From: Reza Rastak Date: Fri, 10 May 2019 21:37:14 +0000 (-0700) Subject: duplicated documentation removed. unnecessary implementation of function specializati... X-Git-Tag: v9.1.0-rc1~67^2 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=refs%2Fpull%2F8082%2Fhead;p=dealii.git duplicated documentation removed. unnecessary implementation of function specialization removed --- diff --git a/include/deal.II/base/symmetric_tensor.h b/include/deal.II/base/symmetric_tensor.h index f164142472..ed2b550596 100644 --- a/include/deal.II/base/symmetric_tensor.h +++ b/include/deal.II/base/symmetric_tensor.h @@ -31,15 +31,15 @@ DEAL_II_NAMESPACE_OPEN template class SymmetricTensor; -template +template SymmetricTensor<2, dim, Number> unit_symmetric_tensor(); -template +template SymmetricTensor<4, dim, Number> deviator_tensor(); -template +template SymmetricTensor<4, dim, Number> identity_tensor(); @@ -3310,23 +3310,6 @@ unit_symmetric_tensor() -/** - * Return a unit symmetric tensor of rank 2, i.e., the dim-by-dim identity - * matrix. This specialization of the function uses double as the - * data type for the elements. - * - * @relatesalso SymmetricTensor - * @author Wolfgang Bangerth, 2005 - */ -template -inline SymmetricTensor<2, dim> -unit_symmetric_tensor() -{ - return unit_symmetric_tensor(); -} - - - /** * Return the tensor of rank 4 that, when multiplied by a symmetric rank 2 * tensor t returns the deviator $\textrm{dev}\ t$. It is the @@ -3368,29 +3351,6 @@ deviator_tensor() -/** - * Return the tensor of rank 4 that, when multiplied by a symmetric rank 2 - * tensor t returns the deviator dev t. It is the operator - * representation of the linear deviator operator. - * - * For every tensor t, there holds the identity - * deviator(t)==deviator_tensor<dim>()*t, up to numerical - * round-off. The reason this operator representation is provided is that one - * sometimes needs to invert operators like identity_tensor<dim>() + - * delta_t*deviator_tensor<dim>() or similar. - * - * @relatesalso SymmetricTensor - * @author Wolfgang Bangerth, 2005 - */ -template -inline SymmetricTensor<4, dim> -deviator_tensor() -{ - return deviator_tensor(); -} - - - /** * Return the fourth-order symmetric identity tensor which maps symmetric * second-order tensors to themselves. @@ -3439,36 +3399,6 @@ identity_tensor() -/** - * Return the tensor of rank 4 that, when multiplied by a symmetric rank 2 - * tensor t returns the deviator dev t. It is the operator - * representation of the linear deviator operator. - * - * Note that this tensor, even though it is the identity, has a somewhat funny - * form, and in particular does not only consist of zeros and ones. For - * example, for dim=2, the identity tensor has all zero entries - * except for id[0][0][0][0]=id[1][1][1][1]=1 and - * id[0][1][0][1]=id[0][1][1][0]=id[1][0][0][1]=id[1][0][1][0]=1/2. - * To see why this factor of 1/2 is necessary, consider computing A=Id . - * B. For the element a_01 we have a_01=id_0100 b_00 + - * id_0111 b_11 + id_0101 b_01 + id_0110 b_10. On the other hand, we need - * to have a_01=b_01, and symmetry implies b_01=b_10, - * leading to a_01=(id_0101+id_0110) b_01, or, again by symmetry, - * id_0101=id_0110=1/2. Similar considerations hold for the three- - * dimensional case. - * - * @relatesalso SymmetricTensor - * @author Wolfgang Bangerth, 2005 - */ -template -inline SymmetricTensor<4, dim> -identity_tensor() -{ - return identity_tensor(); -} - - - /** * Invert a symmetric rank-2 tensor. *