From: Wolfgang Bangerth Date: Mon, 24 Aug 2015 03:32:16 +0000 (-0500) Subject: Reshuffle and group member declarations of MappingQ1. X-Git-Tag: v8.4.0-rc2~552^2 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=refs%2Fpull%2F1422%2Fhead;p=dealii.git Reshuffle and group member declarations of MappingQ1. --- diff --git a/include/deal.II/fe/mapping_q1.h b/include/deal.II/fe/mapping_q1.h index b2663d9122..14a1cba1cb 100644 --- a/include/deal.II/fe/mapping_q1.h +++ b/include/deal.II/fe/mapping_q1.h @@ -34,18 +34,20 @@ DEAL_II_NAMESPACE_OPEN /** - * Mapping of general quadrilateral/hexahedra by d-linear shape functions. + * Mapping of the reference to cell to a general + * quadrilateral/hexahedra by $d$-linear shape functions. * - * This function maps the unit cell to a general grid cell with straight lines - * in $d$ dimensions (remark that in 3D the surfaces may be curved, even if - * the edges are not). This is the well-known mapping for polyhedral domains. + * This function maps the reference (unit) cell to a general grid cell with + * straight lines in $d$ dimensions. (Note, however, that in 3D the + * faces of a general, trilinearly mapped cell may be curved, even if the + * edges are not). This is the standard mapping used for polyhedral domains. It + * is also the mapping used throughout deal.II for many functions that two + * variants, one that allows to pass a mapping argument explicitly and one + * that simply falls back to the MappingQ1 class declared here. * - * Shape function for this mapping are the same as for the finite element FE_Q + * The shape functions for this mapping are the same as for the finite element FE_Q * of order 1. Therefore, coupling these two yields an isoparametric element. * - * For more information about the spacedim template parameter check - * the documentation of FiniteElement or the one of Triangulation. - * * @author Guido Kanschat, 2000, 2001; Ralf Hartmann, 2000, 2001, 2005 */ template @@ -57,37 +59,43 @@ public: */ MappingQ1 (); - virtual Point - transform_unit_to_real_cell ( - const typename Triangulation::cell_iterator &cell, - const Point &p) const; + // for documentation, see the Mapping base class + virtual + Mapping *clone () const; /** - * Transforms the point @p p on the real cell to the point @p p_unit on the - * unit cell @p cell and returns @p p_unit. - * - * Uses Newton iteration and the @p transform_unit_to_real_cell function. - * - * In the codimension one case, this function returns the normal projection - * of the real point @p p on the curve or surface identified by the @p cell. - * - * @note Polynomial mappings from the reference (unit) cell coordinates to - * the coordinate system of a real cell are not always invertible if the - * point for which the inverse mapping is to be computed lies outside the - * cell's boundaries. In such cases, the current function may fail to - * compute a point on the reference cell whose image under the mapping - * equals the given point @p p. If this is the case then this function - * throws an exception of type Mapping::ExcTransformationFailed . Whether - * the given point @p p lies outside the cell can therefore be determined by - * checking whether the return reference coordinates lie inside of outside - * the reference cell (e.g., using GeometryInfo::is_inside_unit_cell) or - * whether the exception mentioned above has been thrown. + * Always returns @p true because MappingQ1 preserves vertex locations. */ virtual + bool preserves_vertex_locations () const; + + /** + * @name Mapping points between reference and real cells + * @{ + */ + + // for documentation, see the Mapping base class + virtual + Point + transform_unit_to_real_cell (const typename Triangulation::cell_iterator &cell, + const Point &p) const; + + // for documentation, see the Mapping base class + virtual Point transform_real_to_unit_cell (const typename Triangulation::cell_iterator &cell, const Point &p) const; + /** + * @} + */ + + /** + * @name Functions to transform tensors from reference to real coordinates + * @{ + */ + + // for documentation, see the Mapping base class virtual void transform (const VectorSlice > > input, @@ -122,6 +130,7 @@ public: VectorSlice > > output, const typename Mapping::InternalDataBase &internal, const MappingType type) const; + // for documentation, see the Mapping base class protected: @@ -167,22 +176,6 @@ protected: const typename Mapping::InternalDataBase &internal, const MappingType type) const; -public: - - /** - * Return a pointer to a copy of the present object. The caller of this copy - * then assumes ownership of it. - */ - virtual - Mapping *clone () const; - - - /** - * Always returns @p true because MappingQ1 preserves vertex locations. - */ - virtual - bool preserves_vertex_locations () const; - /** * @name Interface with FEValues @@ -544,6 +537,7 @@ protected: }; +#ifndef DOXYGEN // explicit specializations template<> @@ -573,6 +567,7 @@ transform_real_to_unit_cell_internal const Point<1> &initial_p_unit, InternalData &mdata) const; +#endif /** * In order to avoid creation of static MappingQ1 objects at several places in