From: Timo Heister Date: Mon, 27 Mar 2017 18:43:09 +0000 (-0400) Subject: fix doxygen errors X-Git-Tag: v8.5.0-rc1~3^2 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=refs%2Fpull%2F4121%2Fhead;p=dealii.git fix doxygen errors --- diff --git a/include/deal.II/grid/manifold.h b/include/deal.II/grid/manifold.h index a4651a243f..f40a2e40e5 100644 --- a/include/deal.II/grid/manifold.h +++ b/include/deal.II/grid/manifold.h @@ -409,7 +409,7 @@ public: * @p weights. * * In its default implementation, this function simply calls get_new_point() - * on each row of @weights and appends those points to the output vector + * on each row of @p weights and appends those points to the output vector * @p new_points. However, this function is more efficient if multiple new * points need to be generated like in MappingQGeneric and the manifold does * expensive transformations between a chart space and the physical space, diff --git a/include/deal.II/grid/tensor_product_manifold.h b/include/deal.II/grid/tensor_product_manifold.h index 75bc3b8c6d..950e6be97e 100644 --- a/include/deal.II/grid/tensor_product_manifold.h +++ b/include/deal.II/grid/tensor_product_manifold.h @@ -30,7 +30,7 @@ DEAL_II_NAMESPACE_OPEN * * This manifold will combine the ChartManifolds @p A and @p B given in the * constructor to form a new ChartManifold by building the tensor product - * $A\cross B$. The first @p spacedim_A dimensions in the real space and the + * $A\otimes B$. The first @p spacedim_A dimensions in the real space and the * first @p chartdim_A dimensions of the chart will be given by manifold @p A, * while the remaining coordinates are given by @p B. The manifold is to be * used by a Triangulation@. diff --git a/include/deal.II/physics/elasticity/standard_tensors.h b/include/deal.II/physics/elasticity/standard_tensors.h index e34f1784a1..4c63fdef11 100644 --- a/include/deal.II/physics/elasticity/standard_tensors.h +++ b/include/deal.II/physics/elasticity/standard_tensors.h @@ -132,12 +132,12 @@ namespace Physics * \mathcal{P} : \{ \bullet \} * := \{ \bullet \} - \frac{1}{\textrm{dim}} \left[ \{ \bullet \} : \mathbf{I} \right]\mathbf{I} * = \mathcal{P}^{T} : \{ \bullet \} - * = \texttt{dev_P} \left( \{ \bullet \} \right) + * = \texttt{dev\_P} \left( \{ \bullet \} \right) * @f] * and, therefore, * @f[ - * \texttt{dev_P} \left( \{ \bullet \} \right) : \mathbf{I} - * = \textrm{trace}(\texttt{dev_P} \left( \{ \bullet \} \right)) = 0 \, . + * \texttt{dev\_P} \left( \{ \bullet \} \right) : \mathbf{I} + * = \textrm{trace}(\texttt{dev\_P} \left( \{ \bullet \} \right)) = 0 \, . * @f] * * This definition aligns with the fourth-order symmetric tensor that @@ -173,11 +173,11 @@ namespace Physics * @f[ * \{ \bullet \} : \hat{\mathcal{P}} * := J^{-2/\textrm{dim}} \left[ \{ \bullet \} - \frac{1}{\textrm{dim}}\left[\mathbf{C} : \{ \bullet \}\right] \mathbf{C}^{-1} \right] - * = \texttt{Dev_P} \left( \{ \bullet \} \right) \, . + * = \texttt{Dev\_P} \left( \{ \bullet \} \right) \, . * @f] * It can therefore be readily shown that * @f[ - * \texttt{Dev_P} \left( \{ \bullet \} \right) : \mathbf{C} = 0 \, . + * \texttt{Dev\_P} \left( \{ \bullet \} \right) : \mathbf{C} = 0 \, . * @f] * * @note It may be observed that we have defined the tensor as the @@ -214,7 +214,7 @@ namespace Physics * @f[ * \hat{\mathcal{P}}^{T} : \{ \bullet \} * = J^{-2/\textrm{dim}} \left[ \{ \bullet \} - \frac{1}{\textrm{dim}} \left[\mathbf{C}^{-1} : \{ \bullet \}\right] \mathbf{C} \right] - * = \texttt{Dev_P_T} \{ \bullet \} + * = \texttt{Dev\_P\_T} \{ \bullet \} * @f] */ template