From: Wolfgang Bangerth Date: Tue, 11 Oct 2016 22:20:02 +0000 (-0600) Subject: Generalize the data structure used to represent an edge set. X-Git-Tag: v8.5.0-rc1~575^2 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=refs%2Fpull%2F3224%2Fhead;p=dealii.git Generalize the data structure used to represent an edge set. Specifically, the class is used to represent the set of edges by which the parallel set can grow in each iteration. In 2d, this set can only have zero, one, or two elements, and we can use a corresponding, O(1) data structure to store them. In 3d, the set can be of arbitrary size and we represent it as a std::set. Creating generic data structures also allows to write the algorithm that uses it in a more concise way using iterators. --- diff --git a/source/grid/grid_reordering.cc b/source/grid/grid_reordering.cc index d7db823bc5..00b59f5f45 100644 --- a/source/grid/grid_reordering.cc +++ b/source/grid/grid_reordering.cc @@ -215,7 +215,6 @@ namespace internal /** * Return an iterator to the first valid cell stored as adjacent to the * edge represented by the current object. - * @return */ const_iterator begin () const { @@ -236,9 +235,9 @@ namespace internal if (adjacent_cells[0].cell_index == numbers::invalid_unsigned_int) return &adjacent_cells[0]; else if (adjacent_cells[1].cell_index == numbers::invalid_unsigned_int) - return &adjacent_cells[1]; + return &adjacent_cells[0]+1; else - return &adjacent_cells[2]; + return &adjacent_cells[0]+2; } private: @@ -402,6 +401,112 @@ namespace internal + template class EdgeDeltaSet; + + /** + * A class that represents by how much the set of parallel edges + * grows in each step. In the graph orientation paper, this set is + * called $\Delta_k$, thus the name. + * + * In 2d, this set can only include zero, one, or two elements. + * Consequently, the appropriate data structure is one in which + * we store at most 2 elements in a fixed sized data structure. + */ + template <> + class EdgeDeltaSet<2> + { + public: + /** + * Iterator type for the elements of the set. + */ + typedef const unsigned int *const_iterator; + + /** + * Default constructor. Initialize both slots as unused, corresponding + * to an empty set. + */ + EdgeDeltaSet () + { + edge_indices[0] = edge_indices[1] = numbers::invalid_unsigned_int; + } + + + /** + * Delete the elements of the set by marking both slots as unused. + */ + void clear () + { + edge_indices[0] = edge_indices[1] = numbers::invalid_unsigned_int; + } + + /** + * Insert one element into the set. This will fail if the set already + * has two elements. + */ + void insert (const unsigned int edge_index) + { + if (edge_indices[0] == numbers::invalid_unsigned_int) + edge_indices[0] = edge_index; + else + { + Assert (edge_indices[1] == numbers::invalid_unsigned_int, + ExcInternalError()); + edge_indices[1] = edge_index; + } + } + + + /** + * Return an iterator pointing to the first element of the set. + */ + const_iterator begin () const + { + return &edge_indices[0]; + } + + + /** + * Return an iterator pointing to the element past the last used one. + */ + const_iterator end () const + { + // check whether the current object stores zero, one, or two + // indices, and use this to point to the element past the + // last valid one + if (edge_indices[0] == numbers::invalid_unsigned_int) + return &edge_indices[0]; + else if (edge_indices[1] == numbers::invalid_unsigned_int) + return &edge_indices[0]+1; + else + return &edge_indices[0]+2; + } + + private: + /** + * Storage space to store the indices of at most two edges. + */ + unsigned int edge_indices[2]; + }; + + + + /** + * A class that represents by how much the set of parallel edges + * grows in each step. In the graph orientation paper, this set is + * called $\Delta_k$, thus the name. + * + * In 3d, this set can have arbitrarily many elements, unlike the + * 2d case specialized above. Consequently, we simply represent + * the data structure with a std::set. Class derivation ensures + * that we simply inherit all of the member functions of the + * base class. + */ + template <> + class EdgeDeltaSet<3> : std::set + {}; + + + /** * From a list of cells, build a sorted vector that contains all of the edges @@ -429,6 +534,8 @@ namespace internal return edge_list; } + + /** * Build the cell list. Update the edge array to let edges know * which cells are adjacent to them. @@ -457,6 +564,7 @@ namespace internal } + /** * Return the index within 'cells' of the first cell that has at least one * edge that is not yet oriented. @@ -476,6 +584,7 @@ namespace internal } + /** * Given a set of cells and edges, orient all edges that are * (global) parallel to the one identified by the @p cell and @@ -532,101 +641,87 @@ namespace internal // this // // note that in 2d, each of the Deltas can at most - // contain two elements. we indicate non-used elements - // of these sets by invalid unsigned ints; if the set has - // only one element, then we use the first - unsigned int Delta_k[2] = { numbers::invalid_unsigned_int, - numbers::invalid_unsigned_int - }; - unsigned int Delta_k_minus_1[2] = { cells[cell].edge_indices[local_edge], - numbers::invalid_unsigned_int - }; - while (Delta_k_minus_1[0] != numbers::invalid_unsigned_int) // while set is not empty + // contain two elements, whereas in 3d it can be arbitrarily many + EdgeDeltaSet Delta_k; + EdgeDeltaSet Delta_k_minus_1; + Delta_k_minus_1.insert (cells[cell].edge_indices[local_edge]); + + while (Delta_k_minus_1.begin() != Delta_k_minus_1.end()) // while set is not empty { - Delta_k[0] = Delta_k[1] = numbers::invalid_unsigned_int; + Delta_k.clear (); - for (unsigned int delta_element=0; delta_element<2; ++delta_element) - if (Delta_k_minus_1[delta_element] != numbers::invalid_unsigned_int) - { - // get the edge we are currently looking at. it must already - // have been oriented - const unsigned int delta = Delta_k_minus_1[delta_element]; - Assert (edges[delta].orientation_status != Edge::not_oriented, - ExcInternalError()); - - // now go through the cells adjacent to this edge - for (typename AdjacentCells::const_iterator - adjacent_cell = edges[delta].adjacent_cells.begin(); - adjacent_cell != edges[delta].adjacent_cells.end(); ++adjacent_cell) - { - const unsigned int K = adjacent_cell->cell_index; - const unsigned int delta_is_edge_in_K = adjacent_cell->edge_within_cell; - - // figure out the direction of delta with respect to the cell K - // (in the orientation in which the user has given it to us) - const unsigned int first_edge_vertex - = (edges[delta].orientation_status == Edge::forward - ? - edges[delta].vertex_indices[0] - : - edges[delta].vertex_indices[1]); - const unsigned int first_edge_vertex_in_K = cells[K].vertex_indices[GeometryInfo::face_to_cell_vertices(delta_is_edge_in_K, 0)]; - Assert (first_edge_vertex == first_edge_vertex_in_K - || - first_edge_vertex == cells[K].vertex_indices[GeometryInfo::face_to_cell_vertices(delta_is_edge_in_K, 1)], - ExcInternalError()); - - // now figure out which direction the opposite edge needs to be into. - const unsigned int opposite_edge - = cells[K].edge_indices[ParallelEdges<2>::parallel_edges[delta_is_edge_in_K][0]]; - const unsigned int first_opposite_edge_vertex - = cells[K].vertex_indices[GeometryInfo::face_to_cell_vertices( - ParallelEdges::parallel_edges[delta_is_edge_in_K][0], - (first_edge_vertex == first_edge_vertex_in_K - ? - 0 - : - 1))]; - - const Edge::OrientationStatus opposite_edge_orientation - = (edges[opposite_edge].vertex_indices[0] - == - first_opposite_edge_vertex - ? - Edge::forward - : - Edge::backward); - - // see if the opposite edge (there is only one in 2d) has already been - // oriented. - if (edges[opposite_edge].orientation_status == Edge::not_oriented) - { - // the opposite edge is not yet oriented. do orient it and add it to - // Delta_k; - edges[opposite_edge].orientation_status = opposite_edge_orientation; - if (Delta_k[0] == numbers::invalid_unsigned_int) - Delta_k[0] = opposite_edge; - else - { - Assert (Delta_k[1] == numbers::invalid_unsigned_int, ExcInternalError()); - Delta_k[1] = opposite_edge; - } - } - else - { - // the opposite edge has already been oriented. assert that it is - // consistent with the current one - Assert (edges[opposite_edge].orientation_status == opposite_edge_orientation, - ExcInternalError()); - } - } - } + for (EdgeDeltaSet::const_iterator delta = Delta_k_minus_1.begin(); + delta != Delta_k_minus_1.end(); ++delta) + { + Assert (edges[*delta].orientation_status != Edge::not_oriented, + ExcInternalError()); + + // now go through the cells adjacent to this edge + for (typename AdjacentCells::const_iterator + adjacent_cell = edges[*delta].adjacent_cells.begin(); + adjacent_cell != edges[*delta].adjacent_cells.end(); ++adjacent_cell) + { + const unsigned int K = adjacent_cell->cell_index; + const unsigned int delta_is_edge_in_K = adjacent_cell->edge_within_cell; + + // figure out the direction of delta with respect to the cell K + // (in the orientation in which the user has given it to us) + const unsigned int first_edge_vertex + = (edges[*delta].orientation_status == Edge::forward + ? + edges[*delta].vertex_indices[0] + : + edges[*delta].vertex_indices[1]); + const unsigned int first_edge_vertex_in_K = cells[K].vertex_indices[GeometryInfo::face_to_cell_vertices(delta_is_edge_in_K, 0)]; + Assert (first_edge_vertex == first_edge_vertex_in_K + || + first_edge_vertex == cells[K].vertex_indices[GeometryInfo::face_to_cell_vertices(delta_is_edge_in_K, 1)], + ExcInternalError()); + + // now figure out which direction the opposite edge needs to be into. + const unsigned int opposite_edge + = cells[K].edge_indices[ParallelEdges<2>::parallel_edges[delta_is_edge_in_K][0]]; + const unsigned int first_opposite_edge_vertex + = cells[K].vertex_indices[GeometryInfo::face_to_cell_vertices( + ParallelEdges::parallel_edges[delta_is_edge_in_K][0], + (first_edge_vertex == first_edge_vertex_in_K + ? + 0 + : + 1))]; + + const Edge::OrientationStatus opposite_edge_orientation + = (edges[opposite_edge].vertex_indices[0] + == + first_opposite_edge_vertex + ? + Edge::forward + : + Edge::backward); + + // see if the opposite edge (there is only one in 2d) has already been + // oriented. + if (edges[opposite_edge].orientation_status == Edge::not_oriented) + { + // the opposite edge is not yet oriented. do orient it and add it to + // Delta_k + edges[opposite_edge].orientation_status = opposite_edge_orientation; + Delta_k.insert (opposite_edge); + } + else + { + // the opposite edge has already been oriented. assert that it is + // consistent with the current one + Assert (edges[opposite_edge].orientation_status == opposite_edge_orientation, + ExcInternalError()); + } + } + } // finally copy the new set to the previous one // (corresponding to increasing 'k' by one in the // algorithm) - Delta_k_minus_1[0] = Delta_k[0]; - Delta_k_minus_1[1] = Delta_k[1]; + Delta_k_minus_1 = Delta_k; } }