From: David Wells Date: Thu, 7 Jul 2016 15:32:36 +0000 (-0400) Subject: Use numbers::PI instead of defining a macro. X-Git-Tag: v8.5.0-rc1~912^2 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=refs%2Fpull%2F2768%2Fhead;p=dealii.git Use numbers::PI instead of defining a macro. --- diff --git a/source/base/function_lib.cc b/source/base/function_lib.cc index 44aacc114b..e4ff6b14a4 100644 --- a/source/base/function_lib.cc +++ b/source/base/function_lib.cc @@ -1,6 +1,6 @@ // --------------------------------------------------------------------- // -// Copyright (C) 1999 - 2015 by the deal.II authors +// Copyright (C) 1999 - 2016 by the deal.II authors // // This file is part of the deal.II library. // @@ -13,6 +13,7 @@ // // --------------------------------------------------------------------- +#include #include #include #include @@ -24,18 +25,6 @@ DEAL_II_NAMESPACE_OPEN -// in strict ANSI C mode, the following constants are not defined by -// default, so we do it ourselves -#ifndef M_PI -# define M_PI 3.14159265358979323846 -#endif - -#ifndef M_PI_2 -# define M_PI_2 1.57079632679489661923 -#endif - - - namespace Functions { @@ -452,11 +441,11 @@ namespace Functions switch (dim) { case 1: - return std::cos(M_PI_2*p(0)); + return std::cos(numbers::PI_2*p(0)); case 2: - return std::cos(M_PI_2*p(0)) * std::cos(M_PI_2*p(1)); + return std::cos(numbers::PI_2*p(0)) * std::cos(numbers::PI_2*p(1)); case 3: - return std::cos(M_PI_2*p(0)) * std::cos(M_PI_2*p(1)) * std::cos(M_PI_2*p(2)); + return std::cos(numbers::PI_2*p(0)) * std::cos(numbers::PI_2*p(1)) * std::cos(numbers::PI_2*p(2)); default: Assert(false, ExcNotImplemented()); } @@ -503,11 +492,11 @@ namespace Functions switch (dim) { case 1: - return -M_PI_2*M_PI_2* std::cos(M_PI_2*p(0)); + return -numbers::PI_2*numbers::PI_2* std::cos(numbers::PI_2*p(0)); case 2: - return -2*M_PI_2*M_PI_2* std::cos(M_PI_2*p(0)) * std::cos(M_PI_2*p(1)); + return -2*numbers::PI_2*numbers::PI_2* std::cos(numbers::PI_2*p(0)) * std::cos(numbers::PI_2*p(1)); case 3: - return -3*M_PI_2*M_PI_2* std::cos(M_PI_2*p(0)) * std::cos(M_PI_2*p(1)) * std::cos(M_PI_2*p(2)); + return -3*numbers::PI_2*numbers::PI_2* std::cos(numbers::PI_2*p(0)) * std::cos(numbers::PI_2*p(1)) * std::cos(numbers::PI_2*p(2)); default: Assert(false, ExcNotImplemented()); } @@ -536,16 +525,16 @@ namespace Functions switch (dim) { case 1: - result[0] = -M_PI_2* std::sin(M_PI_2*p(0)); + result[0] = -numbers::PI_2* std::sin(numbers::PI_2*p(0)); break; case 2: - result[0] = -M_PI_2* std::sin(M_PI_2*p(0)) * std::cos(M_PI_2*p(1)); - result[1] = -M_PI_2* std::cos(M_PI_2*p(0)) * std::sin(M_PI_2*p(1)); + result[0] = -numbers::PI_2* std::sin(numbers::PI_2*p(0)) * std::cos(numbers::PI_2*p(1)); + result[1] = -numbers::PI_2* std::cos(numbers::PI_2*p(0)) * std::sin(numbers::PI_2*p(1)); break; case 3: - result[0] = -M_PI_2* std::sin(M_PI_2*p(0)) * std::cos(M_PI_2*p(1)) * std::cos(M_PI_2*p(2)); - result[1] = -M_PI_2* std::cos(M_PI_2*p(0)) * std::sin(M_PI_2*p(1)) * std::cos(M_PI_2*p(2)); - result[2] = -M_PI_2* std::cos(M_PI_2*p(0)) * std::cos(M_PI_2*p(1)) * std::sin(M_PI_2*p(2)); + result[0] = -numbers::PI_2* std::sin(numbers::PI_2*p(0)) * std::cos(numbers::PI_2*p(1)) * std::cos(numbers::PI_2*p(2)); + result[1] = -numbers::PI_2* std::cos(numbers::PI_2*p(0)) * std::sin(numbers::PI_2*p(1)) * std::cos(numbers::PI_2*p(2)); + result[2] = -numbers::PI_2* std::cos(numbers::PI_2*p(0)) * std::cos(numbers::PI_2*p(1)) * std::sin(numbers::PI_2*p(2)); break; default: Assert(false, ExcNotImplemented()); @@ -568,16 +557,16 @@ namespace Functions switch (dim) { case 1: - gradients[i][0] = -M_PI_2* std::sin(M_PI_2*p(0)); + gradients[i][0] = -numbers::PI_2* std::sin(numbers::PI_2*p(0)); break; case 2: - gradients[i][0] = -M_PI_2* std::sin(M_PI_2*p(0)) * std::cos(M_PI_2*p(1)); - gradients[i][1] = -M_PI_2* std::cos(M_PI_2*p(0)) * std::sin(M_PI_2*p(1)); + gradients[i][0] = -numbers::PI_2* std::sin(numbers::PI_2*p(0)) * std::cos(numbers::PI_2*p(1)); + gradients[i][1] = -numbers::PI_2* std::cos(numbers::PI_2*p(0)) * std::sin(numbers::PI_2*p(1)); break; case 3: - gradients[i][0] = -M_PI_2* std::sin(M_PI_2*p(0)) * std::cos(M_PI_2*p(1)) * std::cos(M_PI_2*p(2)); - gradients[i][1] = -M_PI_2* std::cos(M_PI_2*p(0)) * std::sin(M_PI_2*p(1)) * std::cos(M_PI_2*p(2)); - gradients[i][2] = -M_PI_2* std::cos(M_PI_2*p(0)) * std::cos(M_PI_2*p(1)) * std::sin(M_PI_2*p(2)); + gradients[i][0] = -numbers::PI_2* std::sin(numbers::PI_2*p(0)) * std::cos(numbers::PI_2*p(1)) * std::cos(numbers::PI_2*p(2)); + gradients[i][1] = -numbers::PI_2* std::cos(numbers::PI_2*p(0)) * std::sin(numbers::PI_2*p(1)) * std::cos(numbers::PI_2*p(2)); + gradients[i][2] = -numbers::PI_2* std::cos(numbers::PI_2*p(0)) * std::cos(numbers::PI_2*p(1)) * std::sin(numbers::PI_2*p(2)); break; default: Assert(false, ExcNotImplemented()); @@ -590,19 +579,19 @@ namespace Functions CosineFunction::hessian (const Point &p, const unsigned int) const { - const double pi2 = M_PI_2*M_PI_2; + const double pi2 = numbers::PI_2*numbers::PI_2; SymmetricTensor<2,dim> result; switch (dim) { case 1: - result[0][0] = -pi2* std::cos(M_PI_2*p(0)); + result[0][0] = -pi2* std::cos(numbers::PI_2*p(0)); break; case 2: if (true) { - const double coco = -pi2*std::cos(M_PI_2*p(0)) * std::cos(M_PI_2*p(1)); - const double sisi = pi2*std::sin(M_PI_2*p(0)) * std::sin(M_PI_2*p(1)); + const double coco = -pi2*std::cos(numbers::PI_2*p(0)) * std::cos(numbers::PI_2*p(1)); + const double sisi = pi2*std::sin(numbers::PI_2*p(0)) * std::sin(numbers::PI_2*p(1)); result[0][0] = coco; result[1][1] = coco; // for SymmetricTensor we assign [ij] and [ji] simultaneously: @@ -612,10 +601,10 @@ namespace Functions case 3: if (true) { - const double cococo = -pi2*std::cos(M_PI_2*p(0)) * std::cos(M_PI_2*p(1)) * std::cos(M_PI_2*p(2)); - const double sisico = pi2*std::sin(M_PI_2*p(0)) * std::sin(M_PI_2*p(1)) * std::cos(M_PI_2*p(2)); - const double sicosi = pi2*std::sin(M_PI_2*p(0)) * std::cos(M_PI_2*p(1)) * std::sin(M_PI_2*p(2)); - const double cosisi = pi2*std::cos(M_PI_2*p(0)) * std::sin(M_PI_2*p(1)) * std::sin(M_PI_2*p(2)); + const double cococo = -pi2*std::cos(numbers::PI_2*p(0)) * std::cos(numbers::PI_2*p(1)) * std::cos(numbers::PI_2*p(2)); + const double sisico = pi2*std::sin(numbers::PI_2*p(0)) * std::sin(numbers::PI_2*p(1)) * std::cos(numbers::PI_2*p(2)); + const double sicosi = pi2*std::sin(numbers::PI_2*p(0)) * std::cos(numbers::PI_2*p(1)) * std::sin(numbers::PI_2*p(2)); + const double cosisi = pi2*std::cos(numbers::PI_2*p(0)) * std::sin(numbers::PI_2*p(1)) * std::sin(numbers::PI_2*p(2)); result[0][0] = cococo; result[1][1] = cococo; @@ -641,7 +630,7 @@ namespace Functions Assert (hessians.size() == points.size(), ExcDimensionMismatch(hessians.size(), points.size())); - const double pi2 = M_PI_2*M_PI_2; + const double pi2 = numbers::PI_2*numbers::PI_2; for (unsigned int i=0; i &p, const unsigned int d) const { - return -M_PI_2*M_PI_2* value(p,d); + return -numbers::PI_2*numbers::PI_2* value(p,d); } @@ -831,22 +820,22 @@ namespace Functions AssertIndexRange(d, dim); const unsigned int d1 = (d+1) % dim; const unsigned int d2 = (d+2) % dim; - const double pi2 = M_PI_2*M_PI_2; + const double pi2 = numbers::PI_2*numbers::PI_2; Tensor<1,dim> result; switch (dim) { case 1: - result[0] = -pi2* std::cos(M_PI_2*p(0)); + result[0] = -pi2* std::cos(numbers::PI_2*p(0)); break; case 2: - result[d ] = -pi2*std::cos(M_PI_2*p(d)) * std::cos(M_PI_2*p(d1)); - result[d1] = pi2*std::sin(M_PI_2*p(d)) * std::sin(M_PI_2*p(d1)); + result[d ] = -pi2*std::cos(numbers::PI_2*p(d)) * std::cos(numbers::PI_2*p(d1)); + result[d1] = pi2*std::sin(numbers::PI_2*p(d)) * std::sin(numbers::PI_2*p(d1)); break; case 3: - result[d ] = -pi2*std::cos(M_PI_2*p(d)) * std::cos(M_PI_2*p(d1)) * std::cos(M_PI_2*p(d2)); - result[d1] = pi2*std::sin(M_PI_2*p(d)) * std::sin(M_PI_2*p(d1)) * std::cos(M_PI_2*p(d2)); - result[d2] = pi2*std::sin(M_PI_2*p(d)) * std::cos(M_PI_2*p(d1)) * std::sin(M_PI_2*p(d2)); + result[d ] = -pi2*std::cos(numbers::PI_2*p(d)) * std::cos(numbers::PI_2*p(d1)) * std::cos(numbers::PI_2*p(d2)); + result[d1] = pi2*std::sin(numbers::PI_2*p(d)) * std::sin(numbers::PI_2*p(d1)) * std::cos(numbers::PI_2*p(d2)); + result[d2] = pi2*std::sin(numbers::PI_2*p(d)) * std::cos(numbers::PI_2*p(d1)) * std::sin(numbers::PI_2*p(d2)); break; default: Assert(false, ExcNotImplemented()); @@ -865,7 +854,7 @@ namespace Functions AssertIndexRange(d, dim); const unsigned int d1 = (d+1) % dim; const unsigned int d2 = (d+2) % dim; - const double pi2 = M_PI_2*M_PI_2; + const double pi2 = numbers::PI_2*numbers::PI_2; Assert (gradients.size() == points.size(), ExcDimensionMismatch(gradients.size(), points.size())); @@ -877,16 +866,16 @@ namespace Functions switch (dim) { case 1: - result[0] = -pi2* std::cos(M_PI_2*p(0)); + result[0] = -pi2* std::cos(numbers::PI_2*p(0)); break; case 2: - result[d ] = -pi2*std::cos(M_PI_2*p(d)) * std::cos(M_PI_2*p(d1)); - result[d1] = pi2*std::sin(M_PI_2*p(d)) * std::sin(M_PI_2*p(d1)); + result[d ] = -pi2*std::cos(numbers::PI_2*p(d)) * std::cos(numbers::PI_2*p(d1)); + result[d1] = pi2*std::sin(numbers::PI_2*p(d)) * std::sin(numbers::PI_2*p(d1)); break; case 3: - result[d ] = -pi2*std::cos(M_PI_2*p(d)) * std::cos(M_PI_2*p(d1)) * std::cos(M_PI_2*p(d2)); - result[d1] = pi2*std::sin(M_PI_2*p(d)) * std::sin(M_PI_2*p(d1)) * std::cos(M_PI_2*p(d2)); - result[d2] = pi2*std::sin(M_PI_2*p(d)) * std::cos(M_PI_2*p(d1)) * std::sin(M_PI_2*p(d2)); + result[d ] = -pi2*std::cos(numbers::PI_2*p(d)) * std::cos(numbers::PI_2*p(d1)) * std::cos(numbers::PI_2*p(d2)); + result[d1] = pi2*std::sin(numbers::PI_2*p(d)) * std::sin(numbers::PI_2*p(d1)) * std::cos(numbers::PI_2*p(d2)); + result[d2] = pi2*std::sin(numbers::PI_2*p(d)) * std::cos(numbers::PI_2*p(d1)) * std::sin(numbers::PI_2*p(d2)); break; default: Assert(false, ExcNotImplemented()); @@ -902,7 +891,7 @@ namespace Functions std::vector > > &gradients) const { AssertVectorVectorDimension(gradients, points.size(), dim); - const double pi2 = M_PI_2*M_PI_2; + const double pi2 = numbers::PI_2*numbers::PI_2; for (unsigned int i=0; i=0) && (y>=0)) return 0.; - double phi = std::atan2(y,-x)+M_PI; + double phi = std::atan2(y,-x)+numbers::PI; double r2 = x*x+y*y; return std::pow(r2,1./3.) * std::sin(2./3.*phi); @@ -1142,7 +1131,7 @@ namespace Functions values[i] = 0.; else { - double phi = std::atan2(y,-x)+M_PI; + double phi = std::atan2(y,-x)+numbers::PI; double r2 = x*x+y*y; values[i] = std::pow(r2,1./3.) * std::sin(2./3.*phi); @@ -1170,7 +1159,7 @@ namespace Functions values[i](0) = 0.; else { - double phi = std::atan2(y,-x)+M_PI; + double phi = std::atan2(y,-x)+numbers::PI; double r2 = x*x+y*y; values[i](0) = std::pow(r2,1./3.) * std::sin(2./3.*phi); @@ -1206,7 +1195,7 @@ namespace Functions { double x = p(0); double y = p(1); - double phi = std::atan2(y,-x)+M_PI; + double phi = std::atan2(y,-x)+numbers::PI; double r43 = std::pow(x*x+y*y,2./3.); Tensor<1,2> result; @@ -1229,7 +1218,7 @@ namespace Functions const Point<2> &p = points[i]; double x = p(0); double y = p(1); - double phi = std::atan2(y,-x)+M_PI; + double phi = std::atan2(y,-x)+numbers::PI; double r43 = std::pow(x*x+y*y,2./3.); gradients[i][0] = 2./3.*(std::sin(2./3.*phi)*x + std::cos(2./3.*phi)*y)/r43; @@ -1253,7 +1242,7 @@ namespace Functions const Point<2> &p = points[i]; double x = p(0); double y = p(1); - double phi = std::atan2(y,-x)+M_PI; + double phi = std::atan2(y,-x)+numbers::PI; double r43 = std::pow(x*x+y*y,2./3.); gradients[i][0][0] = 2./3.*(std::sin(2./3.*phi)*x + std::cos(2./3.*phi)*y)/r43; @@ -1277,7 +1266,7 @@ namespace Functions const double x = p(0); const double y = p(1); - const double phi = std::atan2(y,-x)+M_PI; + const double phi = std::atan2(y,-x)+numbers::PI; const double r43 = std::pow(x*x+y*y,2./3.); return 2./3.*(std::sin(2./3.*phi)*p(d) + @@ -1302,7 +1291,7 @@ namespace Functions const Point<2> &p = points[i]; const double x = p(0); const double y = p(1); - const double phi = std::atan2(y,-x)+M_PI; + const double phi = std::atan2(y,-x)+numbers::PI; const double r43 = std::pow(x*x+y*y,2./3.); values[i] = 2./3.*(std::sin(2./3.*phi)*p(d) + @@ -1328,7 +1317,7 @@ namespace Functions const Point<2> &p = points[i]; const double x = p(0); const double y = p(1); - const double phi = std::atan2(y,-x)+M_PI; + const double phi = std::atan2(y,-x)+numbers::PI; const double r43 = std::pow(x*x+y*y,2./3.); values[i](0) = 2./3.*(std::sin(2./3.*phi)*x + std::cos(2./3.*phi)*y)/r43; @@ -1398,7 +1387,7 @@ namespace Functions double x = p(0); double y = p(1); - double phi = std::atan2(x,y)+M_PI; + double phi = std::atan2(x,y)+numbers::PI; double r2 = x*x+y*y; return std::pow(r2,.25) * std::sin(.5*phi); @@ -1420,7 +1409,7 @@ namespace Functions double x = points[i](0); double y = points[i](1); - double phi = std::atan2(x,y)+M_PI; + double phi = std::atan2(x,y)+numbers::PI; double r2 = x*x+y*y; values[i] = std::pow(r2,.25) * std::sin(.5*phi); @@ -1445,7 +1434,7 @@ namespace Functions double x = points[i](0); double y = points[i](1); - double phi = std::atan2(x,y)+M_PI; + double phi = std::atan2(x,y)+numbers::PI; double r2 = x*x+y*y; values[i](0) = std::pow(r2,.25) * std::sin(.5*phi); @@ -1484,7 +1473,7 @@ namespace Functions { double x = p(0); double y = p(1); - double phi = std::atan2(x,y)+M_PI; + double phi = std::atan2(x,y)+numbers::PI; double r64 = std::pow(x*x+y*y,3./4.); Tensor<1,dim> result; @@ -1508,7 +1497,7 @@ namespace Functions const Point &p = points[i]; double x = p(0); double y = p(1); - double phi = std::atan2(x,y)+M_PI; + double phi = std::atan2(x,y)+numbers::PI; double r64 = std::pow(x*x+y*y,3./4.); gradients[i][0] = 1./2.*(std::sin(1./2.*phi)*x + std::cos(1./2.*phi)*y)/r64; @@ -1535,7 +1524,7 @@ namespace Functions const Point &p = points[i]; double x = p(0); double y = p(1); - double phi = std::atan2(x,y)+M_PI; + double phi = std::atan2(x,y)+numbers::PI; double r64 = std::pow(x*x+y*y,3./4.); gradients[i][0][0] = 1./2.*(std::sin(1./2.*phi)*x + std::cos(1./2.*phi)*y)/r64; @@ -1555,7 +1544,7 @@ namespace Functions double x = p(0); double y = p(1); - double phi = std::atan2(x,y)+M_PI; + double phi = std::atan2(x,y)+numbers::PI; double r2 = x*x+y*y; return std::pow(r2,.125) * std::sin(.25*phi); @@ -1576,7 +1565,7 @@ namespace Functions double x = points[i](0); double y = points[i](1); - double phi = std::atan2(x,y)+M_PI; + double phi = std::atan2(x,y)+numbers::PI; double r2 = x*x+y*y; values[i] = std::pow(r2,.125) * std::sin(.25*phi); @@ -1600,7 +1589,7 @@ namespace Functions double x = points[i](0); double y = points[i](1); - double phi = std::atan2(x,y)+M_PI; + double phi = std::atan2(x,y)+numbers::PI; double r2 = x*x+y*y; values[i](0) = std::pow(r2,.125) * std::sin(.25*phi); @@ -1638,7 +1627,7 @@ namespace Functions { double x = p(0); double y = p(1); - double phi = std::atan2(x,y)+M_PI; + double phi = std::atan2(x,y)+numbers::PI; double r78 = std::pow(x*x+y*y,7./8.); @@ -1663,7 +1652,7 @@ namespace Functions const Point<2> &p = points[i]; double x = p(0); double y = p(1); - double phi = std::atan2(x,y)+M_PI; + double phi = std::atan2(x,y)+numbers::PI; double r78 = std::pow(x*x+y*y,7./8.); gradients[i][0] = 1./4.*(std::sin(1./4.*phi)*x + std::cos(1./4.*phi)*y)/r78; @@ -1688,7 +1677,7 @@ namespace Functions const Point<2> &p = points[i]; double x = p(0); double y = p(1); - double phi = std::atan2(x,y)+M_PI; + double phi = std::atan2(x,y)+numbers::PI; double r78 = std::pow(x*x+y*y,7./8.); gradients[i][0][0] = 1./4.*(std::sin(1./4.*phi)*x + std::cos(1./4.*phi)*y)/r78;