From: Wolfgang Bangerth Date: Fri, 14 Sep 2018 22:56:45 +0000 (-0600) Subject: Annotate code so that it indents nicer. X-Git-Tag: v9.1.0-rc1~720^2 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=refs%2Fpull%2F7193%2Fhead;p=dealii.git Annotate code so that it indents nicer. --- diff --git a/examples/step-52/step-52.cc b/examples/step-52/step-52.cc index 26a3006efc..ff0040dc30 100644 --- a/examples/step-52/step-52.cc +++ b/examples/step-52/step-52.cc @@ -229,12 +229,13 @@ namespace Step52 for (unsigned int j = 0; j < dofs_per_cell; ++j) { cell_matrix(i, j) += - ((-diffusion_coefficient * fe_values.shape_grad(i, q_point) * - fe_values.shape_grad(j, q_point) - - absorption_cross_section * - fe_values.shape_value(i, q_point) * - fe_values.shape_value(j, q_point)) * - fe_values.JxW(q_point)); + ((-diffusion_coefficient * // (-D + fe_values.shape_grad(i, q_point) * // * grad phi_i + fe_values.shape_grad(j, q_point) // * grad phi_j + - absorption_cross_section * // -Sigma + fe_values.shape_value(i, q_point) * // * phi_i + fe_values.shape_value(j, q_point)) // * phi_j) + * fe_values.JxW(q_point)); // * dx cell_mass_matrix(i, j) += fe_values.shape_value(i, q_point) * fe_values.shape_value(j, q_point) * fe_values.JxW(q_point); @@ -323,8 +324,9 @@ namespace Step52 const double source = get_source(time, fe_values.quadrature_point(q_point)); for (unsigned int i = 0; i < dofs_per_cell; ++i) - cell_source(i) += source * fe_values.shape_value(i, q_point) * - fe_values.JxW(q_point); + cell_source(i) += fe_values.shape_value(i, q_point) * // phi_i(x) + source * // * S(x) + fe_values.JxW(q_point); // * dx } cell->get_dof_indices(local_dof_indices); @@ -346,8 +348,8 @@ namespace Step52 // We compute $\left(M-\tau \frac{\partial f}{\partial y}\right)^{-1} M$. This // is done in several steps: // - compute $M-\tau \frac{\partial f}{\partial y}$ - // - invert the matrix to get $\left(M-\tau \frac{\partial f}{\partial - // y}\right)^{-1}$ + // - invert the matrix to get $\left(M-\tau \frac{\partial f} + // {\partial y}\right)^{-1}$ // - compute $tmp=My$ // - compute $z=\left(M-\tau \frac{\partial f}{\partial y}\right)^{-1} tmp = // \left(M-\tau \frac{\partial f}{\partial y}\right)^{-1} My$