From: Timo Heister Date: Wed, 15 May 2019 15:50:53 +0000 (-0600) Subject: followup small step-63 edits X-Git-Tag: v9.2.0-rc1~1490^2 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=refs%2Fpull%2F8178%2Fhead;p=dealii.git followup small step-63 edits --- diff --git a/examples/step-63/doc/intro.dox b/examples/step-63/doc/intro.dox index f12dcad9a9..04a6fb1736 100644 --- a/examples/step-63/doc/intro.dox +++ b/examples/step-63/doc/intro.dox @@ -35,11 +35,10 @@ direction, and $f$ is a source. A few notes: 2. If $\varepsilon=0$ then this is the stationary advection equation solved in step-9. -3. Define the Peclet number: $\mathcal{P}\coloneqq -\|\boldsymbol{\beta}\| \cdot L/\varepsilon$. If $\mathcal{P}>1$, we say the -problem is advection-dominated, else if $\mathcal{P}<1$ we will -say the problem is diffusion-dominated. Here $L$ is the length -scale of the domain. +3. Define the Peclet number: $\mathcal{P}\:=\|\boldsymbol{\beta}\| +\cdot L/\varepsilon$. If $\mathcal{P}>1$, we say the problem is +advection-dominated, else if $\mathcal{P}<1$ we will say the problem is +diffusion-dominated. Here $L$ is the length scale of the domain. For the discussion in this tutorial we will be concerned with advection-dominated flow. diff --git a/examples/step-63/doc/results.dox b/examples/step-63/doc/results.dox index 76ca966d88..c0136e509c 100644 --- a/examples/step-63/doc/results.dox +++ b/examples/step-63/doc/results.dox @@ -455,10 +455,10 @@ comparison of solve times for a $Q_3$ element with 74,496 DoFs: 74496 - 0.689 s - 5.826 s - 1.189 s - 1.021 s + 0.68s + 5.82s + 1.18s + 1.02s diff --git a/examples/step-63/step-63.cc b/examples/step-63/step-63.cc index 4efa00baad..47654ac2ab 100644 --- a/examples/step-63/step-63.cc +++ b/examples/step-63/step-63.cc @@ -450,7 +450,7 @@ namespace Step63 // from On // Discontinuity-Capturing Methods for Convection-Diffusion Equations by - // Volker John and Petr Knobloch + // Volker John and Petr Knobloch. template double compute_stabilization_delta(const double hk, const double eps,