From: David Wells Date: Fri, 19 Jan 2018 20:23:22 +0000 (-0500) Subject: Differentiate between quads in 2D and 3D. X-Git-Tag: v9.0.0-rc1~544^2 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=refs%2Fpull%2F5761%2Fhead;p=dealii.git Differentiate between quads in 2D and 3D. In 3D, we may use eight surrounding points either as the eight vertices of a hexahedron or as eight surrounding points on the surface of a hexahedron. This patch adds some logic to tell the two cases apart based on some angle calculations. --- diff --git a/source/grid/manifold_lib.cc b/source/grid/manifold_lib.cc index 7a0bf39e92..4628d6410a 100644 --- a/source/grid/manifold_lib.cc +++ b/source/grid/manifold_lib.cc @@ -1810,6 +1810,119 @@ TransfiniteInterpolationManifold std::array nearby_cells = get_possible_cells_around_points(surrounding_points); + // This function is nearly always called to place new points on a cell or + // cell face. In this case, the general structure of the surrounding points + // is known (i.e., if there are eight surrounding points, then they will + // almost surely be either eight points around a quadrilateral or the eight + // vertices of a cube). Hence, making this assumption, we use two + // optimizations (one for structdim == 2 and one for structdim == 3) that + // guess the locations of some of the chart points more efficiently than the + // affine map approximation. The affine map approximation is used whenever + // we don't have a cheaper guess available. + + // Function that can guess the location of a chart point by assuming that + // the eight surrounding points are points on a two-dimensional object + // (either a cell in 2D or the face of a hexahedron in 3D), arranged like + // + // 2 - 7 - 3 + // | | + // 4 5 + // | | + // 0 - 6 - 1 + // + // This function assumes that the first three chart points have been + // computed since there is no effective way to guess them. + auto guess_chart_point_structdim_2 = [&](const unsigned int i) -> Point + { + Assert(surrounding_points.size() == 8 && 2 < i && i < 8, + ExcMessage("This function assumes that there are eight surrounding " + "points around a two-dimensional object. It also assumes " + "that the first three chart points have already been " + "computed.")); + switch (i) + { + case 0: + case 1: + case 2: + Assert(false, ExcInternalError()); + break; + case 3: + return chart_points[1] + (chart_points[2] - chart_points[0]); + case 4: + return 0.5*(chart_points[0] + chart_points[2]); + case 5: + return 0.5*(chart_points[1] + chart_points[3]); + case 6: + return 0.5*(chart_points[0] + chart_points[1]); + case 7: + return 0.5*(chart_points[2] + chart_points[3]); + default: + Assert(false, ExcInternalError()); + } + + return Point(); + }; + + // Function that can guess the location of a chart point by assuming that + // the eight surrounding points form the vertices of a hexahedron, arranged + // like + // + // 6-------7 + // /| /| + // / / | + // / | / | + // 4-------5 | + // | 2- -|- -3 + // | / | / + // | | / + // |/ |/ + // 0-------1 + // + // (where vertex 2 is the back left vertex) we can estimate where chart + // points 5 - 7 are by computing the height (in chart coordinates) as c4 - + // c0 and then adding that onto the appropriate bottom vertex. + // + // This function assumes that the first five chart points have been computed + // since there is no effective way to guess them. + auto guess_chart_point_structdim_3 = [&](const unsigned int i) -> Point + { + Assert(surrounding_points.size() == 8 && 4 < i && i < 8, + ExcMessage("This function assumes that there are eight surrounding " + "points around a three-dimensional object. It also " + "assumes that the first five chart points have already " + "been computed.")); + return chart_points[i - 4] + (chart_points[4] - chart_points[0]); + }; + + // Check if we can use the two chart point shortcuts above before we start: + bool use_structdim_2_guesses = false; + bool use_structdim_3_guesses = false; + // note that in the structdim 2 case: 0 - 6 and 2 - 7 should be roughly + // parallel, while in the structdim 3 case, 0 - 6 and 2 - 7 shoud be roughly + // orthogonal. Use the angle between these two vectors to figure out if we + // should turn on either structdim optimization. + if (surrounding_points.size() == 8) + { + const Tensor<1,spacedim> v06 = surrounding_points[6] - surrounding_points[0]; + const Tensor<1,spacedim> v27 = surrounding_points[7] - surrounding_points[2]; + + // note that we can save a call to sqrt() by rearranging + const double cosine = scalar_product(v06, v27) + /std::sqrt(v06.norm_square()*v27.norm_square()); + if (0.707 < cosine) + // the angle is less than pi/4, so these vectors are roughly parallel: + // enable the structdim 2 optimization + use_structdim_2_guesses = true; + else if (spacedim == 3) + // otherwise these vectors are roughly orthogonal are roughly + // orthogonal: enable the structdim 3 optimization if we are in 3D + use_structdim_3_guesses = true; + } + // we should enable at most one of the optimizations + Assert((!use_structdim_2_guesses && !use_structdim_3_guesses) + || (use_structdim_2_guesses ^ use_structdim_3_guesses), + ExcInternalError()); + // check whether all points are inside the unit cell of the current chart for (unsigned int c=0; c bool inside_unit_cell = true; for (unsigned int i=0; i guess; + // an optimization: keep track of whether or not we used the affine + // approximation so that we don't call pull_back with the same + // initial guess twice (i.e., if pull_back fails the first time, + // don't try again with the same function arguments). + bool used_affine_approximation = false; // if we have already computed three points, we can guess the fourth // to be the missing corner point of a rectangle - if (i == 3) + if (i == 3 && surrounding_points.size() == 8) + guess = chart_points[1] + (chart_points[2] - chart_points[0]); + else if (use_structdim_2_guesses && 3 < i) + guess = guess_chart_point_structdim_2(i); + else if (use_structdim_3_guesses && 4 < i) + guess = guess_chart_point_structdim_3(i); + else { - const Point p3 = chart_points[1] + - Point(chart_points[2]-chart_points[0]); - chart_points[i] = pull_back(cell, surrounding_points[i], p3); + guess = cell->real_to_unit_cell_affine_approximation(surrounding_points[i]); + used_affine_approximation = true; } - // 8 points usually form either a cube or a rectangle with vertices - // and line mid points. Get the initial guess with line segment - // midpoints in 2D and assuming a cube for 3D. - else if (surrounding_points.size() == 8 && - ((dim == 3 && i > 4) || (dim == 2 && i > 3))) - { - Point guess; - switch (dim) - { - case 2: - // inline the standard numbering - // - // 2 - 7 - 3 - // | | - // 4 5 - // | | - // 0 - 6 - 1 - // - // to calculate guesses based on averaging already computed - // chart points. - switch (i) - { - case 4: - guess = 0.5*(chart_points[0] + chart_points[2]); - break; - case 5: - guess = 0.5*(chart_points[1] + chart_points[3]); - break; - case 6: - guess = 0.5*(chart_points[0] + chart_points[1]); - break; - case 7: - guess = 0.5*(chart_points[2] + chart_points[3]); - break; - default: - Assert(false, ExcInternalError()); - } - break; - case 3: - // Assuming that we are in 3D and have the points around a - // cube numbered as - // - // 6-------7 - // /| /| - // / / | - // / | / | - // 4-------5 | - // | 2- -|- -3 - // | / | / - // | | / - // |/ |/ - // 0-------1 - // - // (where vertex 2 is the back left vertex) we can estimate - // where chart points 5 - 7 are by computing the height (in - // chart coordinates) as c4 - c0 and then adding that onto the - // appropriate bottom vertex. - guess = chart_points[i - 4] + (chart_points[4] - chart_points[0]); - break; - default: - Assert(false, ExcInternalError()); - } + chart_points[i] = pull_back(cell, surrounding_points[i], guess); - // This guess should be pretty good, but if the pull_back fails - // then try again with affine approximation (which is more - // expensive) + // the initial guess may not have been good enough: if applicable, + // try again with the affine approximation (which is more accurate + // than the cheap methods used above) + if (chart_points[i][0] == internal::invalid_pull_back_coordinate && + !used_affine_approximation) + { + guess = cell->real_to_unit_cell_affine_approximation(surrounding_points[i]); chart_points[i] = pull_back(cell, surrounding_points[i], guess); - if (chart_points[i][0] == internal::invalid_pull_back_coordinate) - { - chart_points[i] = pull_back(cell, surrounding_points[i], - cell->real_to_unit_cell_affine_approximation(surrounding_points[i])); - } } - else - chart_points[i] = pull_back(cell, surrounding_points[i], - cell->real_to_unit_cell_affine_approximation(surrounding_points[i])); // Tolerance 1e-6 chosen that the method also works with // SphericalManifold