From: Timo Heister Date: Fri, 15 Jan 2021 22:25:50 +0000 (-0500) Subject: address comments X-Git-Tag: v9.3.0-rc1~611^2 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=refs%2Fpull%2F11560%2Fhead;p=dealii.git address comments --- diff --git a/include/deal.II/simplex/fe_lib.h b/include/deal.II/simplex/fe_lib.h index 72628de30d..a70a5cda07 100644 --- a/include/deal.II/simplex/fe_lib.h +++ b/include/deal.II/simplex/fe_lib.h @@ -79,7 +79,7 @@ namespace Simplex /** * Implementation of a scalar Lagrange finite element $P_k$ that yields * the finite element space of continuous, piecewise polynomials of - * degree k. + * degree $k$. * * @ingroup simplex */ @@ -131,9 +131,10 @@ namespace Simplex /** - * Implementation of a scalar Lagrange finite element Pp that yields - * the finite element space of discontinuous, piecewise polynomials of - * degree p. + * Implementation of a scalar discontinuous Lagrange finite element + * $P_k$, sometimes denoted as $P_{-k}$, that yields the finite + * element space of discontinuous, piecewise polynomials of degree + * $k$. * * @ingroup simplex */ @@ -204,7 +205,7 @@ namespace Simplex /** * Implementation of a scalar Lagrange finite element on a wedge that yields * the finite element space of continuous, piecewise polynomials of - * degree p. + * degree $k$. * * @ingroup simplex */ @@ -263,7 +264,7 @@ namespace Simplex /** * Implementation of a scalar Lagrange finite element on a wedge that yields * the finite element space of discontinuous, piecewise polynomials of - * degree p. + * degree $k$. * * @ingroup simplex */ @@ -313,7 +314,7 @@ namespace Simplex /** * Implementation of a scalar Lagrange finite element on a pyramid that yields * the finite element space of continuous, piecewise polynomials of - * degree p. + * degree $k$. * * @ingroup simplex */ @@ -372,7 +373,7 @@ namespace Simplex /** * Implementation of a scalar Lagrange finite element on a pyramid that yields * the finite element space of discontinuous, piecewise polynomials of - * degree p. + * degree $k$. * * @ingroup simplex */