it - // can't be right, because we are in a case where there is no single - // nonzero component - // - // the following is not implemented! we need to consider the interplay between - // mutliple non-zero entries in shape function and the representation - // as a symmetric second-order tensor - - const unsigned int comp = - shape_function_data[shape_function].single_nonzero_component_index; - - const Tensor < 1, spacedim> *shape_gradient_ptr = - &fe_values.shape_gradients[shape_function_data[shape_function]. - row_index[d]][0]; - for (unsigned int q_point = 0; q_point < fe_values.n_quadrature_points; - ++q_point, ++shape_gradient_ptr) - { - for (unsigned int j = 0; j < dim; ++j) - { - const unsigned int vector_component = value_type::component_to_unrolled_index (TableIndices<2>(comp,j)); - divergences[q_point][vector_component] += value * (*shape_gradient_ptr++)[j]; - } - } - } - } - } + internal::do_function_divergences (dof_values, fe_values.shape_gradients, + reinterpret_cast::n_independent_components> >&>(shape_function_data), + divergences); } } @@ -1318,9 +1444,9 @@ namespace internal // compute number of symmetric // tensors in the same way as above const unsigned int n_symmetric_second_order_tensors - = (fe.n_components() >= (dim*dim + dim)/2 ? - fe.n_components() - (dim*dim + dim)/2 + 1 : - 0); + = (fe.n_components() >= (dim*dim + dim)/2 ? + fe.n_components() - (dim*dim + dim)/2 + 1 : + 0); symmetric_second_order_tensors.resize(n_symmetric_second_order_tensors); for (unsigned int component = 0; component < n_symmetric_second_order_tensors; ++component) { @@ -1626,7 +1752,7 @@ template void FEValuesBase::CellIterator:: get_interpolated_dof_values (const IndexSet &in, - Vector &out) const + Vector &out) const { Assert (cell->has_children() == false, ExcNotImplemented()); @@ -1643,13 +1769,13 @@ get_interpolated_dof_values (const IndexSet &in, template const char *const FEValuesBase::TriaCellIterator::message_string - = ("You have previously called the FEValues::reinit function with a\n" - "cell iterator of type Triangulation::cell_iterator. However,\n" - "when you do this, you cannot call some functions in the FEValues\n" - "class, such as the get_function_values/gradients/hessians\n" - "functions. If you need these functions, then you need to call\n" - "FEValues::reinit with an iterator type that allows to extract\n" - "degrees of freedom, such as DoFHandler::cell_iterator."); += ("You have previously called the FEValues::reinit function with a\n" + "cell iterator of type Triangulation::cell_iterator. However,\n" + "when you do this, you cannot call some functions in the FEValues\n" + "class, such as the get_function_values/gradients/hessians\n" + "functions. If you need these functions, then you need to call\n" + "FEValues::reinit with an iterator type that allows to extract\n" + "degrees of freedom, such as DoFHandler::cell_iterator."); template @@ -1710,7 +1836,7 @@ FEValuesData::initialize (const unsigned int n_quadrature_p // the data by shape function and // nonzero component this->shape_function_to_row_table - = make_shape_function_to_row_table (fe); + = make_shape_function_to_row_table (fe); // count the total number of non-zero // components accumulated over all shape @@ -1815,62 +1941,405 @@ FEValuesBase::~FEValuesBase () +namespace internal +{ + // put shape function part of get_function_xxx methods into separate + // internal functions. this allows us to reuse the same code for several + // functions (e.g. both the versions with and without indices) as well as + // the same code for gradients and Hessians. Moreover, this speeds up + // compilation and reduces the size of the final file since all the + // different global vectors get channeled through the same code. + + template + void + do_function_values (const double *dof_values_ptr, + const Table<2,double> &shape_values, + std::vector &values) + { + // scalar finite elements, so shape_values.size() == dofs_per_cell + const unsigned int dofs_per_cell = shape_values.n_rows(); + const unsigned int n_quadrature_points = dofs_per_cell > 0 ? + shape_values.n_cols() : values.size(); + AssertDimension(values.size(), n_quadrature_points); + + // initialize with zero + std::fill_n (values.begin(), n_quadrature_points, Number()); + + // add up contributions of trial functions. note that here we deal with + // scalar finite elements, so no need to check for non-primitivity of + // shape functions. in order to increase the speed of this function, we + // directly access the data in the shape_values array, and increment + // pointers for accessing the data. this saves some lookup time and + // indexing. moreover, the order of the loops is such that we can access + // the shape_values data stored contiguously + for (unsigned int shape_func=0; shape_func + void + do_function_values (const double *dof_values_ptr, + const Table<2,double> &shape_values, + const FiniteElement &fe, + const std::vector &shape_function_to_row_table, + VectorSlice > &values, + const bool quadrature_points_fastest = false, + const unsigned int component_multiple = 1) + { + const unsigned int dofs_per_cell = fe.dofs_per_cell; + const unsigned int n_quadrature_points = dofs_per_cell > 0 ? + shape_values.n_cols() : 0; + const unsigned int n_components = fe.n_components(); + + // Assert that we can write all components into the result vectors + const unsigned result_components = n_components * component_multiple; + if (quadrature_points_fastest) + { + AssertDimension(values.size(), result_components); + for (unsigned int i=0; i + void + do_function_derivatives (const double *dof_values_ptr, + const std::vector > > &shape_derivatives, + std::vector > &derivatives) + { + const unsigned int dofs_per_cell = shape_derivatives.size(); + const unsigned int n_quadrature_points = dofs_per_cell > 0 ? + shape_derivatives[0].size() : derivatives.size(); + AssertDimension(derivatives.size(), n_quadrature_points); + + // initialize with zero + std::fill_n (derivatives.begin(), n_quadrature_points, Tensor()); + + // add up contributions of trial functions. note that here we deal with + // scalar finite elements, so no need to check for non-primitivity of + // shape functions. in order to increase the speed of this function, we + // directly access the data in the shape_gradients/hessians array, and + // increment pointers for accessing the data. this saves some lookup time + // and indexing. moreover, the order of the loops is such that we can + // access the shape_gradients/hessians data stored contiguously + for (unsigned int shape_func=0; shape_func *shape_derivative_ptr + = &shape_derivatives[shape_func][0]; + for (unsigned int point=0; point + void + do_function_derivatives (const double *dof_values_ptr, + const std::vector > > &shape_derivatives, + const FiniteElement &fe, + const std::vector &shape_function_to_row_table, + VectorSlice > > > &derivatives, + const bool quadrature_points_fastest = false, + const unsigned int component_multiple = 1) + { + const unsigned int dofs_per_cell = fe.dofs_per_cell; + const unsigned int n_quadrature_points = dofs_per_cell > 0 ? + shape_derivatives[0].size() : 0; + const unsigned int n_components = fe.n_components(); + + // Assert that we can write all components into the result vectors + const unsigned result_components = n_components * component_multiple; + if (quadrature_points_fastest) + { + AssertDimension(derivatives.size(), result_components); + for (unsigned int i=0; i()); + + // add up contributions of trial functions. now check whether the shape + // function is primitive or not. if it is, then set its only non-zero + // component, otherwise loop over components + for (unsigned int mc = 0; mc < component_multiple; ++mc) + for (unsigned int shape_func=0; shape_func *shape_derivative_ptr = + &shape_derivatives[row][0]; + + if (quadrature_points_fastest) + for (unsigned int point=0; point *shape_derivative_ptr = + &shape_derivatives[row][0]; + const unsigned int comp = c + mc * n_components; + + if (quadrature_points_fastest) + for (unsigned int point=0; point + void + do_function_laplacians (const double *dof_values_ptr, + const std::vector > > &shape_hessians, + std::vector &laplacians) + { + const unsigned int dofs_per_cell = shape_hessians.size(); + const unsigned int n_quadrature_points = dofs_per_cell > 0 ? + shape_hessians[0].size() : laplacians.size(); + AssertDimension(laplacians.size(), n_quadrature_points); + + // initialize with zero + std::fill_n (laplacians.begin(), n_quadrature_points, Number()); + + // add up contributions of trial functions. note that here we deal with + // scalar finite elements and also note that the Laplacian is + // the trace of the Hessian. + for (unsigned int shape_func=0; shape_func *shape_hessian_ptr + = &shape_hessians[shape_func][0]; + for (unsigned int point=0; point + void + do_function_laplacians (const double *dof_values_ptr, + const std::vector > > &shape_hessians, + const FiniteElement &fe, + const std::vector &shape_function_to_row_table, + std::vector &laplacians, + const bool quadrature_points_fastest = false, + const unsigned int component_multiple = 1) + { + const unsigned int dofs_per_cell = fe.dofs_per_cell; + const unsigned int n_quadrature_points = dofs_per_cell > 0 ? + shape_hessians[0].size() : 0; + const unsigned int n_components = fe.n_components(); + + // Assert that we can write all components into the result vectors + const unsigned result_components = n_components * component_multiple; + if (quadrature_points_fastest) + { + AssertDimension(laplacians.size(), result_components); + for (unsigned int i=0; i *shape_hessian_ptr = + &shape_hessians[row][0]; + if (quadrature_points_fastest) + { + VectorType &laplacians_comp = laplacians[comp]; + for (unsigned int point=0; point *shape_hessian_ptr = + &shape_hessians[row][0]; + const unsigned int comp = c + mc * n_components; + + if (quadrature_points_fastest) + { + VectorType &laplacians_comp = laplacians[comp]; + for (unsigned int point=0; point template void FEValuesBase::get_function_values ( - const InputVector &fe_function, + const InputVector &fe_function, std::vector &values) const { Assert (this->update_flags & update_values, ExcAccessToUninitializedField()); - Assert (fe->n_components() == 1, - ExcDimensionMismatch(fe->n_components(), 1)); - Assert (values.size() == n_quadrature_points, - ExcDimensionMismatch(values.size(), n_quadrature_points)); + AssertDimension (fe->n_components(), 1); Assert (present_cell.get() != 0, ExcMessage ("FEValues object is not reinit'ed to any cell")); - Assert (fe_function.size() == present_cell->n_dofs_for_dof_handler(), - ExcDimensionMismatch(fe_function.size(), - present_cell->n_dofs_for_dof_handler())); + AssertDimension (fe_function.size(), + present_cell->n_dofs_for_dof_handler()); - // get function values of dofs - // on this cell - Vector::type> dof_values (dofs_per_cell); + // get function values of dofs on this cell + Vector dof_values (dofs_per_cell); present_cell->get_interpolated_dof_values(fe_function, dof_values); - - // initialize with zero - std::fill_n (values.begin(), n_quadrature_points, 0); - - // add up contributions of trial - // functions. note that here we - // deal with scalar finite - // elements, so no need to check - // for non-primitivity of shape - // functions. in order to increase - // the speed of this function, we - // directly access the data in the - // shape_values array, and - // increment pointers for accessing - // the data. this saves some lookup - // time and indexing. moreover, the - // order of the loops is such that - // we can access the shape_values - // data stored contiguously (which - // is also advantageous because - // access to dof_values is - // generally more expensive than - // access to the std::vector values - // - so we do the cheaper operation - // in the innermost loop) - for (unsigned int shape_func=0; shape_funcshape_values(shape_func, 0); - for (unsigned int point=0; pointshape_values, + values); } @@ -1883,52 +2352,24 @@ void FEValuesBase::get_function_values ( std::vector &values) const { Assert (this->update_flags & update_values, ExcAccessToUninitializedField()); - // This function fills a single - // component only - Assert (fe->n_components() == 1, - ExcDimensionMismatch(fe->n_components(), 1)); - // One index for each dof - Assert (indices.size() == dofs_per_cell, - ExcDimensionMismatch(indices.size(), dofs_per_cell)); - // This vector has one entry for - // each quadrature point - Assert (values.size() == n_quadrature_points, - ExcDimensionMismatch(values.size(), n_quadrature_points)); - - // initialize with zero - std::fill_n (values.begin(), n_quadrature_points, 0); - - // add up contributions of trial - // functions. note that here we - // deal with scalar finite - // elements, so no need to check - // for non-primitivity of shape - // functions. in order to increase - // the speed of this function, we - // directly access the data in the - // shape_values array, and - // increment pointers for accessing - // the data. this saves some lookup - // time and indexing. moreover, the - // order of the loops is such that - // we can access the shape_values - // data stored contiguously (which - // is also advantageous because - // access to the global vector - // fe_function is more expensive - // than access to the small - // std::vector values - so we do - // the cheaper operation in the - // innermost loop) - for (unsigned int shape_func=0; shape_funcn_components(), 1); + AssertDimension (indices.size(), dofs_per_cell); - const double *shape_value_ptr = &this->shape_values(shape_func, 0); - for (unsigned int point=0; pointshape_values, values); + } + else + { + Vector dof_values(dofs_per_cell); + for (unsigned int i=0; ishape_values, + values); } } @@ -1936,98 +2377,22 @@ void FEValuesBase::get_function_values ( template template -void FEValuesBase::get_function_values ( - const InputVector &fe_function, - std::vector > &values) const -{ -//TODO: Find out how to do this assertion. - // This vector must correspond to a - // complete discretization -// Assert (fe_function.size() == present_cell->get_dof_handler().n_dofs(), -// ExcDimensionMismatch(fe_function.size(), -// present_cell->get_dof_handler().n_dofs())); - // One entry per quadrature point - Assert (present_cell.get() != 0, - ExcMessage ("FEValues object is not reinit'ed to any cell")); - Assert (values.size() == n_quadrature_points, - ExcDimensionMismatch(values.size(), n_quadrature_points)); - - const unsigned int n_components = fe->n_components(); - // Assert that we can write all - // components into the result - // vectors - for (unsigned int i=0; iupdate_flags & update_values, ExcAccessToUninitializedField()); - Assert (fe_function.size() == present_cell->n_dofs_for_dof_handler(), - ExcDimensionMismatch(fe_function.size(), present_cell->n_dofs_for_dof_handler())); - - // get function values of dofs - // on this cell - Vector::type> dof_values (dofs_per_cell); - present_cell->get_interpolated_dof_values(fe_function, dof_values); - - // initialize with zero - for (unsigned int i=0; iis_primitive(shape_func)) - { - const unsigned int comp = fe->system_to_component_index(shape_func).first; - const unsigned int - row = this->shape_function_to_row_table[shape_func * fe->n_components() + comp]; - - const double *shape_value_ptr = &this->shape_values(row, 0); - for (unsigned int point=0; pointget_nonzero_components(shape_func)[c] == false) - continue; - - const unsigned int - row = this->shape_function_to_row_table[shape_func * fe->n_components() + c]; +void FEValuesBase::get_function_values ( + const InputVector &fe_function, + std::vector > &values) const +{ + Assert (present_cell.get() != 0, + ExcMessage ("FEValues object is not reinit'ed to any cell")); - const double *shape_value_ptr = &this->shape_values(row, 0); + Assert (this->update_flags & update_values, ExcAccessToUninitializedField()); + AssertDimension (fe_function.size(), present_cell->n_dofs_for_dof_handler()); - for (unsigned int point=0; point dof_values (dofs_per_cell); + present_cell->get_interpolated_dof_values(fe_function, dof_values); + VectorSlice > > val(values); + internal::do_function_values(dof_values.begin(), this->shape_values, *fe, + this->shape_function_to_row_table, val); } @@ -2039,82 +2404,31 @@ void FEValuesBase::get_function_values ( const VectorSlice > &indices, std::vector > &values) const { - // One value per quadrature point - Assert (n_quadrature_points == values.size(), - ExcDimensionMismatch(values.size(), n_quadrature_points)); - - const unsigned int n_components = fe->n_components(); - - // Size of indices must be a - // multiple of dofs_per_cell such - // that an integer number of - // function values is generated in - // each point. + // Size of indices must be a multiple of dofs_per_cell such that an integer + // number of function values is generated in each point. Assert (indices.size() % dofs_per_cell == 0, ExcNotMultiple(indices.size(), dofs_per_cell)); - - // The number of components of the - // result may be a multiple of the - // number of components of the - // finite element - const unsigned int result_components = indices.size() * n_components / dofs_per_cell; - - for (unsigned int i=0; iupdate_flags & update_values, ExcAccessToUninitializedField()); - // initialize with zero - for (unsigned int i=0; iis_primitive(shape_func)) - { - const unsigned int comp = fe->system_to_component_index(shape_func).first - + mc * n_components; - const unsigned int - row = this->shape_function_to_row_table[shape_func * fe->n_components() + comp]; - - const double *shape_value_ptr = &this->shape_values(row, 0); - for (unsigned int point=0; pointget_nonzero_components(shape_func)[c] == false) - continue; - - const unsigned int - row = this->shape_function_to_row_table[shape_func * fe->n_components() + c]; - - const double *shape_value_ptr = &this->shape_values(row, 0); - const unsigned int comp = c + mc * n_components; - - for (unsigned int point=0; point > > val(values); + if (indices.size() <= 100) + { + double dof_values[100]; + for (unsigned int i=0; ishape_values, *fe, + this->shape_function_to_row_table, val, + false, indices.size()/dofs_per_cell); + } + else + { + Vector dof_values(100); + for (unsigned int i=0; ishape_values, *fe, + this->shape_function_to_row_table, val, + false, indices.size()/dofs_per_cell); + } } @@ -2127,102 +2441,33 @@ void FEValuesBase::get_function_values ( VectorSlice > > values, bool quadrature_points_fastest) const { - const unsigned int n_components = fe->n_components(); + Assert (this->update_flags & update_values, ExcAccessToUninitializedField()); - // Size of indices must be a - // multiple of dofs_per_cell such - // that an integer number of - // function values is generated in - // each point. + // Size of indices must be a multiple of dofs_per_cell such that an integer + // number of function values is generated in each point. Assert (indices.size() % dofs_per_cell == 0, ExcNotMultiple(indices.size(), dofs_per_cell)); - // The number of components of the - // result may be a multiple of the - // number of components of the - // finite element - const unsigned int result_components = indices.size() * n_components / dofs_per_cell; - - // Check if the value argument is - // initialized to the correct sizes - if (quadrature_points_fastest) + if (indices.size() <= 100) { - Assert (values.size() == result_components, - ExcDimensionMismatch(values.size(), result_components)); - for (unsigned int i=0; ishape_values, *fe, + this->shape_function_to_row_table, values, + quadrature_points_fastest, + indices.size()/dofs_per_cell); } else { - Assert(values.size() == n_quadrature_points, - ExcDimensionMismatch(values.size(), n_quadrature_points)); - for (unsigned int i=0; i dof_values(indices.size()); + for (unsigned int i=0; ishape_values, *fe, + this->shape_function_to_row_table, values, + quadrature_points_fastest, + indices.size()/dofs_per_cell); } - - // If the result has more - // components than the finite - // element, we need this number for - // loops filling all components - const unsigned int component_multiple = result_components / n_components; - - Assert (this->update_flags & update_values, ExcAccessToUninitializedField()); - - // initialize with zero - for (unsigned int i=0; iis_primitive(shape_func)) - { - const unsigned int comp = fe->system_to_component_index(shape_func).first - + mc * n_components; - const unsigned int - row = this->shape_function_to_row_table[shape_func * fe->n_components() + comp]; - - const double *shape_value_ptr = &this->shape_values(row, 0); - - if (quadrature_points_fastest) - for (unsigned int point=0; pointget_nonzero_components(shape_func)[c] == false) - continue; - - const unsigned int - row = this->shape_function_to_row_table[shape_func * fe->n_components() + c]; - - const double *shape_value_ptr = &this->shape_values(row, 0); - const unsigned int comp = c + mc * n_components; - - if (quadrature_points_fastest) - for (unsigned int point=0; point::get_function_gradients ( std::vector > &gradients) const { Assert (this->update_flags & update_gradients, ExcAccessToUninitializedField()); - - Assert (fe->n_components() == 1, - ExcDimensionMismatch(fe->n_components(), 1)); - Assert (gradients.size() == n_quadrature_points, - ExcDimensionMismatch(gradients.size(), n_quadrature_points)); + AssertDimension (fe->n_components(), 1); Assert (present_cell.get() != 0, ExcMessage ("FEValues object is not reinit'ed to any cell")); - Assert (fe_function.size() == present_cell->n_dofs_for_dof_handler(), - ExcDimensionMismatch(fe_function.size(), - present_cell->n_dofs_for_dof_handler())); + AssertDimension (fe_function.size(), present_cell->n_dofs_for_dof_handler()); - // get function values of dofs - // on this cell - Vector::type> dof_values (dofs_per_cell); + // get function values of dofs on this cell + Vector dof_values (dofs_per_cell); present_cell->get_interpolated_dof_values(fe_function, dof_values); - - // initialize with zero - std::fill_n (gradients.begin(), n_quadrature_points, Tensor<1,spacedim>()); - - // add up contributions of trial - // functions. note that here we - // deal with scalar finite - // elements, so no need to check - // for non-primitivity of shape - // functions. in order to increase - // the speed of this function, we - // directly access the data in the - // shape_gradients array, and - // increment pointers for accessing - // the data. this saves some lookup - // time and indexing. moreover, the - // order of the loops is such that - // we can access the - // shape_gradients data stored - // contiguously (which is also - // advantageous because access to - // the vector dof_values is - // gerenally more expensive than - // access to the std::vector - // gradients - so we do the cheaper - // operation in the innermost loop) - for (unsigned int shape_func=0; shape_func *shape_gradient_ptr - = &this->shape_gradients[shape_func][0]; - for (unsigned int point=0; pointshape_gradients, + gradients); } @@ -2299,53 +2502,23 @@ void FEValuesBase::get_function_gradients ( std::vector > &gradients) const { Assert (this->update_flags & update_gradients, ExcAccessToUninitializedField()); - // This function fills a single - // component only - Assert (fe->n_components() == 1, - ExcDimensionMismatch(fe->n_components(), 1)); - // One index for each dof - Assert (indices.size() == dofs_per_cell, - ExcDimensionMismatch(indices.size(), dofs_per_cell)); - // This vector has one entry for - // each quadrature point - Assert (gradients.size() == n_quadrature_points, - ExcDimensionMismatch(gradients.size(), n_quadrature_points)); - - // initialize with zero - std::fill_n (gradients.begin(), n_quadrature_points, Tensor<1,spacedim>()); - - // add up contributions of trial - // functions. note that here we - // deal with scalar finite - // elements, so no need to check - // for non-primitivity of shape - // functions. in order to increase - // the speed of this function, we - // directly access the data in the - // shape_gradients array, and - // increment pointers for accessing - // the data. this saves some lookup - // time and indexing. moreover, the - // order of the loops is such that - // we can access the - // shape_gradients data stored - // contiguously (which is also - // advantageous because access to - // the global vector fe_function is - // more expensive than access to - // the small std::vector gradients - // - so we do the cheaper operation - // in the innermost loop) - for (unsigned int shape_func=0; shape_funcn_components(), 1); + AssertDimension (indices.size(), dofs_per_cell); + if (dofs_per_cell <= 100) + { + double dof_values[100]; + for (unsigned int i=0; ishape_gradients, + gradients); + } + else { - const double value = get_vector_element (fe_function, indices[shape_func]); - if (value == 0.) - continue; - - const Tensor<1,spacedim> *shape_gradient_ptr - = &this->shape_gradients[shape_func][0]; - for (unsigned int point=0; point dof_values(dofs_per_cell); + for (unsigned int i=0; ishape_gradients, + gradients); } } @@ -2356,72 +2529,21 @@ template template void FEValuesBase::get_function_gradients ( - const InputVector &fe_function, + const InputVector &fe_function, std::vector > > &gradients) const { - Assert (gradients.size() == n_quadrature_points, - ExcDimensionMismatch(gradients.size(), n_quadrature_points)); - - const unsigned int n_components = fe->n_components(); - for (unsigned int i=0; iupdate_flags & update_gradients, ExcAccessToUninitializedField()); Assert (present_cell.get() != 0, ExcMessage ("FEValues object is not reinit'ed to any cell")); - Assert (fe_function.size() == present_cell->n_dofs_for_dof_handler(), - ExcDimensionMismatch(fe_function.size(), - present_cell->n_dofs_for_dof_handler())); + AssertDimension (fe_function.size(), present_cell->n_dofs_for_dof_handler()); - // get function values of dofs - // on this cell - Vector::type> dof_values (dofs_per_cell); + // get function values of dofs on this cell + Vector dof_values (dofs_per_cell); present_cell->get_interpolated_dof_values(fe_function, dof_values); - - // initialize with zero - for (unsigned int i=0; i()); - - // add up contributions of trial - // functions. now check whether the - // shape function is primitive or - // not. if it is, then set its only - // non-zero component, otherwise - // loop over components - for (unsigned int shape_func=0; shape_funcis_primitive(shape_func)) - { - const unsigned int comp = fe->system_to_component_index(shape_func).first; - const unsigned int - row = this->shape_function_to_row_table[shape_func * fe->n_components() + comp]; - - const Tensor<1,spacedim> *shape_gradient_ptr - = &this->shape_gradients[row][0]; - for (unsigned int point=0; pointget_nonzero_components(shape_func)[c] == false) - continue; - - const unsigned int - row = this->shape_function_to_row_table[shape_func * fe->n_components() + c]; - - const Tensor<1,spacedim> *shape_gradient_ptr - = &this->shape_gradients[row][0]; - - for (unsigned int point=0; point > > > grads(gradients); + internal::do_function_derivatives(dof_values.begin(), this->shape_gradients, + *fe, this->shape_function_to_row_table, + grads); } @@ -2434,104 +2556,31 @@ void FEValuesBase::get_function_gradients ( VectorSlice > > > gradients, bool quadrature_points_fastest) const { - const unsigned int n_components = fe->n_components(); - - // Size of indices must be a - // multiple of dofs_per_cell such - // that an integer number of - // function values is generated in - // each point. + // Size of indices must be a multiple of dofs_per_cell such that an integer + // number of function values is generated in each point. Assert (indices.size() % dofs_per_cell == 0, ExcNotMultiple(indices.size(), dofs_per_cell)); - - // The number of components of the - // result may be a multiple of the - // number of components of the - // finite element - const unsigned int result_components = indices.size() * n_components / dofs_per_cell; - - // Check if the value argument is - // initialized to the correct sizes - if (quadrature_points_fastest) + Assert (this->update_flags & update_gradients, ExcAccessToUninitializedField()); + if (indices.size() <= 100) { - Assert (gradients.size() == result_components, - ExcDimensionMismatch(gradients.size(), result_components)); - for (unsigned int i=0; ishape_gradients, + *fe, this->shape_function_to_row_table, + gradients, quadrature_points_fastest, + indices.size()/dofs_per_cell); } else { - Assert(gradients.size() == n_quadrature_points, - ExcDimensionMismatch(gradients.size(), n_quadrature_points)); - for (unsigned int i=0; i dof_values(indices.size()); + for (unsigned int i=0; ishape_gradients, + *fe, this->shape_function_to_row_table, + gradients, quadrature_points_fastest, + indices.size()/dofs_per_cell); } - - // If the result has more - // components than the finite - // element, we need this number for - // loops filling all components - const unsigned int component_multiple = result_components / n_components; - - Assert (this->update_flags & update_gradients, ExcAccessToUninitializedField()); - - // initialize with zero - for (unsigned int i=0; i()); - - // add up contributions of trial - // functions. now check whether the - // shape function is primitive or - // not. if it is, then set its only - // non-zero component, otherwise - // loop over components - for (unsigned int mc = 0; mc < component_multiple; ++mc) - for (unsigned int shape_func=0; shape_funcis_primitive(shape_func)) - { - const unsigned int comp = fe->system_to_component_index(shape_func).first - + mc * n_components; - const unsigned int - row = this->shape_function_to_row_table[shape_func * fe->n_components() + comp]; - - const Tensor<1,spacedim> *shape_gradient_ptr - = &this->shape_gradients[row][0]; - - if (quadrature_points_fastest) - for (unsigned int point=0; pointget_nonzero_components(shape_func)[c] == false) - continue; - - const unsigned int - row = this->shape_function_to_row_table[shape_func * fe->n_components() + c]; - - const Tensor<1,spacedim> *shape_gradient_ptr - = &this->shape_gradients[row][0]; - const unsigned int comp = c + mc * n_components; - - if (quadrature_points_fastest) - for (unsigned int point=0; point template void FEValuesBase:: -get_function_hessians (const InputVector &fe_function, +get_function_hessians (const InputVector &fe_function, std::vector > &hessians) const { - Assert (fe->n_components() == 1, - ExcDimensionMismatch(fe->n_components(), 1)); - Assert (hessians.size() == n_quadrature_points, - ExcDimensionMismatch(hessians.size(), n_quadrature_points)); + AssertDimension (fe->n_components(), 1); Assert (this->update_flags & update_hessians, ExcAccessToUninitializedField()); Assert (present_cell.get() != 0, ExcMessage ("FEValues object is not reinit'ed to any cell")); - Assert (fe_function.size() == present_cell->n_dofs_for_dof_handler(), - ExcDimensionMismatch(fe_function.size(), - present_cell->n_dofs_for_dof_handler())); + AssertDimension (fe_function.size(), present_cell->n_dofs_for_dof_handler()); - // get function values of dofs - // on this cell - Vector::type> dof_values (dofs_per_cell); + // get function values of dofs on this cell + Vector dof_values (dofs_per_cell); present_cell->get_interpolated_dof_values(fe_function, dof_values); - - // initialize with zero - std::fill_n (hessians.begin(), n_quadrature_points, Tensor<2,spacedim>()); - - // add up contributions of trial - // functions. note that here we - // deal with scalar finite - // elements, so no need to check - // for non-primitivity of shape - // functions - for (unsigned int shape_func=0; shape_func *shape_hessians_ptr - = &this->shape_hessians[shape_func][0]; - for (unsigned int point=0; pointshape_hessians, + hessians); } @@ -2590,38 +2614,25 @@ void FEValuesBase::get_function_hessians ( const VectorSlice > &indices, std::vector > &hessians) const { - Assert (this->update_flags & update_second_derivatives, ExcAccessToUninitializedField()); - // This function fills a single - // component only - Assert (fe->n_components() == 1, - ExcDimensionMismatch(fe->n_components(), 1)); - // One index for each dof - Assert (indices.size() == dofs_per_cell, - ExcDimensionMismatch(indices.size(), dofs_per_cell)); - // This vector has one entry for - // each quadrature point - Assert (hessians.size() == n_quadrature_points, - ExcDimensionMismatch(hessians.size(), n_quadrature_points)); - - // initialize with zero - std::fill_n (hessians.begin(), n_quadrature_points, Tensor<2,spacedim>()); - - // add up contributions of trial - // functions. note that here we - // deal with scalar finite - // elements, so no need to check - // for non-primitivity of shape - // functions - for (unsigned int shape_func=0; shape_funcupdate_flags & update_second_derivatives, + ExcAccessToUninitializedField()); + AssertDimension (fe_function.size(), present_cell->n_dofs_for_dof_handler()); + AssertDimension (indices.size(), dofs_per_cell); + if (dofs_per_cell <= 100) + { + double dof_values[100]; + for (unsigned int i=0; ishape_hessians, + hessians); + } + else { - const double value = get_vector_element (fe_function, indices[shape_func]); - if (value == 0.) - continue; - - const Tensor<2,spacedim> *shape_hessians_ptr - = &this->shape_hessians[shape_func][0]; - for (unsigned int point=0; point dof_values(dofs_per_cell); + for (unsigned int i=0; ishape_hessians, + hessians); } } @@ -2636,74 +2647,18 @@ get_function_hessians (const InputVector &fe_function, std::vector > > &hessians, bool quadrature_points_fastest) const { - Assert (n_quadrature_points == hessians.size(), - ExcDimensionMismatch(hessians.size(), n_quadrature_points)); - - const unsigned int n_components = fe->n_components(); - for (unsigned int i=0; iupdate_flags & update_hessians, ExcAccessToUninitializedField()); Assert (present_cell.get() != 0, ExcMessage ("FEValues object is not reinit'ed to any cell")); - Assert (fe_function.size() == present_cell->n_dofs_for_dof_handler(), - ExcDimensionMismatch(fe_function.size(), - present_cell->n_dofs_for_dof_handler())); + AssertDimension (fe_function.size(), present_cell->n_dofs_for_dof_handler()); - // get function values of dofs - // on this cell - Vector::type> dof_values (dofs_per_cell); + // get function values of dofs on this cell + Vector dof_values (dofs_per_cell); present_cell->get_interpolated_dof_values(fe_function, dof_values); - - // initialize with zero - for (unsigned int i=0; i()); - - // add up contributions of trial - // functions - for (unsigned int shape_func=0; shape_funcis_primitive(shape_func)) - { - const unsigned int comp = fe->system_to_component_index(shape_func).first; - const unsigned int - row = this->shape_function_to_row_table[shape_func * fe->n_components() + comp]; - - const Tensor<2,spacedim> *shape_hessian_ptr - = &this->shape_hessians[row][0]; - - if (quadrature_points_fastest) - for (unsigned int point=0; pointget_nonzero_components(shape_func)[c] == false) - continue; - - const unsigned int - row = this->shape_function_to_row_table[shape_func * fe->n_components() + c]; - - const Tensor<2,spacedim> *shape_hessian_ptr - = &this->shape_hessians[row][0]; - - if (quadrature_points_fastest) - for (unsigned int point=0; point > > > hes(hessians); + internal::do_function_derivatives(dof_values.begin(), this->shape_hessians, + *fe, this->shape_function_to_row_table, + hes, quadrature_points_fastest); } @@ -2716,104 +2671,30 @@ void FEValuesBase::get_function_hessians ( VectorSlice > > > hessians, bool quadrature_points_fastest) const { - Assert (this->update_flags & update_second_derivatives, ExcAccessToUninitializedField()); - - const unsigned int n_components = fe->n_components(); - - // Size of indices must be a - // multiple of dofs_per_cell such - // that an integer number of - // function values is generated in - // each point. + Assert (this->update_flags & update_second_derivatives, + ExcAccessToUninitializedField()); Assert (indices.size() % dofs_per_cell == 0, ExcNotMultiple(indices.size(), dofs_per_cell)); - - // The number of components of the - // result may be a multiple of the - // number of components of the - // finite element - const unsigned int result_components = indices.size() * n_components / dofs_per_cell; - - // Check if the value argument is - // initialized to the correct sizes - if (quadrature_points_fastest) + if (indices.size() <= 100) { - Assert (hessians.size() == result_components, - ExcDimensionMismatch(hessians.size(), result_components)); - for (unsigned int i=0; ishape_hessians, + *fe, this->shape_function_to_row_table, + hessians, quadrature_points_fastest, + indices.size()/dofs_per_cell); } else { - Assert(hessians.size() == n_quadrature_points, - ExcDimensionMismatch(hessians.size(), n_quadrature_points)); - for (unsigned int i=0; i dof_values(indices.size()); + for (unsigned int i=0; ishape_hessians, + *fe, this->shape_function_to_row_table, + hessians, quadrature_points_fastest, + indices.size()/dofs_per_cell); } - - // If the result has more - // components than the finite - // element, we need this number for - // loops filling all components - const unsigned int component_multiple = result_components / n_components; - - // initialize with zero - for (unsigned int i=0; i()); - - // add up contributions of trial - // functions. now check whether the - // shape function is primitive or - // not. if it is, then set its only - // non-zero component, otherwise - // loop over components - for (unsigned int mc = 0; mc < component_multiple; ++mc) - for (unsigned int shape_func=0; shape_funcis_primitive(shape_func)) - { - const unsigned int comp = fe->system_to_component_index(shape_func).first - + mc * n_components; - const unsigned int - row = this->shape_function_to_row_table[shape_func * fe->n_components() + comp]; - - const Tensor<2,spacedim> *shape_hessian_ptr - = &this->shape_hessians[row][0]; - - if (quadrature_points_fastest) - for (unsigned int point=0; pointget_nonzero_components(shape_func)[c] == false) - continue; - - const unsigned int - row = this->shape_function_to_row_table[shape_func * fe->n_components() + c]; - - const Tensor<2,spacedim> *shape_hessian_ptr - = &this->shape_hessians[row][0]; - const unsigned int comp = c + mc * n_components; - - if (quadrature_points_fastest) - for (unsigned int point=0; point::get_function_laplacians ( std::vector &laplacians) const { Assert (this->update_flags & update_hessians, ExcAccessToUninitializedField()); - Assert (fe->n_components() == 1, - ExcDimensionMismatch(fe->n_components(), 1)); - Assert (laplacians.size() == n_quadrature_points, - ExcDimensionMismatch(laplacians.size(), n_quadrature_points)); + AssertDimension (fe->n_components(), 1); Assert (present_cell.get() != 0, ExcMessage ("FEValues object is not reinit'ed to any cell")); - Assert (fe_function.size() == present_cell->n_dofs_for_dof_handler(), - ExcDimensionMismatch(fe_function.size(), - present_cell->n_dofs_for_dof_handler())); + AssertDimension (fe_function.size(), present_cell->n_dofs_for_dof_handler()); - // get function values of dofs - // on this cell - Vector::type> dof_values (dofs_per_cell); + // get function values of dofs on this cell + Vector dof_values (dofs_per_cell); present_cell->get_interpolated_dof_values(fe_function, dof_values); - - // initialize with zero - std::fill_n (laplacians.begin(), n_quadrature_points, 0); - - // add up contributions of trial - // functions. note that here we - // deal with scalar finite - // elements, so no need to check - // for non-primitivity of shape - // functions. note that the - // laplacian is the trace of the - // hessian, so we use a pointer to - // the hessians and get their trace - for (unsigned int shape_func=0; shape_func *shape_hessian_ptr - = &this->shape_hessians[shape_func][0]; - for (unsigned int point=0; pointshape_hessians, + laplacians); } @@ -2875,40 +2728,23 @@ void FEValuesBase::get_function_laplacians ( std::vector &laplacians) const { Assert (this->update_flags & update_hessians, ExcAccessToUninitializedField()); - // This function fills a single - // component only - Assert (fe->n_components() == 1, - ExcDimensionMismatch(fe->n_components(), 1)); - // One index for each dof - Assert (indices.size() == dofs_per_cell, - ExcDimensionMismatch(indices.size(), dofs_per_cell)); - // This vector has one entry for - // each quadrature point - Assert (laplacians.size() == n_quadrature_points, - ExcDimensionMismatch(laplacians.size(), n_quadrature_points)); - - // initialize with zero - std::fill_n (laplacians.begin(), n_quadrature_points, 0); - - // add up contributions of trial - // functions. note that here we - // deal with scalar finite - // elements, so no need to check - // for non-primitivity of shape - // functions. note that the - // laplacian is the trace of the - // hessian, so we use a pointer to - // the hessians and get their trace - for (unsigned int shape_func=0; shape_funcn_components(), 1); + AssertDimension (indices.size(), dofs_per_cell); + if (dofs_per_cell <= 100) + { + double dof_values[100]; + for (unsigned int i=0; ishape_hessians, + laplacians); + } + else { - const double value = get_vector_element (fe_function, indices[shape_func]); - if (value == 0.) - continue; - - const Tensor<2,spacedim> *shape_hessian_ptr - = &this->shape_hessians[shape_func][0]; - for (unsigned int point=0; point dof_values(dofs_per_cell); + for (unsigned int i=0; ishape_hessians, + laplacians); } } @@ -2920,78 +2756,17 @@ void FEValuesBase::get_function_laplacians ( const InputVector &fe_function, std::vector > &laplacians) const { -//TODO: Find out how to do this assertion. - // This vector must correspond to a - // complete discretization -// Assert (fe_function.size() == present_cell->get_dof_handler().n_dofs(), -// ExcDimensionMismatch(fe_function.size(), -// present_cell->get_dof_handler().n_dofs())); - // One entry per quadrature point Assert (present_cell.get() != 0, ExcMessage ("FEValues object is not reinit'ed to any cell")); - Assert (laplacians.size() == n_quadrature_points, - ExcDimensionMismatch(laplacians.size(), n_quadrature_points)); - - const unsigned int n_components = fe->n_components(); - // Assert that we can write all - // components into the result - // vectors - for (unsigned int i=0; iupdate_flags & update_hessians, ExcAccessToUninitializedField()); - Assert (fe_function.size() == present_cell->n_dofs_for_dof_handler(), - ExcDimensionMismatch(fe_function.size(), present_cell->n_dofs_for_dof_handler())); + AssertDimension (fe_function.size(), present_cell->n_dofs_for_dof_handler()); - // get function values of dofs - // on this cell - Vector::type> dof_values (dofs_per_cell); + // get function values of dofs on this cell + Vector dof_values (dofs_per_cell); present_cell->get_interpolated_dof_values(fe_function, dof_values); - - // initialize with zero - for (unsigned int i=0; iis_primitive(shape_func)) - { - const unsigned int comp = fe->system_to_component_index(shape_func).first; - const unsigned int - row = this->shape_function_to_row_table[shape_func * fe->n_components() + comp]; - - const Tensor<2,spacedim> *shape_hessian_ptr - = &this->shape_hessians[row][0]; - for (unsigned int point=0; pointget_nonzero_components(shape_func)[c] == false) - continue; - - const unsigned int - row = this->shape_function_to_row_table[shape_func * fe->n_components() + c]; - - const Tensor<2,spacedim> *shape_hessian_ptr - = &this->shape_hessians[row][0]; - - for (unsigned int point=0; pointshape_hessians, + *fe, this->shape_function_to_row_table, + laplacians); } @@ -3003,84 +2778,31 @@ void FEValuesBase::get_function_laplacians ( const VectorSlice > &indices, std::vector > &laplacians) const { - // One value per quadrature point - Assert (n_quadrature_points == laplacians.size(), - ExcDimensionMismatch(laplacians.size(), n_quadrature_points)); - - const unsigned int n_components = fe->n_components(); - - // Size of indices must be a - // multiple of dofs_per_cell such - // that an integer number of - // function values is generated in - // each point. + // Size of indices must be a multiple of dofs_per_cell such that an integer + // number of function values is generated in each point. Assert (indices.size() % dofs_per_cell == 0, ExcNotMultiple(indices.size(), dofs_per_cell)); - - // The number of components of the - // result may be a multiple of the - // number of components of the - // finite element - const unsigned int result_components = indices.size() * n_components / dofs_per_cell; - - for (unsigned int i=0; iupdate_flags & update_hessians, ExcAccessToUninitializedField()); - - // initialize with zero - for (unsigned int i=0; iis_primitive(shape_func)) - { - const unsigned int comp = fe->system_to_component_index(shape_func).first - + mc * n_components; - const unsigned int - row = this->shape_function_to_row_table[shape_func * fe->n_components() + comp]; - - const Tensor<2,spacedim> *shape_hessian_ptr - = &this->shape_hessians[row][0]; - for (unsigned int point=0; pointget_nonzero_components(shape_func)[c] == false) - continue; - - const unsigned int - row = this->shape_function_to_row_table[shape_func * fe->n_components() + c]; - - const Tensor<2,spacedim> *shape_hessian_ptr - = &this->shape_hessians[row][0]; - const unsigned int comp = c + mc * n_components; - - for (unsigned int point=0; pointshape_hessians, + *fe, this->shape_function_to_row_table, + laplacians, false, + indices.size()/dofs_per_cell); + } + else + { + Vector dof_values(indices.size()); + for (unsigned int i=0; ishape_hessians, + *fe, this->shape_function_to_row_table, + laplacians, false, + indices.size()/dofs_per_cell); + } } @@ -3093,104 +2815,29 @@ void FEValuesBase::get_function_laplacians ( std::vector > &laplacians, bool quadrature_points_fastest) const { - const unsigned int n_components = fe->n_components(); - - // Size of indices must be a - // multiple of dofs_per_cell such - // that an integer number of - // function values is generated in - // each point. Assert (indices.size() % dofs_per_cell == 0, ExcNotMultiple(indices.size(), dofs_per_cell)); - - // The number of components of the - // result may be a multiple of the - // number of components of the - // finite element - const unsigned int result_components = indices.size() * n_components / dofs_per_cell; - - // Check if the value argument is - // initialized to the correct sizes - if (quadrature_points_fastest) + Assert (this->update_flags & update_hessians, ExcAccessToUninitializedField()); + if (indices.size() <= 100) { - Assert (laplacians.size() == result_components, - ExcDimensionMismatch(laplacians.size(), result_components)); - for (unsigned int i=0; ishape_hessians, + *fe, this->shape_function_to_row_table, + laplacians, quadrature_points_fastest, + indices.size()/dofs_per_cell); } else { - Assert(laplacians.size() == n_quadrature_points, - ExcDimensionMismatch(laplacians.size(), n_quadrature_points)); - for (unsigned int i=0; i dof_values(indices.size()); + for (unsigned int i=0; ishape_hessians, + *fe, this->shape_function_to_row_table, + laplacians, quadrature_points_fastest, + indices.size()/dofs_per_cell); } - - // If the result has more - // components than the finite - // element, we need this number for - // loops filling all components - const unsigned int component_multiple = result_components / n_components; - - Assert (this->update_flags & update_hessians, ExcAccessToUninitializedField()); - - // initialize with zero - for (unsigned int i=0; iis_primitive(shape_func)) - { - const unsigned int comp = fe->system_to_component_index(shape_func).first - + mc * n_components; - const unsigned int - row = this->shape_function_to_row_table[shape_func * fe->n_components() + comp]; - - const Tensor<2,spacedim> *shape_hessian_ptr - = &this->shape_hessians[row][0]; - - if (quadrature_points_fastest) - for (unsigned int point=0; pointget_nonzero_components(shape_func)[c] == false) - continue; - - const unsigned int - row = this->shape_function_to_row_table[shape_func * fe->n_components() + c]; - - const Tensor<2,spacedim> *shape_hessian_ptr - = &this->shape_hessians[row][0]; - const unsigned int comp = c + mc * n_components; - - if (quadrature_points_fastest) - for (unsigned int point=0; point &out) const = 0; + Vector &out) const = 0; } diff --git a/deal.II/source/fe/fe_values.decl.2.inst.in b/deal.II/source/fe/fe_values.decl.2.inst.in index 9ceed9e646..ea74d7d29e 100644 --- a/deal.II/source/fe/fe_values.decl.2.inst.in +++ b/deal.II/source/fe/fe_values.decl.2.inst.in @@ -23,6 +23,6 @@ for (VEC : SERIAL_VECTORS) /// given arguments. virtual void - get_interpolated_dof_values (const VEC &in, - Vector &out) const; + get_interpolated_dof_values (const VEC &in, + Vector &out) const; } diff --git a/deal.II/source/fe/fe_values.impl.1.inst.in b/deal.II/source/fe/fe_values.impl.1.inst.in index ef05984ca9..2bc5e86253 100644 --- a/deal.II/source/fe/fe_values.impl.1.inst.in +++ b/deal.II/source/fe/fe_values.impl.1.inst.in @@ -17,8 +17,8 @@ for (VEC : SERIAL_VECTORS) template void FEValuesBase::CellIterator:: - get_interpolated_dof_values (const VEC &in, - Vector &out) const + get_interpolated_dof_values (const VEC &in, + Vector &out) const \{ cell->get_interpolated_dof_values (in, out); \} diff --git a/deal.II/source/fe/fe_values.impl.2.inst.in b/deal.II/source/fe/fe_values.impl.2.inst.in index 0304e045f0..5abe9d29fd 100644 --- a/deal.II/source/fe/fe_values.impl.2.inst.in +++ b/deal.II/source/fe/fe_values.impl.2.inst.in @@ -17,7 +17,7 @@ for (VEC : SERIAL_VECTORS) void FEValuesBase::TriaCellIterator:: get_interpolated_dof_values (const VEC &, - Vector &) const + Vector &) const \{ Assert (false, ExcMessage (message_string)); \}