From: Martin Kronbichler Date: Thu, 9 May 2024 09:57:52 +0000 (+0200) Subject: Tensor product operations: Use loop unrolling for slow mat-vec X-Git-Tag: v9.6.0-rc1~278^2 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=refs%2Fpull%2F16984%2Fhead;p=dealii.git Tensor product operations: Use loop unrolling for slow mat-vec --- diff --git a/include/deal.II/matrix_free/tensor_product_kernels.h b/include/deal.II/matrix_free/tensor_product_kernels.h index 39b71cc704..cc7c78f36e 100644 --- a/include/deal.II/matrix_free/tensor_product_kernels.h +++ b/include/deal.II/matrix_free/tensor_product_kernels.h @@ -193,6 +193,7 @@ namespace internal EvaluatorQuantity quantity, bool transpose_matrix, bool add, + bool consider_strides, typename Number, typename Number2> std::enable_if_t<(variant == evaluate_general), void> @@ -201,8 +202,8 @@ namespace internal Number *out, const int n_rows, const int n_columns, - const int stride_in, - const int stride_out) + const int stride_in_given, + const int stride_out_given) { const int mm = transpose_matrix ? n_rows : n_columns, nn = transpose_matrix ? n_columns : n_rows; @@ -216,6 +217,11 @@ namespace internal static_assert(quantity == EvaluatorQuantity::value, "This function should only use EvaluatorQuantity::value"); + Assert(consider_strides || (stride_in_given == 1 && stride_out_given == 1), + ExcInternalError()); + const int stride_in = consider_strides ? stride_in_given : 1; + const int stride_out = consider_strides ? stride_out_given : 1; + // specialization for n_rows = 2 that manually unrolls the innermost loop // to make the operation perform better (not completely as good as the // templated one, but much better than the generic version down below, @@ -249,8 +255,10 @@ namespace internal out[stride_out * col] = result; } } - else if (mm <= 128) + else if (std::abs(in - out) < std::min(stride_out * nn, stride_in * mm)) { + Assert(mm <= 128, + ExcNotImplemented("For large sizes, arrays may not overlap")); std::array x; for (int i = 0; i < mm; ++i) x[i] = in[stride_in * i]; @@ -278,27 +286,168 @@ namespace internal } else { - Assert(in != out, - ExcNotImplemented("For large sizes, arrays may not overlap")); - for (int col = 0; col < nn; ++col) + int nn_regular = (nn / 4) * 4; + for (int col = 0; col < nn_regular; col += 4) { - Number res0; + Number res0, res1, res2, res3; if (transpose_matrix == true) { - res0 = matrix[col] * in[0]; + const Number2 *matrix_ptr = matrix + col; + res0 = matrix_ptr[0] * in[0]; + res1 = matrix_ptr[1] * in[0]; + res2 = matrix_ptr[2] * in[0]; + res3 = matrix_ptr[3] * in[0]; + matrix_ptr += n_columns; + for (int i = 1; i < mm; ++i, matrix_ptr += n_columns) + { + res0 += matrix_ptr[0] * in[stride_in * i]; + res1 += matrix_ptr[1] * in[stride_in * i]; + res2 += matrix_ptr[2] * in[stride_in * i]; + res3 += matrix_ptr[3] * in[stride_in * i]; + } + } + else + { + const Number2 *matrix_0 = matrix + col * n_columns; + const Number2 *matrix_1 = matrix + (col + 1) * n_columns; + const Number2 *matrix_2 = matrix + (col + 2) * n_columns; + const Number2 *matrix_3 = matrix + (col + 3) * n_columns; + + res0 = matrix_0[0] * in[0]; + res1 = matrix_1[0] * in[0]; + res2 = matrix_2[0] * in[0]; + res3 = matrix_3[0] * in[0]; for (int i = 1; i < mm; ++i) - res0 += matrix[i * n_columns + col] * in[stride_in * i]; + { + res0 += matrix_0[i] * in[stride_in * i]; + res1 += matrix_1[i] * in[stride_in * i]; + res2 += matrix_2[i] * in[stride_in * i]; + res3 += matrix_3[i] * in[stride_in * i]; + } + } + if (add) + { + out[0] += res0; + out[stride_out] += res1; + out[2 * stride_out] += res2; + out[3 * stride_out] += res3; + } + else + { + out[0] = res0; + out[stride_out] = res1; + out[2 * stride_out] = res2; + out[3 * stride_out] = res3; + } + out += 4 * stride_out; + } + if (nn - nn_regular == 3) + { + Number res0, res1, res2; + if (transpose_matrix == true) + { + const Number2 *matrix_ptr = matrix + nn_regular; + res0 = matrix_ptr[0] * in[0]; + res1 = matrix_ptr[1] * in[0]; + res2 = matrix_ptr[2] * in[0]; + matrix_ptr += n_columns; + for (int i = 1; i < mm; ++i, matrix_ptr += n_columns) + { + res0 += matrix_ptr[0] * in[stride_in * i]; + res1 += matrix_ptr[1] * in[stride_in * i]; + res2 += matrix_ptr[2] * in[stride_in * i]; + } } else { - res0 = matrix[col * n_columns] * in[0]; + const Number2 *matrix_0 = matrix + nn_regular * n_columns; + const Number2 *matrix_1 = matrix + (nn_regular + 1) * n_columns; + const Number2 *matrix_2 = matrix + (nn_regular + 2) * n_columns; + + res0 = matrix_0[0] * in[0]; + res1 = matrix_1[0] * in[0]; + res2 = matrix_2[0] * in[0]; for (int i = 1; i < mm; ++i) - res0 += matrix[col * n_columns + i] * in[stride_in * i]; + { + res0 += matrix_0[i] * in[stride_in * i]; + res1 += matrix_1[i] * in[stride_in * i]; + res2 += matrix_2[i] * in[stride_in * i]; + } } if (add) - out[stride_out * col] += res0; + { + out[0] += res0; + out[stride_out] += res1; + out[2 * stride_out] += res2; + } else - out[stride_out * col] = res0; + { + out[0] = res0; + out[stride_out] = res1; + out[2 * stride_out] = res2; + } + } + else if (nn - nn_regular == 2) + { + Number res0, res1; + if (transpose_matrix == true) + { + const Number2 *matrix_ptr = matrix + nn_regular; + res0 = matrix_ptr[0] * in[0]; + res1 = matrix_ptr[1] * in[0]; + matrix_ptr += n_columns; + for (int i = 1; i < mm; ++i, matrix_ptr += n_columns) + { + res0 += matrix_ptr[0] * in[stride_in * i]; + res1 += matrix_ptr[1] * in[stride_in * i]; + } + } + else + { + const Number2 *matrix_0 = matrix + nn_regular * n_columns; + const Number2 *matrix_1 = matrix + (nn_regular + 1) * n_columns; + + res0 = matrix_0[0] * in[0]; + res1 = matrix_1[0] * in[0]; + for (int i = 1; i < mm; ++i) + { + res0 += matrix_0[i] * in[stride_in * i]; + res1 += matrix_1[i] * in[stride_in * i]; + } + } + if (add) + { + out[0] += res0; + out[stride_out] += res1; + } + else + { + out[0] = res0; + out[stride_out] = res1; + } + } + else if (nn - nn_regular == 1) + { + Number res0; + if (transpose_matrix == true) + { + const Number2 *matrix_ptr = matrix + nn_regular; + res0 = matrix_ptr[0] * in[0]; + matrix_ptr += n_columns; + for (int i = 1; i < mm; ++i, matrix_ptr += n_columns) + res0 += matrix_ptr[0] * in[stride_in * i]; + } + else + { + const Number2 *matrix_ptr = matrix + nn_regular * n_columns; + res0 = matrix_ptr[0] * in[0]; + for (int i = 1; i < mm; ++i) + res0 += matrix_ptr[i] * in[stride_in * i]; + } + if (add) + out[0] += res0; + else + out[0] = res0; } } } @@ -740,9 +889,9 @@ namespace internal const int n_columns = n_rows_static == 0 ? n_columns_runtime : n_columns_static; const int stride_in = - n_rows_static == 0 ? stride_in_runtime : stride_in_static; + stride_in_static == 0 ? stride_in_runtime : stride_in_static; const int stride_out = - n_rows_static == 0 ? stride_out_runtime : stride_out_static; + stride_out_static == 0 ? stride_out_runtime : stride_out_static; Assert(n_rows > 0 && n_columns > 0, ExcInternalError("The evaluation needs n_rows, n_columns > 0, but " + @@ -908,6 +1057,7 @@ namespace internal EvaluatorQuantity quantity, bool transpose_matrix, bool add, + bool consider_strides, typename Number, typename Number2> std::enable_if_t<(variant == evaluate_evenodd), void> @@ -923,8 +1073,8 @@ namespace internal quantity, 0, 0, - 0, - 0, + consider_strides ? 0 : 1, + consider_strides ? 0 : 1, transpose_matrix, add>( matrix, in, out, n_rows, n_columns, stride_in, stride_out); @@ -1680,13 +1830,15 @@ namespace internal apply_matrix_vector_product(shape_data, - in, - out, - n_rows, - n_columns, - stride_operation * stride_in, - stride_operation * stride_out); + add, + (direction != 0 || stride != 1)>( + shape_data, + in, + out, + n_rows, + n_columns, + stride_operation * stride_in, + stride_operation * stride_out); if (one_line == false) {